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Introduction

This is the latest / current version of the lecture notes of Emmanuel Plaut, Joachim Peinke

and Michael Hölling for the module Turbulence & Wind Energy at Mines Nancy, in the

Department Energy, at the Master 2 Level.

This module is somehow a follow up of the modules Mécanique des fluides 2 : ondes,

couches limites et turbulence (Plaut 2021a) and Turbomachines - Énergies hydraulique

et éolienne (Jenny 2017) of the Master 1 Level. Indeed, one can find, in the last chapter of Plaut

(2021a), an introduction to turbulent flows; in the chapter 4 of Jenny (2017), an introduction to

wind energy.

Since, however, not every students following this lecture has followed these previous lectures, we

restart from the level of a basic Master 1 Level fluid mechanics lecture. The chapter 0 is there

to remind the base fluid mechanics equations, under the continuum mechanics approach,

and to fix some notations.

Importantly, we only consider incompressible fluids in this lecture.

In the first part, that corresponds to the chapter 1, driven by E. P., we study turbulence

modelling for computational fluid dynamics (CFD).

We focus on the Reynolds Averaged Navier-Stokes (RANS) approach and models. The

RANS approach is closely linked to the statistical theory of turbulence, which is quite rele-

vant. The RANS approach is basically interesting to characterize and gain some understanding

on turbulence phenomena. Finally, RANS models are still, today, the preferred choice for engi-

neering studies. To place this in the History of science with a capital H, note that the concept of

Reynolds Average has been introduced in Reynolds (1895), who was, in fact, more concerned with

the transition to turbulence than with turbulence itself1. To write the chapter 1 of the present

document, we have been inspired by Hanjalić & Launder (2011); Wilcox (2006).

During the corresponding sessions (1 to 3), using a problem-based learning approach, studies of the

Direct Numerical Simulations (DNS) database of Lee & Moser (2015) will be performed

with Matlab.

In the second part, driven by J. P. & M. H., that corresponds to the chapter 2 (and appendix A),

we do give some insights on the statistical theory of turbulence, concentrating on the fluctua-

tions (not precisely characterized in Plaut 2021a), and on applications to wind energy. We thus

also review in this part the aerodynamics of wind turbines.

During the corresponding sessions (4 to 6), studies of various experimental turbulence data

will be performed with the free software R, dedicated to statistical computing2.

1More modestly, to place this in the syllabus of our Master 2, note that Plaut (2021b) cited Reynolds (1895)...
2See www.r-project.org .

www.r-project.org


4 Introduction

The aim of this document is to give a framework for the lectures, and problems and exercises

that will be solved ‘interactively’ during the sessions. Some notes in the chapter 2 and appendix A

are only devoted to the most interested readers... To save paper, ink and energy, the printed

version of this document does not include this appendix; it may be read only in the PDF version

of the lecture notes available on the dynamic web page of this module

http://emmanuelplaut.perso.univ-lorraine.fr/twe .

This web page also contains turbulent flow data sets, that have been given by J. P., for exercise 2.3...

For the students of Mines Nancy, this module has an Intranet - ARCHE page

http://arche.univ-lorraine.fr/course/view.php?id=11599

on which wind speed and wind turbine power data, grid turbulence data are available for exer-

cises 2.2 and 2.3.

In the chapter 1, many equations have some blank spaces, e.g., equation (1.56). The student

should write by himself the solutions here, during, or, after the lectures. Accordingly, there are

many empty or incomplete figures, e.g. figure 1.2, signaled by a ‘DIY’ in the legend, which

means ‘Do it yourself’. These figures should in principle be realized by the student. A more

complete version of this chapter, where there are less blank spaces and empty figures, will be

published at the end of session 3, and may be asked by mail to E. P.

The solutions of the exercises and problems solved during the sessions will be displayed on ‘video

presentations’ posted on the web page of the module after the sessions. It is quite important

that the students work on these ‘video presentations’, since they propose figures and physical

interpretations that are often not included in these lecture notes.

E. P. thanks Boris Arcen, J. P. & Carlos Peralta for interesting discussions and inputs, that

helped him to dive into the topics of turbulence. He also thanks Matthieu Gisselbrecht for the

cooperation of year 2015 and Stefan Heinz for the cooperation running since 2017.

J. P. & M. H. acknowledge support by the Fondation Mines Nancy and Erasmus + program.

Nancy & Oldenburg, December 6, 2022.

Emmanuel Plaut, Joachim Peinke & Michael Hölling.

http://emmanuelplaut.perso.univ-lorraine.fr/twe
http://arche.univ-lorraine.fr/course/view.php?id=11599


Chapter 0

The basic concepts and equations

of fluid dynamics - Notations

0.1 Cartesian coordinates, tensors and differential operators

We most often use a cartesian system of coordinates of origin O, associated to the laboratory

frame. The coordinates are denoted (x, y, z) or (x1, x2, x3), and we use Einstein’s convention of

summation over repeated indices, e.g. the position vector is

x = xiei

with e1, e2, e3 the orthonormal base vectors. We do not use overbars to designate vectors, since

the overbars will be used to define various averages, e.g. in chapter 1, ‘Reynolds averages’. Vectors

and tensors of order 2 will thus be simply denoted by boldface characters. The use of tensorial

intrinsic notations will be minimized, to save some energy to face other difficulties. However,

it would be interesting to reformulate all the equations written in cartesian coordinates using

tensorial intrinsic notations, and this task, as an intermediate step, would be quite important in

fact to study e.g. turbulent pipe flow with, at the end, cylindrical coordinates.

Last but not least, ∂t (resp. ∂xi) denotes the differential operator that takes the partial derivative

with respect to the time t (resp. coordinate xi).

0.2 Dynamics of incompressible newtonian fluids

The eulerian velocity field v(x, t) is used to describe the flow of incompressible newtonian

fluids. The incompressibility means that the mass density ρ is uniform and constant. There-

fore the mass conservation equation reads

∂xivi = 0 , (0.1)

which means that the velocity field v is conservative.

The Cauchy stress tensor σ determines the surface force d2f exerted on a small surface of area

d2A and normal unit vector n pointing outwards, by the exterior onto the interior, through

d2f = σ · n d2A = σijnj d
2A ei . (0.2)
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The stresses σij are given by the sum of pressure and viscous stresses,

σij = − pstaticδij + 2ηSij(v) (0.3)

with pstatic the static pressure, η the dynamic viscosity of the fluid, S(v) the rate-of-strain

tensor defined as the symmetric part of the velocity gradient, i.e., in components,

Sij(v) :=
1

2
(∂xivj + ∂xjvi) . (0.4)

In this equation, the sign := means a definition.

The linear momentum equation is the Navier-Stokes equation

ρ[∂tvi + ∂xj (vivj)] = ρgi + ∂xjσij = ρgi − ∂xipstatic + ∂xj (2ηSij(v)) , (0.5)

where gi are the components of the acceleration due to gravity. Usually, a modified pressure

that includes a gravity term,

p = pstatic + ρgZ , (0.6)

where Z is a vertical coordinate, is used, to group the first two terms on the r.h.s. of equation (0.5),

which reads therefore

ρ[∂tvi + ∂xj (vivj)] = − ∂xip + ∂xj (2ηSij(v)) . (0.7)

In the chapter 1, we will most often use the modified pressure p instead of the static pressure

pstatic .

After dividing by the mass density, we get another form of the Navier-Stokes equation,

∂tvi + vj∂xjvi = − 1

ρ
∂xip + ∂xj (2νSij(v)) (0.8)

with ν = η/ρ the kinematic viscosity of the fluid. We have used the mass conservation equa-

tion (0.1), ∂xjvj = 0, to rewrite the nonlinear term on the l.h.s.1; this whole l.h.s. is in fact the

acceleration of the fluid particle (in the sense of the continuum mechanics) that passes through x

at time t...

For the sake of simplicity, we have only considered, as volume forces, the gravity forces, and have

‘hid’ them into the modified pressure. It may be interesting to consider other forces; this is done

in Hanjalić & Launder (2011)...

1An equation reads generically l.h.s. = r.h.s. with l.h.s. its ‘left hand side’, r.h.s. its ‘right hand side’.



Chapter 1

Reynolds Averaged Navier-Stokes

approach and models

This chapter corresponds to the sessions 1 to 3.

We start with an introduction of the Reynolds approach and then go quickly to the Reynolds

equations and stresses, which are the common bases of all Reynolds Averaged Navier-

Stokes (RANS) models. We discuss briefly the Reynolds stress equations and models, and

then focus on eddy-viscosity 2-equations models, namely, the k − ε and k − ω models. In

a problem-based learning approach, we propose the problems 1.1 and 1.2 to dive into this subject

with analytical calculations and numerical comparisons with a reference database, that offers online

results of direct numerical simulations (DNS) of channel flow. Precisely, we will rummage

with Matlab1 in the DNS database of the University of Texas at Austin,

https://turbulence.oden.utexas.edu . (1.1)

The DNS on which we will focus are presented in Lee & Moser (2015).

1.1 Reynolds decomposition, equations and stresses

1.1.1 Reynolds average and decomposition

A natural and most important approach in turbulence is the statistical approach. A turbulent

flow experiment (possibly, a numerical experiment !) may be repeated N times, with N a large

integer, and one may average for instance the pressure field p(x, t) over all the realizations. Denot-

ing pn(x, t) the pressure field at position x and time t during the nth realization, the ensemble

average or Reynolds average of the pressure is

p(x, t) = lim
N→∞

1

N

N∑
n=1

pn(x, t) . (1.2)

Often, the turbulence is ‘stationary’, and one may, with a reasonable hypothesis of ergodicity,

use alternately a time average to define the mean pressure

p(x) = 〈p(x, t)〉t = lim
T→∞

1

T

∫ T

0
p(x, t) dt (1.3)

1Another software may of course be used !

https://turbulence.oden.utexas.edu
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where, on the r.h.s., in the integral, it might be relevant to write p1 instead of p, since we refer to

one realization (say, the first one, labelled n = 1) of the flow.

The Reynolds decomposition splits the pressure p and the velocity fields v

into mean values + fluctuations, according to

p = P + p′ , vi = Ui + ui ⇐⇒ v = V + u

with P = p , Ui = vi ⇐⇒ V = v ,

hence p′ = 0 , ui = 0 ⇐⇒ u = 0 .

(1.4)

1.1.2 Reynolds equations and stresses or second moments

As stated in the introduction, the fluid is assumed to be incompressible, hence the mass con-

servation equation is given by (0.1),

∂xivi = 0 . (1.5)

From the definition (1.2), it is clear the one has the commutation rules

∂tp = ∂tp and ∀i , ∂xip = ∂xip . (1.6)

This applies to any real-valued field, i.e. also to the velocity components. Therefore, by taking

the Reynolds average of the equation (1.5), we obtain

∂xivi = ∂xivi = 0 ⇐⇒ ∂xiUi = 0 , (1.7)

i.e. the mean flow is also conservative. This equation (1.7) is the 1st RANS equation. Since the

mass conservation equation (1.5) is linear, its average form (1.7) is exactly the same.

Let us now consider the Navier-Stokes equation (0.7),

ρ[∂tvi + ∂xj (vivj)] = − ∂xip + ∂xj (2ηSij(v)) . (1.8)

On purpose, the nonlinear advection term on the l.h.s. has been written under a ‘conservative’

form. When one takes the Reynolds average of the equation (1.8), the averages of the linear terms

yield no surprise according to the commutation rules (1.6), i.e. we get

ρ
(
∂tUi + ∂xjvivj

)
= − ∂xiP + ∂xj (2ηSij(V)) . (1.9)

On the contrary, the nonlinear term has to be treated carefully. Indeed

vivj = (Ui + ui)(Uj + uj) = UiUj + Uiuj + uiUj + uiuj = UiUj + Uiuj + uiUj + uiuj .

To transform the second and third terms on the r.h.s., we made use of the fact that V = Ui or Uj

do not depend on the realization, hence, with w = uj or ui ,

V w = lim
N→∞

1

N

N∑
n=1

V (x, t) wn(x, t) = V (x, t) lim
N→∞

1

N

N∑
n=1

wn(x, t) = V (x, t) w(x, t) = V w .

Since u is a fluctuating vector field of zero average by its definition (1.4), we get

vivj = UiUj + uiuj ⇐⇒ uiuj = vivj − vi vj . (1.10)
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Using the terminology of statistics, the first of the equations (1.10) reads

mean(vivj) = (mean(vi)) (mean(vj)) + covariance(vivj) . (1.11)

Most importantly, if the fluctuations ui and uj are correlated, the second moment

uiuj = covariance(vivj) (1.12)

does not vanish. Thus we get a ‘fluctuation-induced’ contribution in the RANS equation (1.9),

that is put on the r.h.s.,

ρ[∂tUi + ∂xj (UiUj)] = − ∂xiP + ∂xj (2ηSij(V)) + ∂xjτij (1.13)

with the Reynolds stresses

τij = − ρuiuj = − ρ covariance(vivj) . (1.14)

The equation (1.13) is the 2ème RANS equation, or the RANS momentum equation. It

shows that, if the fluctuations ui and uj are correlated, they feedback onto the mean-flow through

the term τij that corrects the viscous stress 2ηSij(V) (see the equation 0.3) in the evolution

equation for Ui ; this ‘analogous role’ explains the terms ‘Reynolds stress’ or ‘Reynolds stresses’,

though there are no surface forces (see the equation 0.2) behind this.

It is often convenient to divide the 2d RANS equation (1.13) by the mass density, to obtain an

equation for the ‘mean acceleration’

DUi
Dt

:= ∂tUi + Uj∂xjUi = − 1

ρ
∂xiP + ∂xj (2νSij(V)) − ∂xjuiuj . (1.15)

We face a closure problem : to close the system of the Reynolds equations (1.7) and (1.13), or,

equivalently, of the equations (1.7) and (1.15), to be able to determine the first moments P = p

and Ui = vi , we have to model the second moments

uiuj .

A solution to this closure problem is a RANS model !..

1.2 Reynolds stress equations and models

1.2.1 Equations of the velocity fluctuations

By substracting, from the Navier-Stokes equation (1.8) divided by ρ, the RANS equation (1.15),

we readily obtain the exact equation for the evolution of the velocity fluctuations

Dui
Dt

:= ∂tui + Uj∂xjui = − 1

ρ
∂xip

′ + ∂xj [ν(∂xjui) − uiuj + uiuj ] − uj∂xjUi . (1.16)
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1.2.2 Equations of the second moments

Multiplying the equation (1.16) by uj and averaging, then adding to it the mirror equation in

which the indices i and j are interchanged, one gets, after some manipulations, exact equations

for the evolution of the second moments, or the second-moments transport equations,

Duiuj
Dt

:= ∂tuiuj + Uk∂xk(uiuj) = −(uiuk ∂xkUj + ujuk ∂xkUi)︸ ︷︷ ︸
Pij

−1

ρ

(
ui ∂xjp

′ + uj ∂xip
′
)

︸ ︷︷ ︸
Πij

− 2ν(∂xkui) (∂xkuj)︸ ︷︷ ︸
εij

+ ∂xk(ν∂xkuiuj)︸ ︷︷ ︸
Dνij

− ∂xkuiujuk︸ ︷︷ ︸
Dtij

. (1.17)

By multiplication with −ρ, equivalent equations for the rate of change of the Reynolds stresses

Dτij
Dt

:= ∂tτij + Uk∂xkτij = ... (1.18)

are readily obtained; those are the Reynolds-stress transport equations or more simply the

Reynolds-stress equations.

The equation (1.17) means that the rate of change of the second moment uiuj arises from an

imbalance of the terms of the r.h.s.,

• the production terms Pij , which are usually positive, hence their name;

• the pressure-velocity coupling terms Πij ;

• the dissipation terms εij ;

• the viscous diffusion terms Dν
ij , which are often negligible if the Reynolds number is

high;

• the 3rd moments term Dt
ij .

We face a new closure problem : the equations (1.17) for the 2d moments uiuj implies terms Dt
ij

with the 3rd moments uiujuk , that have to be modelled, as, also, Πij and εij .

In stationary turbulence, the rate of change Duiuj/Dt vanishes, hence the sum of the terms in

the r.h.s. of the equation (1.17) vanish. Interestingly, these terms may be computed by sufficiently

long DNS. Studying these terms and how they balance is relevant, and should help to model them.

Such a study may be coined as a study of the second-moments budgets or Reynolds-stress

budgets.

1.2.3 Reynolds-stress models

Reynolds-stress models or second-moment models propose a model of Πij , εij and Dt
ij ,

that yield a closed form of the equations (1.17). The coupled system of the equations (1.7), (1.15)

and (1.17) allows then in principle the computation of the mean pressure P , mean velocity Ui and
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second-moments uiuj i.e. Reynolds-stresses τij = −ρuiuj .

To develop Reynolds-stress models is a difficult task. An historical and seminal paper is the one

of Launder et al. (1975). A more recent and pedagogical reference is the book Hanjalić & Launder

(2011) which is almost entirely dedicated to this task, for free flows but also wall-bounded flows,

which poses big problems.

From a computational point of view, the Reynolds-stress models are known to be, often, numer-

ically unstable. They are also demanding in terms of computational power, since in 3D situations

6 equations (1.17) have to be solved, in addition to the mean mass conservation equation (1.7),

and to the 3 mean momentum equations (1.15).

In this lecture, for the sake of simplicity, with an ‘engineering’ point of view, we will focus on

simpler (but less accurate !) models, which rely on the eddy viscosity assumption that will be

described now.

1.3 The eddy-viscosity assumption, turbulent kinetic energy

and the corresponding momentum RANS equation

The idea undelying the eddy-viscosity assumption (or ‘approximation’) is attributed to Boussi-

nesq in 1877, though then he examined a specific case. It is to write the Reynolds stresses τij under

a form similar to the one of the Cauchy stresses (0.3), i.e., after taking the Reynolds average,

σij = − Pstaticδij + 2ηSij(V) . (1.19)

One writes thus

τij = − αδij + 2ηtSij(V) , (1.20)

with α to be identified from the constraint that the trace of this tensor equation is strictly verified,

τii = − 3α , (1.21)

and ηt the dynamic eddy or turbulent viscosity. To write (1.20) is in general a crude assump-

tion, as it will be shown in the problem 1.1, but this looks appealing, since it models the 6 unknown

Reynolds stresses τij with only 2 scalar variables, α and ηt .

By definition, see (1.14), the trace of the Reynolds stress tensor

τii = − 2ρk (1.22)

with k the (specific) turbulent kinetic energy

k =
1

2
uiui , (1.23)

which has a clear physical meaning. Therefore the equation (1.21) gives

α =
2

3
ρk ,

and consequently the eddy-viscosity assumption or Boussinesq assumption (1.20) reads

τij = − 2

3
ρkδij + 2ηtSij(V) ⇐⇒ uiuj =

2

3
kδij − 2νtSij(V) , (1.24)

with νt = ηt/ρ the kinematic eddy or turbulent viscosity.
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By injection into the momentum RANS equation (1.13), we get a new form of this equation,

ρ[∂tUi + ∂xj (UiUj)] = − ∂xi
(
P +

2

3
ρk
)

+ 2∂xj

(
(η + ηt)Sij(V)

)
. (1.25)

• The term 2
3ρk corresponds to a kind of ‘turbulent dynamic pressure’ that increases the

(modified) mean pressure P - compare with the formula that led to the Bernoulli theorems.

• The eddy viscosity ηt increases the material fluid viscosity η - this is coherent with the idea

that turbulent mixing speeds up the diffusion.

Dividing the equation (1.25) by ρ, we get the equivalent equation

DUi
Dt

= − ∂xi
(P
ρ

+
2

3
k
)

+ 2∂xj

(
(ν + νt)Sij(V)

)
. (1.26)

1.4 The mixing length model of the eddy viscosity

The problem with equations (1.25) and (1.26) is mainly to estimate the eddy viscosity νt. Indeed

it yields immediately the dynamic eddy viscosity

ηt = ρνt . (1.27)

The turbulent kinetic energy k is not needed in a simplistic but ‘efficient’ approach where

one considers that it corresponds only to a technical correction2 to the mean pressure P . A

simple algebraic model3 of νt has been developed by Prandtl for shear flows where the mean

strain-rate tensor

Sij(V) =
1

2

[
∂xj (Ui) + ∂xi(Uj)

]
6= 0

as measured by the mean strain-rate

S =
√

2SijSij .

The idea is that dimensional analysis gives

νt ≡ ` v ≡ `2 S

which is physically meaningful : the mean strain-rate S may be viewed as a source of mixing

hence eddy viscosity. Hence Prandtl writes

νt = `2m S (1.28)

where `m is the mixing length. This length is estimated as the size of the largest turbulent

eddies, as it will be illustrated in problem 1.1. This model, useful because of its simplicity, is

however not quite precise. Spalding and coworkers therefore developed the more sophisticated

differential k − ε model, that we will now present.

2This point of view is oversimplified: e.g., k influences the mixing and intervenes in many ‘correlations’ or closure

formulas dealing with mixing or other ‘complex’ phenomena.
3‘Algebraic’ refers to the fact that the eddy viscosity does not depend on fields other than U that are determined

by differential equations.
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1.5 The turbulent kinetic energy equation

1.5.1 The exact turbulent kinetic energy equation

By taking the trace of the second-moments transport equations (1.17), and dividing by 2,

one gets the exact turbulent kinetic energy equation

Dk

Dt
:= ∂tk + Uj∂xjk = − uiuj ∂xjUi︸ ︷︷ ︸

Pk

− 1

ρ

(
ui ∂xip

′
)

︸ ︷︷ ︸
Π

− ν(∂xjui) (∂xjui)︸ ︷︷ ︸
ε

+ ∂xj (ν∂xjk)︸ ︷︷ ︸
Dν

− 1

2
∂xjuiuiuj︸ ︷︷ ︸
Dt

. (1.29)

After a simple manipulation, that takes into account the fact that the fluctuating velocity field is

conservative,

∂xiui = 0 , (1.30)

one may rewrite the turbulent kinetic energy equation (1.29) as follows,

Dk

Dt
= ∂xj (ν∂xjk)︸ ︷︷ ︸

Dν

− ∂xj

(
p′uj
ρ

+
1

2
uiuiuj

)
︸ ︷︷ ︸

Dt

− uiuj ∂xjUi︸ ︷︷ ︸
Pk

− ν(∂xjui) (∂xjui)︸ ︷︷ ︸
ε

. (1.31)

In this equation, the different terms are typically the half-trace of terms in the second-moments

transport equations (1.17), for instance

ε in equation (1.31) =
1

2
εii in equation (1.17) .

1.5.2 The production term according to the eddy-viscosity assumption

The exact production term in equation (1.31),

Pk = − uiuj ∂xjUi , (1.32)

may be rewrittent by the use of the eddy-viscosity assumption equation (1.24). This yields

Pk = 2νt Sij(V) ∂xjUi = 2νt Sij(V) Sij(V) , (1.33)

where we have used the fact that

∂xjUi = Sij(V) + ωij(V) ,

where ωij(V), the rate-of-rotation tensor, is the antisymmetric part of the gradient of V.

The last two expressions of Pk in the equations (1.33) clearly show that Pk is positive.

1.6 The turbulent dissipation rate

A sink, i.e., always negative term, in the equation (1.31) is the last one, −ε. It is the opposite of

the (specific) turbulent (energy) dissipation rate

ε = ν (∂xjui) (∂xjui) , (1.34)

which is always positive.
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An exact equation may be written for the time evolution of ε, see e.g. the section 3.4 of Hanjalić

& Launder (2011). It is unfortunately quite complex. It has the form

Dε

Dt
:= ∂tε + Uj∂xjε = ∂xj (ν∂xjε) − 2ν(∂xkui) (∂xjui) (∂xjuk) + ... (1.35)

where we have only explicited 2 of the 8 terms of the r.h.s. of the equation (3.15) of Hanjalić &

Launder (2011), disregarding the volume force term4.

It is interesting to analyze the dimensions of k and ε. Since a kinematic viscosity ν ≡ v ` with v

a velocity and ` a length, we get

k ≡ v2 and ε ≡ v ` (v/`)2 ≡ v3/` . (1.36)

Consequently,

• k is a ‘velocity-scale determining field’, because from it we may define the velocity scale

vk := k1/2 ; (1.37)

• ε is a ‘length-scale determining field’, because from it and using (1.37) we may define the

length scale

`kε :=
v3
k

ε
=

k3/2

ε
. (1.38)

It is important to state that ε is often close to the classical turbulent dissipation rate

ε = 2ν Sij(u) Sij(u) . (1.39)

Indeed, one may show that

ε − ε = ν ∂xjui∂xiuj , (1.40)

which vanishes if the turbulence is ‘homogenous’ i.e. uniform in space, i.e., if all mean properties

of turbulence do not depend on the position. This is important because

ε ' ε (1.41)

appears as the specific power injected in the ‘Kolmogorov cascade’, see e.g. Plaut (2021a).

1.7 The k − ε model

1.7.1 The main idea - The eddy-viscosity formula

The k − ε model was designed by Spalding and co-workers at Imperial College in the late 1960s -

early 1970s5, and presented in Launder & Spalding (1974). The main idea is that k and ε are the

most relevant ‘turbulent fields’ that may characterize the local properties of turbulence and the

turbulent viscosity. By dimensional analysis, one assumes that

νt = Cν vk `kε , (1.42)

4See the last remark of the chapter 0.
5The history of this model is sketched in the section 7.4.2, ‘Popular two-equation eddy-viscosity models’ of

Hanjalić & Launder (2011).
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with Cν (or Cµ) a dimensionless number. From the equations (1.37) and (1.38), we get

νt = Cν
k2

ε
, (1.43)

which displays reasonable physical tendencies:

• if the turbulent kinetic energy k increases, at fixed ε one expects a more efficient turbulent

mixing, and νt does increase ;

• if the turbulent dissipation rate ε increases, at fixed k, one expects a less efficient turbulent

mixing, and νt does decrease.

1.7.2 The modeled turbulent kinetic energy equation

With the idea that the term Dt in the exact turbulent kinetic energy equation (1.31) corresponds

essentially to turbulent diffusion effects, one writes it using the turbulent viscosity. This leads to

the modeled turbulent kinetic energy equation

Dk

Dt
= ∂xj

((
ν +

νt
σk

)
∂xjk

)
︸ ︷︷ ︸

Dν+Dt

+ Pk − ε , (1.44)

with σk a dimensionless number of order 1, and the production term Pk already studied in sec-

tion 1.5.2.

1.7.3 The modeled turbulent dissipation equation

Contrarily to what has been done with k, because the exact ε equation (1.35) is quite complex, it is

not relevant to use this equation as a a starting point to obtain a modeled equation for ε. Instead,

Spalding and coworkers wrote an equation analogous in form to the modeled equation (1.44) for k,

with viscous diffusion, turbulent diffusion, production and dissipation terms that have the correct

dimension by multiplication by the factor ε/k for the last two terms, inserting also numbers to

have new degrees of freedom for good modeling:

Dε

Dt
= ∂xj

((
ν +

νt
σε

)
∂xjε

)
︸ ︷︷ ︸

Dνε+Dtε

+ C1
ε

k
Pk − C2

ε

k
ε . (1.45)

There σε , C1 and C2 are dimensionless numbers of order 1.

1.7.4 Coefficients

The coefficients of the k − ε model proposed by Launder & Spalding (1974), on the basis of

the study of representative flow cases that were at this time documented experimentally, are

Cν = 0.09 , σk = 1 , σε = 1.3 , C1 = 1.44 , C2 = 1.92 . (1.46)
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1.7.5 Problem

We follow in this problem some processes imagined by Spalding and coworkers to set up or ‘verify’

the k− ε model, and ‘fix’ or ‘fit’ some of its constants. We illustrate their ideas by the use of the

DNS database (1.1), and thus go beyond their work of the 1960s - 1970s. Indeed, we have more

knowledge now: DNS of turbulent channel flow are numerous and well documented, whereas when

the k − ε model was invented they were just infeasible.

This problem is of course also an occasion to gain some general knowledge on turbulence phenomena

and on the RANS approach.

Problem 1.1 Turbulent channel flow: RANS mixing length and k − ε models

We consider, as a prototype of a well documented wall-bounded turbulent flow, a turbulent

channel flow as sketched on the figure 1.1a. The half-channel height is δ, x is the streamwise

coordinate, y the wall-normal coordinate, z the spanwise coordinate. In the region of interest, far

from the inlet and outlet, and not too close to the sidewalls at z = ±Lz/2, the mean velocity

field

V = U(y) ex (1.47)

and the mean (modified in the sense of section 0.2) pressure field

P = −Gx + p0(y) with G > 0 the opposite of the mean pressure gradient. (1.48)

All the other mean fields depend only on y. In part 1, after some generalities, we zoom on the near-

wall region, and use the simple historical ‘algebraic’ mixing-length RANS model of section 1.4

that was developed prior to the k − ε model, to evidence the three-layers structure depicted on

the figure 1.1b. In parts 2 and 3, this structure is evidenced and further characterized with the

DNS database (1.1).

Part 1 General study, within the RANS framework, of the mean-flow profile

1.1 Explicit the 3 components of the RANS momentum equation (1.13).

• With the x-component, show that there exists a balance between the mean pressure gradient,

viscous and turbulence effects.

• With the y-component, show that, as one goes off the wall, the pressure tends to diminish

because of the turbulent fluctuations.

• With the z-component, show that the Reynolds stress τyz vanishes, which may be viewed as

a ‘symmetry’ property.

1.2 Integrate the x-component of the RANS momentum equation with respect to y, to show

that

η
dU

dy
+ τxy = τw − Gy , (1.49)

with the mean viscous stress, or ‘friction’, at the wall, or mean wall shear stress

τw = 2ηSxy(V)|y=0 = η
dU

dy

∣∣∣
y=0

= ηU ′0 . (1.50)
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Fig. 1.1 : (color online) a: Sketch of a turbulent channel flow setup as studied in the problem 1.1. b:

Zoom on the region near the lower wall, that is somehow a turbulent boundary layer. The curved arrows

represent turbulent eddies.

This enables the definition of ‘wall units’ of velocity, using as the velocity scale the friction

velocity

uτ =
√
τw/ρ ⇐⇒ τw = ρu2

τ , (1.51)

and of length, using as the length scale the friction length

`τ = ν/uτ . (1.52)

Thus we define

U+ =
U

uτ
and y+ =

y

`τ
=

yuτ
ν

. (1.53)

1.3 One observes in experiments and DNS the mirror symmetry with respect to the center-

plane at y = δ,

U(2δ − y) = U(y) and τxy(2δ − y) = − τxy(y) . (1.54)

Deduce from this the symmetry properties of the velocity gradient

dU

dy
(2δ − y) = =⇒ dU

dy
(y = δ) = , (1.55)

and determine also the main Reynolds stress at the centerplane

τxy(y = δ) = . (1.56)

1.4 Deduce from this and the (integrated) RANS momentum equation (1.49) the expression

of the mean wall shear stress as a function of the mean pressure gradient and the half-channel

height,

τw = . (1.57)

1.5 Find this same relation with a global mean momentum budget of the fluid in a region of

interest, in the x direction, and explain the physics behind this.
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1.6 Show that there exists a viscous sublayer, for y quite small, where the profile of mean

velocity is linear in y,

U(y) ' U ′0 y ⇐⇒ U+(y+) ' y+ . (1.58)

1.7 Show that, farer from the wall, in the overlap layer where both

• y is sufficiently large, such that the Reynolds stress τxy dominates the viscous stress ηdU/dy

and

• y � δ,

one may assume that the Reynolds stress is roughly constant,

τxy ' . (1.59)

1.8 Following Boussinesq, Prandtl and von Karman, we use in this overlap layer an eddy-viscosity

model to calculate the Reynolds stress τxy , with a mixing-length model for the eddy-viscosity

ηt = ρνt = ρ
dU

dy
`2m , `m = κ y , κ = von Karman constant . (1.60)

Show that this implies that the overlap layer is a log layer where the log law holds,

U+(y+) ' 1

κ
ln y+ + C (1.61)

with C an additive constant.

1.9 Calculate the eddy viscosity in the log layer, and show that it has a simple y-dependence

ηt = ⇐⇒ ν+ :=
ηt
η

= . (1.62)
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Part 2 Evidence and characterization of the viscous sublayer on the DNS database

2 Open with a web browser the database (1.1), and save in a folder the files

LM Channel 0180 mean prof.dat

and

LM Channel 5200 mean prof.dat

that give data about the mean flow profile for two DNS at two different friction Reynolds

numbers

Reτ =
uτδ

ν
, (1.63)

Reτ = 180 and 5200.

With a Matlab program that looks like this (the ... should be corrected !)

data= load("LM_Channel_0180_mean_prof.dat");

%% Extraction of the column 2 : tabulated values of y+

yp= data(:,2);

%% Extraction of the column ... : tabulated values of U+

Up= data(:,...);

%% Figure: U+ function of y+, DNS and viscous law

figure(1); hold on;

plot( yp, Up, "k","LineWidth",2); xlabel("y+"); ylabel("U+");

plot( yp, yp, "g","LineWidth",1);

compare the DNS mean-flow profiles to the viscous sublayer profile given by the equation (1.58),

i.e., realize the plot asked for in the figure 1.2a. With the criterion that

diff = |U+ − y+| = y+ − U+ < 0.1 , (1.64)

by plotting this difference, in figure 1.2b, define with one digit the upper boundary of the

viscous sublayer,

y+
0 ' . (1.65)

Check that, when the friction Reynolds number is increased, the profiles look similar and y+
0

computed with one digit is unchanged.
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a : b :

Fig. 1.2 : DIY ! Evidence and characterization of the viscous sublayer on the turbulent channel flow

DNS of the database (1.1) at Reτ = 180. a : The profiles of U+ (thick continuous curve) and the viscous

law U+ = y+ (thin dashed line). b : The difference (1.64) (thick line and data points) and the limit 0.1

(dashed line).

Part 3 Evidence and characterization of the log layer on the DNS database

3.1 With a Matlab program, for the DNS of the database at Reτ = 5200, compute the first

indicator function of the log law (1.61),

α(y+) := y+ S+ (1.66)

with the mean strain rate

S+ :=
dU+

dy+
. (1.67)

Plot α(y+) vs y+, i.e., realize the plot asked for in the figure 1.3a. Check that α(y+) displays a

kind of plateau around an inflexion point, and deduce from the position of this point estimates,

with one digit, of y+ in the core of the log layer and, with two digits, of the von Karman

constant,

y+
1 ' and κ ' . (1.68)

Check that κ is close to the value that was admitted in the 1970s, and used by Spalding and

coworkers,

κ = 0.43 . (1.69)

3.2 For the same DNS, plot also the second indicator function of the log law (1.61),

γ(y+) := U+(y+) − κ−1 ln y+ , (1.70)

by using your measured value of κ (1.68), i.e., realize the plot asked for in the figure 1.3b. Check

that γ(y+) does not vary too much around y+
1 determined in (1.68), and estimate the additive

constant C in the log law (1.61) with two digits,

C = . (1.71)

3.3 For the same DNS, realize the figure 1.3c as defined in the caption.

Conclude regarding these models of the mean flow.
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Comments on parts 1 to 3 Universality of this three-layers structure

The three-layers structure evidenced in parts 1 to 3, with a viscous sublayer, a buffer

layer and finally a log layer, depicted on the figure 1.1b, and more precisely displayed on the

figure 1.3c, has been confirmed recently in turbulent channel flows by DNS at even higher Reynolds

number, see the figure 2 of Yamamoto & Tsuji (2018). This three-layers structure ‘exists’ in many

other wall-bounded turbulent flows than channel flows. The commas around ‘exists’ refer to

the log layer, which ‘exists’ not exactly, but only ‘up to a certain precision’...

• In turbulent zero-pressure gradient boundary layers over a flat plate, the analysis

of part 1 may be redone. Locally, neglecting the x-dependence, and close enough to the wall,

one obtains an equation similar to (1.49) but with G = 0, i.e., after division by ρ,

ν
dU

dy
− uxuy ' u2

τ . (1.72)

A numerical confirmation of the log law is for instance presented in the figure 4 of Eitel-Amor

et al. (2014). By the way, some (e.g. the meteorologists that study ‘atmospheric boundary

layers’) name in equation (1.72) the 1st term of the l.h.s. the (kinematic) viscous momentum

flux, the 2d term of the l.h.s. the (kinematic) turbulent momentum flux, and say that the

part of the boundary layer where their sum is indeed ‘constant’ is a ‘constant-flux layer’.

• In turbulent pipe flows, the analysis of part 1 may be redone; one has to use cylindrical

coordinates, there is also a mean pressure gradient G... finally the same log law is found. A

numerical confirmation is for instance presented in the figure 6 of El Khoury et al. (2013).

Therefore, one may speak of a universal structure, and one may ‘believe’ that this three-layers

structure ‘exists’ in almost all wall-bounded flows, though the precise values of the von Karman

constant κ and of the additive constant C may depend on the flow case. This universality pushed

Spalding et al. to verify their k − ε model in ‘the’ log layer, and to use this flow case to adjust

two of the model coefficients, i.e. Cν and σε . The hope was also to obtain near-wall ‘boundary

conditions’ for k and ε in the log layer, see the equations (1.73). The study of the log layer with

the k − ε model is the object of the part 4 of our problem.

Part 4 Analytical study of the k − ε model in the log layer

4.1 In the overlap or log layer, we assume that the k − ε model is as relevant as the mixing-

length model introduced in (1.60). With the idea that the diffusion terms in the equation for k

are negligible in front of the production and dissipation terms, i.e., that there is a production -

dissipation balance6, determine k and ε, i.e., establish wall laws for k and ε,

k = , ε = . (1.73)

Comment.

4.2 Show that, according to the k−ε model, in the log layer, one has the Townsend’s relation7

νt dU/dy

k
= − uxuy

k
= constant = (1.74)

which depends simply of one coefficient of the model. Comment.
6Townsend, a british physicist active in the middle of the XXth century, therefore designates a log layer as an

‘equilibrium layer’.
7See Townsend (1961). Some, however, attribute the relation (1.74) to Bradshaw et al. (1967).
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a : b :

c :

Fig. 1.3 : DIY ! Evidence and characterization of the log layer on the turbulent channel flow DNS

of the database (1.1) at Reτ = 5200. a : The first indicator function α (1.66). b : The second indicator

function γ (1.70). c : The DNS mean flow (continuous curve) with the viscous layer profile for y+ < 10 and

the log law profile for y+ > 10 (dashed curves). In all plots, the vertical dashed line shows y+ = y+1 which

locates the log layer, see the first of the equations (1.68).

4.3 Show that the (modeled) equation (1.45) of the turbulent dissipation is valid in the log layer,

provided that there is a relation between the von Karman constant κ and some coefficients of the

model k − ε :
κ2 = . (1.75)

Verify this with the coefficients (1.46), using the ‘historical’ value (1.69) of κ .

We move now to a study, based on the database (1.1), of the second moments of the

velocities (equivalently, the Reynolds stresses), turbulent kinetic energy, eddy viscosity

and turbulent dissipation, and to detailed comparisons with the k − ε model and wall laws.

Part 5 Study of the second moments of the velocities,

the turbulent kinetic energy and the eddy viscosity on the DNS database

5.1 Download from the database (1.1) the file LM Channel 0180 vel fluc prof.dat that give

the second moments of the velocities for the DNS at Reτ = 180. Wall units are used: the

3rd column for instance, that the authors denote u′u′, gives with our notations the dimensionless

variance

u+
x u

+
x =

uxux
u2
τ

=
ρuxux
ρu2

τ

= − τ+
xx . (1.76)

Extract from this file u+
x u

+
x , u

+
y u

+
y , u

+
z u

+
z and the dimensionless turbulent kinetic energy

k+ =
k

u2
τ

. (1.77)
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Plot these quantities vs y/δ with continuous lines, adding on the three first plots the prediction of

the ideal8 k− ε model with dashed lines, i.e., according to the eddy-viscosity assumption (1.24),

u+
x u

+
x = u+

y u
+
y = u+

z u
+
z =

2

3
k+ , (1.78)

i.e., realize the plots asked for in the figures 1.4abcd. Comment in terms of ‘isotropy’ or

‘anisotropy’ of the variances, and discuss the influence of the wall at y = 0. In particular,

evidence a wall-damping effect on two variances, a wall-enhancing effect on one variance,

that are not captured by the ideal k− ε model. Is this issue specific to the k− ε model, or could

it be more general ?

5.2 Check that, in terms of the dimensionless eddy viscosity ν+ defined in (1.62), the eddy-

viscosity assumption (1.24) yields dimensionless covariances of the velocities, for i 6= j,

u+
i u

+
j = −ν+dU

+

dy+
if (i, j) = (x, y) or (y, x) ,

u+
i u

+
j = 0 otherwise.

(1.79)

5.3 Verify with Matlab that, for the DNS at Reτ = 180, the maximal absolute values of the9

covariances that should vanish are indeed small as compared with the maximal absolute value

of u+
x u

+
y ,

max
(

max
∣∣∣u+
x u

+
z

∣∣∣ = , max
∣∣∣u+
y u

+
z

∣∣∣ =
)
�

(
max

∣∣∣u+
x u

+
y

∣∣∣ =
)
. (1.80)

Comment.

5.4 Realize the plots asked for in figure 1.4e of the opposite of the main covariance u+
x u

+
y and

the mean strain rate S+ (1.67). Deduce from them the ‘exact’ eddy viscosity

ν+ = − u+
x u

+
y

S+
, (1.81)

and plot it in figure 1.4f with its log-layer model ν+ = κy+, see the equations (1.62). For this

purpose, explicit generally the relation between y+ and y/δ,

y+ = . (1.82)

Comment this relation and the figures 1.4ef.

Indications:

• The file LM Channel 0180 mean prof.dat already used in part 2 is necessary to get the values

of S+ = dU+/dy+.

• Use ./ to divide term by term two vectors.

• Use the value of κ measured in (1.68).

5.5 With the files of the DNS at the highest value of Reτ accessible in the database, Reτ = 5200,

realize the plots asked for in figure 1.4g.

Compare with the figure 1.4f and comment.
8This would be the ‘ideal’ k − ε model since it would predict a profile of k+(y) strictly equal to the one found

naturally in the DNS. This cannot be !.. Thus the mismatchs between the velocity variances and the ‘ideal’ k − ε
model predictions visible on the figures 1.4abc get, typically, worse, if the ‘real’ k − ε model is used.

9From now on we do not recall, in the text of the problem 1.1, that all fields are dimensionless.
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a : b :

c : d :

e : f :

g :

Fig. 1.4 : DIY ! Various turbulent fields from the DNS database (1.1), in dimensionless wall units, plotted

vs y/δ. In figures a to f, Reτ = 180, whereas, in figure g, Reτ = 5200. a : the continuous line shows the

variance u+x u
+
x , see (1.76), the dashed line the profile according to the eddy-viscosity assumption, i.e.,

2
3k

+, see (1.78). b : the same for the variance u+y u
+
y . c : the same for the variance u+z u

+
z . d : the

turbulent kinetic energy k+ (1.77). e : the continuous line shows the opposite of the main covariance

u+x u
+
y , the dashed line the mean strain rate S+ = dU+/dy+. f : the continuous line shows the ‘exact’

eddy viscosity ν+ = −u+x u+y /S+, the dashed line its log-layer model ν+ = κy+. g : Same as figure f but

for Reτ = 5200. The vertical dashed line shows y+ = y+1 which locates the log layer, see the first of the

equations (1.68).
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Part 6 Study of the turbulent kinetic energy, of its production,

and of the turbulent dissipation on the DNS database

We perform a systematic study of these fields, on the DNS database (1.1), for typical values of

the friction Reynolds number, Reτ = 180, 1000 and 5200.

6.1 For these DNS, realize the plots asked for in figures 1.5ab, of k+ vs y/δ in lin-lin scales, vs

y+ in log-lin scales, with lines of increasing thicknesses and different colors. The range of values

of y+ for the figure 1.5b (and also dfh) should be large, i.e., one should start deep in the viscous

sublayer, at y+ = 0.1, and reach at the end the maximum value of y+. Comment, by identifying

a near-wall peak of k+ at a ‘robust’ value of y+, with 1 digit,

y+
max k ' . (1.83)

Indication: for log-lin scales, use the command semilogx instead of plot.

6.2 Do these DNS confirm the wall law for k (1.73) in the log layer, that reads in wall units

k+ =
1√
Cν

? (1.84)

6.3 Download from the database (1.1) the files LM Channel * RSTE k prof.dat that give data

about the exact turbulent kinetic energy equation (1.31), for the same DNS. Remark that

one column contains the production term (1.32), here, because of the form of the mean flow

Pk = − uxuy
dU

dy
, (1.85)

in wall units, i.e.

P+
k =

`τ
u3
τ

Pk =
ν

u4
τ

Pk = − u+
x u

+
y
dU+

dy+
= − u+

x u
+
y S+ (1.86)

with the notation (1.67). Realize the plots asked for in figures 1.5cd of P+
k vs y/δ or y+. Comment,

by identifying a near-wall peak of P+
k at a ‘robust’ value of y+, with 2 digits,

y+
maxPk

' . (1.87)

6.4 Accordingly, identify in the files LM Channel * RSTE k prof.dat the column that gives the

turbulent dissipation rate in wall units,

ε+ =
ν

u4
τ

ε . (1.88)

Realize the plots asked for in figures 1.5ef of ε+ vs y/δ or y+. Comment.

6.5 Do these DNS confirm the idea that there would exist a universal value of ε+ at the wall ?

6.6 To test the wall law for ε (1.73) in the log layer, transform it to wall units

ε+ = ⇐⇒ y+ε+ = . (1.89)

Realize the plots asked for in figures 1.5gh. Comment.

Indication: use .* to multiply term by term two vectors.
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a : b :

c : d :

e : f :

g : h :

Fig. 1.5 : DIY ! Various turbulent fields extracted from the DNS database (1.1), in dimensionless wall

units, at Reτ = 180 (thin black line), 1000 (thicker blue line) and 5200 (thickest red line), plotted vs y/δ

in lin-lin scales (left) or y+ in log-lin scales (right). a,b : turbulent kinetic energy k+ (1.77); the

vertical dashed line on figure b indicates y+max k defined in the equation (1.83). c,d : production term P+
k

(1.86); the vertical dashed line on figure d indicates y+maxPk
defined in the equation (1.87). e,f : turbulent

dissipation rate ε+ (1.88). g,h : premultiplied dissipation rate y+ε+.
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Comment on one particular result of part 6 - question 6.3

The figure 1.5d suggests that the production term in wall units P+
k = −u+

x u
+
y S+ converges to a

universal asymptotic profile as Reτ → +∞. Indeed a general asymptotic theory that yields

asymptotic expressions of the main covariance −u+
x u

+
y , the mean strain rate S+ and, consequently,

Pk and νt , valid for channel flows and also boundary layer and pipe flows as Reτ → +∞, has been

recently presented in Heinz (2018, 2019), see the problem 1.3 at the end of this chapter.

Part 7 Study of the eddy viscosity, of the ratio k2/ε and of the eddy-viscosity coeffi-

cient Cν on the DNS database

We continue our systematic study of the DNS database (1.1), for typical values of the friction

Reynolds number, Reτ = 180, 1000 and 5200.

7.1 Precise the dimensionless form of the k − ε model eddy-viscosity law (1.43), in terms of

ν+ = ηt/η = νt/ν, k+ and ε+,

ν+ = . (1.90)

7.2 With a Matlab program similar to the one used in question 10.3, plot the ‘exact’ eddy

viscosity ν+ = −u+
x u

+
y /S+ (1.81) vs y/δ or y+ for the 3 DNS of focus, i.e. realize the plots asked

for in the figures 1.6ab. The range of values of y+ for the figures 1.6bdfh should be the same as

the one used in the figures 1.5bdfh. Comment.

7.3 On your screen, or using the axis command, zoom on the range y+ ∈ [0.1, 10], and check

that, in the viscous sublayer, as defined by (1.64, 1.65), the eddy viscosity

ν+ < 0.1 (1.91)

for all DNS. Explain what this means physically.

7.4 Extend your program to compute k+2/ε+ for the DNS already studied, and realize the plots

asked for in the figures 1.6cd. Comment.

Indication: use .̂ 2 to raise all terms of a vector to the power 2, ./ to divide term by term two

vectors.

7.5 Extend your program to compute ‘ideal’ functions cν(y+; Reτ ) that would be defined by the

fact that the k − ε model eddy-viscosity law (1.90) is exactly valid by the use of cν instead of

Cν , i.e.

cν :=
ν+

k+2/ε+
. (1.92)

Realize the plots asked for in the figures 1.6ef. Comment briefly.

7.6 Compute the ratio of the exact DNS eddy viscosity to the k − ε model eddy-viscosity,

Rν :=
ν+

0.09 k+2/ε+
, (1.93)

and realize the plots asked for in the figures 1.6gh.

Given your answer to the question 7.3, is the divergence visible in the region y+ < 1 on the

figures 1.6fh important ?

Evidence a wall-damping effect on the eddy viscosity.
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a : b :

c : d :

e : f :

g : h :

Fig. 1.6 : DIY ! Various turbulent fields extracted from the DNS database (1.1), in dimensionless wall

units, at Reτ = 180 (thin black line), 1000 (thicker blue line) and 5200 (thickest red line), plotted vs y/δ in

lin-lin scales (left) or y+ in log-lin scales (right). a,b : ‘exact’ eddy viscosity ν+. c,d : ratio k+2/ε+.

e,f : ideal eddy viscosity ‘function’ cν defined by the equation (1.92). g,h : eddy-viscosity ratio Rν
defined by the equation (1.93). In figures fh, the vertical dashed line shows y+ = y+0 , the upper boundary

of the viscous sublayer, see the equation (1.65).
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Fig. 1.7 : The eddy-viscosity damping function fν (1.94) of Chien (1982) vs y+. The facts that

fν(y+) −→ 0 as y+ → 0, fν(y+) −→ 1 as y+ → +∞ are typical of a damping function.

1.7.6 Some conclusions regarding the k − ε model

Our answers to the question 5.1 of the problem 1.1, see the plots of the velocity variances

u+
x u

+
x , u

+
y u

+
y and u+

z u
+
z of the figures 1.4abc, show that all models that use the eddy-viscosity-

assumption cannot describe the wall-damping and wall-enhancing effects that lead to an

anisotropy of the velocity variances near a solid wall. A solution to this issue may only

be obtained with second moments or Reynolds stress models, which are beyond the scope of

this lecture.

Disregarding this issue, with the idea that, for engineers, a good knowledge of the turbulent

kinetic energy k might be sufficient to characterize roughly the turbulent fluctuations, there remains

obviously the issue of the choice of the boundary conditions near a solid wall.

In the ‘high-Reynolds number’ version of the k − ε model, one does not mesh the viscous

sublayer, but starts computations somewhere around10 y+ ' 100, at a point which stands hopefully

in the log layer, and uses the wall laws (1.61) for the mean flow U , (1.73) for the turbulent kinetic

energy k and the turbulent dissipation ε. A complexity is that the value of the wall shear stress is

needed, which may be estimated roughly and then refined. Anyhow, our answers to the questions

6 of the problem 1.1, see the figures 1.5b of k+ and 1.5h of y+ε+, clearly show that these boundary

conditions are poorly relevant: this leads typically to inaccurate results.

This explains why, very soon, the developpers of the k − ε model, and other authors, proposed

‘low-Reynolds number’ versions of this model, that require a meshing down to the wall, and

rely on modifications of some coefficients of the model that become ‘damping functions’ of the

wall distance or of other fields. For instance, in Chien (1982), a damping function11

fν = fν(y+) = 1− exp(−0.0115y+) (1.94)

is introduced in the eddy-viscosity law, which now reads

νt = Cν fν
k2

ε
. (1.95)

The figure 1.7 shows a log-lin plot of fν(y+). Out of the viscous sublayer, for y+ & 4, the profile

of fν(y+) is, naturally, rather similar to the ones of the functions cν and Rν that we introduced in

the ultimate part of the problem 1.1, see the equations (1.92) and (1.93), and the figures 1.6fh...

10The value of 100 quoted here is somehow arbitrary... some start at lower or larger y+...
11The coefficient of y+ in the exponential is taken from Chien (1982), but Hanjalić & Launder (2011) report a 10

times large value, we have no explanation for this discrepancy.
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It is worthwhile to try to develop an understanding of all these issues concerning the boundary

conditions near a solid wall, and of the related ‘wall-damping problems’. These problems

are rather tough, and we will unfortunately not solve them completely in this module. As a first

step towards a solution, we focus in the forthcoming section on the behaviour of the turbulent

fields in the viscous sublayer.

1.8 Study of the turbulent fields in the viscous sublayer

Problem 1.2 The turbulent fields in the viscous sublayer: asymptotic study

and numerical validation on turbulent channel flow

We focus on the viscous sublayer near a plane wall defined by y = 0, that has been

already studied in channel flows in the parts 1 and 2 of the problem 1.1: see the figures 1.1b for a

sketch of the geometry and of the flow considered, 1.2 for the confirmation in DNS, as far as the

mean flow is concerned. The study is performed for a general turbulent flow, where the ensemble

average that appears for instance in the first of the equations (1.97) depends in principle on x, z

and t, but validations and illustrations are focussed on turbulent channel flow, using the DNS

database (1.1). There the ensemble averages do not depend on x and z, i.e., the turbulence is

‘homogeneous’ in these directions, and on t, i.e., the turbulence is ‘stationary’.

1 With the help of the boundary conditions and of a conservation equation, show that the com-

ponents of the fluctuating velocity u behave as follows, as y → 0,

ux = A(x, z, t) y + O(y2) ,

uy = B(x, z, t) y2 + O(y3) ,

uz = C(x, z, t) y + O(y2) .

(1.96)

2.1 Deduce from this the behaviour of the velocity (co)variances as y → 0,

uxux = A2(x, z, t) y2 + O(y3) ,

uyuy = + O( ) ,

uzuz = + O( ) ,

uxuy = + O( ) .

(1.97)

Comment briefly, in connection to the figures 1.4abce.

2.2 In a turbulent channel flow at a given Reynolds number, because of the homogeneity in the

directions x and z and in time, show that there exist constants A0 , B0 , C0 and D0 such that, as

y → 0, in wall units,

u+
x u

+
x ∼ A0 y

+2 , u+
y u

+
y ∼ B0 , u+

z u
+
z ∼ C0 , − u+

x u
+
y ∼ D0 . (1.98)

Validate the formulas regarding u+
x u

+
x , u

+
y u

+
y and u+

x u
+
y by realizing, for Reτ = 180, the plots

asked for in the figures 1.8abc. The constants A0 etc. will always be computed by assuming

that, in (1.98), the sign ∼ may be replaced by the sign = at the first grid point off the wall.

For this purpose, restart from the Matlab program that you used to solve the question 5.1 of

the problem 1.1, working on the file LM Channel 180 vel fluc prof.dat, and use the loglog

command for log-log scales. To better compare the figures 1.8abc, always use the same ranges of

values of y+ and of the ordinates Var,

y+ ∈ [0.1, 100] , Var ∈ [10−7, 10] . (1.99)
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Comment briefly.

3.1 Deduce from this the behaviour of the turbulent kinetic energy k as y → 0,

k = + O( ) . (1.100)

3.2 In a turbulent channel flow at a given Reynolds number, show that there exists a constant K0

such that, as y → 0, in wall units,

k+ ∼ K0 y
+2 . (1.101)

Validate this formula by realizing the plot asked for in the figure 1.8d, still using the ranges (1.99),

for Reτ = 180. For this value of Reτ , precise the value of K0 estimated from the first grid point

off the wall,

K0 = . (1.102)

4.1 We now focus on the turbulent dissipation rate

ε = ν ε′ with ε′ = (∂xjui) (∂xjui) . (1.103)

Using the asymptotic expansions (1.96), show that for 7 couples (j, i) the square (∂xjui)
2 is O(y2)

as y → 0, whereas for 2 couples (j, i) the square (∂xjui)
2 has a finite limit as y → 0. Deduce from

this, in coherence with what the figure 1.5f displays, that ε has a finite limit as y → 0, i.e., a value

at the wall, which is a simple function of ν and A, B, C introduced in (1.96),

εw := lim
y→0

ε = . (1.104)

4.2 Show that one has the relation, that may be viewed as a boundary condition for the

turbulent dissipation rate ε,

εw = ν ∂2
yk = lim

y→0

2νk

y2
, (1.105)

i.e., in wall units,

ε+
w = ∂2

y+k
+ = lim

y+→0
. (1.106)

4.3 Check that, for the turbulent channel flow DNS at Reτ = 180, the expected value

ε+
w = = , (1.107)

according to the equation (1.102), fits to the corresponding curve of the figure 1.5f and to the first

data point of the corresponding column of the file LM Channel 0180 RSTE k prof.dat.
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a : b :

c : d :

e :

Fig. 1.8 : DIY ! Various turbulent fields extracted from the DNS at Reτ = 180 of the database (1.1),

in dimensionless wall units, plotted vs y+ in log-log scales. a : continuous curve: the variance u+x u
+
x ;

dashed line: the power law A0y
+2, with A0 computed from u+x u

+
x = A0y

+2 at the first grid point off the

wall. b : continuous curve: the variance u+y u
+
y ; dashed line: the power law B0y

+4. c : continuous

curve: the opposite of the covariance −u+x u+y ; dashed line: the power law D0y
+3. d : continuous curve:

the turbulent kinetic energy k+; dashed line: the power law K0y
+2. e : continuous curve: the eddy

viscosity ν+; dashed line: the power law D0y
+3.
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5.1 We now focus on turbulent flows for which the mean flow is unidirectional,

V = U(y) ex , (1.108)

hence the eddy viscosity may be estimated like in the question 5.4 of the problem 1.1,

νt = − uxuy
S

with the mean strain rate S =
dU

dy
. (1.109)

Using the mean-flow theory for the viscous sublayer12, and the result of question 2.1, given by the

last of the equations (1.97), establish the behaviour of the eddy viscosity as y → 0,

νt = − + O( ) . (1.110)

5.2 Transform these relations to wall units, and to a turbulent channel flow case, using the nota-

tions of the equations (1.98), to show that, as y → 0,

ν+ = − u+
x u

+
y

S+
∼ ∼ . (1.111)

Validate this relation for the DNS at Reτ = 180 by realizing the plots asked for in the figure 1.8e.

5.3 Still for a turbulent channel flow case, compare this asymptotic power law to the one derived

from the eddy-viscosity law of the k− ε model, in connection with what display the figures 1.6fh.

Comments on the problem 1.2

The issue of the different asymptotic behaviours of the eddy viscosity of the DNS and the

(ideal) k − ε model in the viscous sublayer, evidenced in your answer to the question 5.3, is not

very important, since the eddy viscosity plays no role there, as explained in your answer to the

question 7.3 of the problem 1.1.

On the contrary, the fact that we established in question 4.2, equation (1.105), a physically

sound boundary condition at a solid wall on the second turbulent field, ε, of the k − ε model,

is an important result of the problem 1.2. However, this condition is not convenient from a

computational point of view, since it couples ε at the wall to the second derivative of k at the wall.

Moreover, it can be shown that the equation (1.105) is totally incompatible with the high-Reynolds

number ε - equation (1.45) of the k − ε model... which is bad news for this model !..

If one considers, as the second turbulent field, instead of ε, the turbulent frequency

Ω :=
ε

k
, (1.112)

the equation (1.105) shows that, near a solid wall, as the wall-normal coordinate y → 0, one has

the ‘boundary condition’

Ω ∼ 2ν

y2
. (1.113)

This may be enforced at the first grid points off the wall, placed in the viscous sublayer i.e. with

y+ < 4, replacing there the sign ∼ by the sign = . The fully explicit ‘boundary condition’ (1.113)

is simpler than the boundary condition expressed by the equation (1.105). By this remark, we are

led to the k − ω models, which are interesting alternatives to the k − ε model...

12See the part 1 of the problem 1.1 and the comments on parts 1 to 3 of this problem.
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1.9 The k − ω models

1.9.1 The k − ω model of Wilcox (1988)

The idea of using the turbulent kinetic energy k and the turbulent frequency Ω as the

turbulent fields that determine the eddy viscosity dates back to Kolmogorov (1942). In this

seminal paper, he proposed the first two-equations eddy-viscosity model of the History of science,

and this was a k − ω model. This model was revisited and improved by Wilcox (1988). We now

give an overview of his model, using his notations, but in the case of incompressible fluids.

Wilcox (1988) chose to define the turbulent frequency or specific dissipation rate (see the

discussion around the equation 1.118 below) as

ω :=
ε

β∗k
=

Ω

β∗
(1.114)

with the eddy-viscosity coefficient

β∗ = Cν = 0.09 , (1.115)

such that the eddy-viscosity is given by the law equivalent to the one of the k − ε model,

equation (1.43),

νt =
k

ω
. (1.116)

The modeled turbulent kinetic energy equation is similar to the one of the k−ε model (1.44),

Dk

Dt
= ∂xj

(
(ν + σ∗νt)∂xjk

)
︸ ︷︷ ︸

Dν+Dt

+ Pk − β∗kω , (1.117)

with σ∗ a dimensionless number of order 1 (which equals in principle 1/σk of the k− ε model), Pk
the production term (1.32) or (1.33), and where the dissipation term ε has been replaced by its

expression in terms of ω and k, see the equation (1.114). Importantly, in homogeneous turbulence,

where in equation (1.117) the advection term in Dk/Dt vanishes, the diffusion and production

terms also vanish, we get
∂tk

k
= − β∗ω . (1.118)

For this reason Wilcox (1988) denote ω as the specific dissipation rate.

Similarly to what Spalding and coworkers did in order to write and equation for ε, see our sec-

tion 1.7.3, the modeled turbulent frequency equation is written by analogy to the equation

for k, with viscous diffusion, turbulent diffusion, production and dissipation terms that have the

correct dimension by multiplication by the factor ω/k for the last two terms, inserting also numbers

to have new degrees of freedom for good modeling:

Dω

Dt
= ∂xj

(
(ν + σνt)∂xjω

)
︸ ︷︷ ︸

Dνω+Dtω

+ γ
ω

k
Pk − β ω2 . (1.119)
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On the basis of the study of representative flow cases, Wilcox (1988) proposed these values of the

model coefficients

β∗ = 0.09 , σ∗ = σ = 0.5 , γ = 0.555 , β = 0.075 . (1.120)

In particular, γ has been calculated by studying a log layer in a manner equivalent to what we

did in the part 4 of the problem 1.1, see the exercise 1.1 below. From this analysis, wall laws for

k and ω may be derived, that follow directly from the equations (1.73) and (1.114), i.e.,

k =
u2
τ√
β∗

, ω =
uτ√
β∗ κ y

. (1.121)

It may be checked that the exact ‘near-wall boundary condition’ that follows from the equa-

tions (1.113) and (1.114), namely

ω ∼ 2ν

β∗y2
(1.122)

as the wall-normal coordinate y → 0, is qualitatively compatible with the ω - equation (1.119).

Indeed, an asymptotic analysis of the ω - equation (1.119) as y → 0 shows that the dominant

terms are the viscous diffusion and dissipation terms, that must balance. This balance leads to

the ‘near-wall boundary condition’

ω ∼ 6ν

βy2
(1.123)

as y → 0, which is quantitatively different from (1.122) but qualitatively similar, since the same

power laws in ν1 y−2 are found.

Wilcox (1988) computed a unidirectional mean-flow

V = U(y) ex , (1.124)

using the near-wall boundary condition (1.123), together with the natural no-slip boundary con-

ditions

U = k = 0 (1.125)

at the wall (y = 0), and the log-layer laws (1.121) as y → +∞ (in practice, y+ = 500). This

gave as output a mean-flow U(y) profile that approached, for y+ & 20, the log-law (1.61), with a

reasonable value of the additive constant C ' 5.1. This success allowed him to declare that his

model may be integrated down to the wall, i.e., through the viscous sublayer. This is a strong

argument in favour of his model, which is considered therefore to be more relevant than the k − ε
model in near-wall regions.



36 Chapter 1. Reynolds Averaged Navier-Stokes approach and models

1.9.2 Exercise

Exercise 1.1 Studies around the k − ω models

We focus on k−ω RANS models. We consider a turbulent flow near a plane wall, defined

by y = 0, such that, in the region of focus, the mean flow

V = U(y) ex , (1.126)

the turbulent kinetic energy

k = k(y) , (1.127)

and the turbulent frequency

Ω = Ω(y) or ω = ω(y) (1.128)

depending on the normalization.

In part 1, we consider the near wall ‘boundary condition’ on Ω, and therefore focus on the

viscous sublayer.

In part 2, we study the k − ω model of Wilcox (1988), in the log layer.

Part 1

Numerical study of the viscous sublayer on the turbulent channel flow DNS database

We consider the viscous sublayer as characterized in the parts 1 and 2 of the problem 1.1. We

want to test on the same turbulent channel flow DNS database the ‘boundary condition’

(1.113) for Ω = ε/k.

1.1 Define Ω+, Ω in wall units, in terms of Ω. For this purpose, define a natural wall unit of

time tτ .

Check that Ω+ is ε+/k+ with ε+ and k+ as defined in the lecture notes.

1.2 Establish the form of the ‘boundary condition’ (1.113) in wall units,

Ω+ ∼ 2

y+2
as y+ → 0 . (1.129)

1.3 Define a simple function f(y+) such that, if the ‘boundary condition’ (1.129) would hold

exactly in the whole channel, then the premultiplied turbulent frequency

f(y+) Ω+(y+) (1.130)

would be equal to 1.

1.4 With Matlab, verify the relevance of the ‘boundary condition’ (1.129) on the DNS of the

database at Reτ = 180, by plotting f(y+) Ω+(y+) vs y+ in the interval [0, 10], and the ordinate in

a relevant interval: realize the plot asked for in the figure 1.9a.

Comment. In particular, explain briefly why the first data point, at the lowest value of y+, should

be disregarded.
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a : b :

Fig. 1.9 : DIY ! Study of the behaviour of the turbulent frequency Ω = ε/k in the viscous sublayer,

on the turbulent channel flow DNS of the database (1.1) at Reτ = 180. a : The premultiplied turbulent

frequency 1
2y

+2 Ω+ (thick continuous curve and data points) and the limit 1 (thin horizontal dashed line).

b : The error (1.131) (thick line and data points), the limit 0.07 (thin horizontal dashed line), and the

integers y+1 and y+1 + 1 (thin vertical lines), see (1.132).

1.5 Expand your Matlab script to create the figure 1.9b that displays the error

err(y+) = |f(y+) Ω+(y+)− 1| (1.131)

vs y+ in the interval [0, 10]. Determine the largest integer y+
1 such that,

∀y+ ∈ [0, y+
1 ] , err(y+) < 0.07 . (1.132)

Comment.

Part 2

Analytical study of the log layer in the framework of the model of Wilcox (1988)

We consider the log layer as characterized in the part 1 of the problem 1.1. In particular, we

assume that the mean-flow derivative and the dynamic eddy viscosity

dU

dy
=

uτ
κy

, ηt = ρuτκy , (1.133)

with uτ the friction velocity and κ the von Karman constant.

2.1 Explicit the components of the mean gradient of velocity and mean rate-of-strain ten-

sors, depending on the couple of cartesian indices considered. In the framework of the k − ω

model, calculate the (turbulence) production term Pk .

2.2 Assuming that the diffusion terms in the k− ω model equation for k are negligible in front of

the production and dissipation terms, establish a relation between k and ω. Comment briefly.

2.3 By using also the k − ω eddy-viscosity law, calculate k and ω in the log layer. Comment.

2.4 Show that the model equation for ω is valid in the log layer, provided that a reasonable

approximation is made, and there is a relation between the von Karman constant κ and some

coefficients of the model k − ω ,

κ2 = . (1.134)
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2.5 Verify that the coefficients of the model k− ω (1.120) correspond to a reasonable value of κ .

Comment briefly and from an ‘historical’ point of view.

1.9.3 Opening: the k − ω Shear-Stress Transport model of Menter (1994)

With the idea that the k−ω model is more relevant in near-wall regions, Menter (1994) proposed

a model that ‘blends’ the k − ω and k − ε models, the k − ω model being recovered in the near-

wall region, the k − ε model in the freestream region. With a further, clever modification of the

eddy-viscosity law, this gave the ‘famous’ k − ω Shear-Stress Transport (SST) model, which

is still widely used nowadays in CFD studies...

1.10 Openings

Many RANS models exist, that have not been described nor even advocated in the core of this

chapter. An illustration of this profusion of models is provided by a glimpse at the ‘Turbulence

Modeling Resource’ web site of NASA Langley Research Center,

https://turbmodels.larc.nasa.gov . (1.135)

This page offers a list of 18 ‘popular’ RANS models, which are all (follow the links !) described

in some details, and then tested on some benchmark cases. From a more theoretical point of

view, a weak point with the RANS approach is that most (if not all) model equations have been

constructed from physical and dimensional arguments, which is not very systematic. I am happy

to state that I contributed recently to a systematic derivation of a RANS eddy-viscosity equation,

in a restricted class of flow, however, see Plaut & Heinz (2021)... which has to do with the

problem 1.3 !.. This small step forward does not solve everything: it should be clear that other

topics could be presented within the RANS framework, not speaking of other approaches that are

currently spreading from the community of the researchers to the one of the engineers: the Large

Eddy Simulations (LES) and the Hybrid RANS - LES methods. These last methods might

be presented as the best ones nowadays for the CFD of complex turbulent flows, with new ideas

to better fix the models, at least this is what claims Heinz (2020)...

1.11 Problem: turbulent channel flow at high Reynolds number

We offer a problem that makes use of many concepts introduced in this chapter, but with a different

point of view: the aim is to set up an asymptotic theory of turbulent channel flow in the near wall

region and in the limit Reτ → +∞.

Problem 1.3 Analytic models of turbulent channel flow in the near wall region

at high Reynolds numbers

Inspired by Heinz (2018, 2019), we want to model analytically turbulent channel flow in

the limit Reτ → ∞ and in the near wall region. We use exactly the same notations as in the

problems 1.1 and 1.2, except for the (main i.e. non-vanishing) Reynolds shear stress which

is denoted τ instead of τxy , and for the production term in the turbulent kinetic energy

equation, which is denoted P instead of Pk . We recall that in wall units

τ+ =
τ

τw
= − u+

x u
+
y . (1.136)

https://turbmodels.larc.nasa.gov
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Part 1 Model of the Reynolds shear stress

We want to show that the analytic expression

τ+
m =

(
(y+/a)b/c

1 + (y+/a)b/c

)c
(1.137)

is a good model for τ+ in the near wall region, provided that the parameters a, b and c are set

correctly in R+∗.

1.1 As y+ → 0, show that

τ+
m ∼ D0 y

+n (1.138)

with D0 a coefficient and n an exponent that depend simply on the parameters (a, b),

D0 = , n = . (1.139)

Explain how a may be calculated from D0 and b.

1.2 Using one result of the problem 1.2, fix the (integer) value of b,

b = . (1.140)

1.3 To fix the value of a, we use the DNS of the database (1.1) at the highest Reτ available,

Reτ = 5200. Using Matlab and the file LM Channel 5200 vel fluc prof.dat, extract, from the

knowledge of τ+ at the first grid point off the wall, an estimate of the numerical value of D0 such

that, as y+ → 0,

τ+ ∼ D0 y
+n (1.141)

with n already fixed according to the previous questions. Fix from this the value of a; give the

values of y+, D0 and a thus found, with 3 digits13:

y+ = , D0 = , a = . (1.142)

Using other files of the DNS database, realize the figure 1.10a. For all the 4 figures 1.10a to 1.12

that you have to realize, set the interval of the abscissa as follows,

y+ ∈ [0.1, 5200] .

In all figures, mark one or a few relevant (figure - dependent !) values of y+ with vertical lines,

and if necessary a relevant value of the ordinate with an horizontal line.

Comment the figure 1.10a.

1.4 To fix the value of c, explain on the basis of the figure 1.10a why enforcing τ+ = τ+
m at a value

of y+ close to 14 is relevant. By inspecting with Matlab the tabulated values of y+ for the DNS

at Reτ = 5200, extract the index i such that the ith value of y+ is the one closest to 14. Give i, y+

and τ+ thus found, with 3 digits:

i = , y+ = , τ+ = . (1.143)

13To force Matlab to print more digits, use format long at the beginning of your script.
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a : b :

Fig. 1.10 : DIY ! a : The Reynolds shear stress τ+ vs y+, in log-log scales, for the channel flow

DNS at Reτ = 180 in black, 1000 in blue, 5200 in red, with continuous lines, and the power law (1.138)

with a black dashed line. The vertical lines mark y+ = , 14 and , the horizontal line marks τ+ = .

b : Same as a, except that the black dashed line now shows the complete analytic model τ+m , and that the

vertical lines mark y+ = and .

1.5 Since the equation τ+ = τ+
m implies c in a complex nonlinear manner, create a Matlab script

taum.m which codes the function τ+
m as follows,

function res= taum(yplus,a,b,c)

res= ( ((yplus/a)^(b/c)) / ( 1 + (yplus/a)^(b/c)) )^c;

and a script differ.m which codes the function differ = τ+
m − τ+ as follows,

function res= differ(yplus,a,b,c,taudns)

res = taum(yplus,a,b,c) - taudns;

Check that, for the values of y+ and τ+ determined in question 2.1, and with the previously fixed

values of a and b, the function differ changes of sign in the interval c ∈ [1, 2]. Fix therefore the

value of c by computing the root of the equation τ+ = τ+
m that sits in this interval as follows,

c= fzero(@(x) differ(yplus,a,b,x,taudns), [1 2])

Give this value with 2 digits only, since it turns out that the model is not very sensitive to the

value of c,

c = . (1.144)

Realize the figure 1.10b; to plot the profile of the model, use the command arrayfun to apply the

function taum to the tabulated values of y+, according to something like

tau3m= arrayfun(@(x) taum(x,a,b,c),yp3)

Comment this figure.
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Fig. 1.11 : DIY ! The mean strain rate S+ vs y+, in log-log scales, for the channel flow DNS at

Reτ = 180 in black, 1000 in blue, 5200 in red, with continuous lines, and the model S+
m = 1 − τ+m with a

black dashed line. The vertical line marks y+ = . For bonus - optional: the black dotted line shows

the alternate log layer model S+
`` .

Part 2 Model of the mean strain rate

2.1 Show that the dimensionless version, in wall units, of the RANS momentum equation (1.49)

links the mean strain rate

S+ =
dU+

dy+
(1.145)

with τ+ and y/δ.

2.2 Explain why it is reasonable to assume that, at high Reynolds number, at fixed y+ in the near

wall region,

S+ = 1 − τ+ . (1.146)

2.3 From this and part 1 an analytical model for S+ is given by

S+
m = 1 − τ+

m . (1.147)

Using some files LM Channel * mean prof.dat of the DNS database, realize with Matlab the

figure 1.11, and comment it.

2.4 For bonus - optional ! Calculate the mean strain rate S+
`` that should be obtained in the

log layer, assuming that the mean flow would be exactly given by the equation (1.61),

U+ = U+
`` =

1

κ
ln y+ + C .

Add a line showing S+
`` on the graph of the figure 1.11, using the value of κ measured in the

problem 1.1, and comment briefly the relevance of this alternate model for S+.
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Fig. 1.12 : DIY ! The turbulent kinetic energy production term P+ vs y+, in log-linear scales, for

the channel flow DNS at Reτ = 180 in black, 1000 in blue, 5200 in red, with continuous lines, and the

model P+
m with a black dashed line. The vertical lines mark y+ = y+2 and 30, the horizontal line marks

P+ = 1/4.

Part 3 Model of the turbulent kinetic energy production term

3.1 We recall that the production term in the turbulent kinetic energy equation reads, in

wall units,

P+ = τ+ S+ . (1.148)

Show that, at high Reynolds number, in the near wall region, P+ is a simple polynomial function

of degree 2 of S+,

P+ = . (1.149)

Deduce from this, since S+ varies from 1 at the wall to 0 at the centerplane, that maxP+ = 1/4

for a well defined value S+
2 ∈ Q of S+,

S+
2 = . (1.150)

3.2 Using the model S+
m of S+ defined in part 2, calculate analytically, as a function of the

parameters (a, b, c), the value y+
2 of y+ where S+

m = S+
2 ,

y+
2 = . (1.151)

3.3 With Matlab, using the values of (a, b, c) determined in part 1, give the numerical value of

y+
2 , with 3 digits, and comment it briefly,

y+
2 = . (1.152)

3.4 Using the analytical models τ+
m of τ+ and S+

m of S+ of parts 1 and 2 defines an analytical

model of P+,

P+
m = τ+

m S+
m . (1.153)

With Matlab, using some files LM Channel * RSTE k prof.dat of the DNS database, realize the

figure 1.12 and comment it.



Chapter 2

Wind energy and turbulence

This chapter corresponds to the sessions 4 to 6.

2.1 Wind energy: power performance theory

This section presents the concept of power performance for wind turbines, starting from

momentum theory to power curves that leads to the Betz limit. This section deals only with

horizontal-axis three-bladed electrical wind turbines. There is no major limitation to its extension

to other designs of wind power systems.

2.1.1 Momentum theory for wind turbines

A basic understanding of fluid mechanics will be applied to wind turbines, with the so-called

‘momentum theory’. This theoretical approach sets ground for the further power curve analysis.

The complexity of turbulence is first set aside, so as to understand the fundamental behavior of a

wind turbine in a uniform flow at steady-state. More complex atmospheric effects will be addressed

later on.

As a wind turbine converts the power from wind into available electrical power, one can assume

the following relation

P (u) = cp(u) Pwind(u) , (2.1)

where Pwind(u) is the power contained in the wind passing with speed u through the wind turbine,

and P (u) is the electrical power extracted. The amount of power converted by the wind turbine

is given by the power coefficient cp(u), which represents the efficiency of the machine. As the

input Pwind(u) cannot be controlled, improving power performance means increasing the power

coefficient cp(u). The power contained in a laminar incompressible flow of mass m and density ρ

moving along the x− axis with constant speed u through a vertical plane of area A is

Pwind(u) =
dEkin,wind

dt
=

d

dt

(
1

2
mu2

)
=

1

2

dm

dt
u2 =

1

2

d(ρV )

dt
u2 =

1

2
ρ
d(Ax)

dt
u2 =

1

2
ρAu3 ,

(2.2)

as can be also deduced from the ‘Euler formula’ (see e.g. Plaut 2021a).

Let us consider a mass of air moving towards a wind turbine, which can be represented by an

‘actuator disc’ of diameter D. An actuator disc is an infinitely thin disc through which the air can

flow without resistance, as proposed by Froude and Rankine’s momentum theory Rankine (1865).
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Fig. 2.1 : Idealized flow situation around a wind turbine (WT) according to Twele & Gasch (2005). The

dashed lines show the limit of the ‘streamtube’ considered in the momentum theory, i.e., the stream of air

particles that interact with the wind turbine. The wind speeds before, at and after the wind turbine are

respectively u1, u2 and u3.

When crossing the wind turbine, the wind is affected as parts of its energy is extracted. This

extraction of kinetic energy results in a drop in the wind speed from upstream to downstream. The

velocity far before the wind turbine (upstream), at the wind turbine and far behind (downstream)

are labelled respectively u1, u2 and u3. An illustration is given in figure 2.1. Mass conservation

requires that the flow-rate ṁ = Aiρui be conserved and

A1ρu1 = A2ρu2 = A3ρu3 , (2.3)

where Ai are the respective areas perpendicular to the flow. A2 is the area swept by the rotor

blades A2 = A = πD2/4. As a consequence of the wind speed slowing down, i.e. u3 < u2 < u1,

the area of the stream-tube has to expand, and A3 > A2 > A1. This can be observed in figure 2.1.

Also, the energy extracted by the wind turbine can be determined by the difference of kinetic

energy upstream and downstream of the wind turbine

Eex =
1

2
m(u2

1 − u2
3) , (2.4)

resulting in a power extraction

Pex =
d

dt
Eex =

1

2
ṁ(u2

1 − u2
3) . (2.5)

The wind turbine continuously takes energy out of the wind flow, which reduces its velocity.

However, the flow needs to escape the wind turbine downstream with a speed u3 > 0. If all the

power content of the wind would be extracted, the wind speed downstream would then become

zero. As a consequence, the air would accumulate downstream and block newer air from flowing

through the wind turbine, so that no more power could be extracted. This means that the wind

flow must keep some energy to escape, which naturally sets a limit for the efficiency of any wind

power system. The power coefficient cp(u) must be inferior to 1. An optimal ratio of wind speeds

µ = u3/u1 can be found that allows for the highest energy extraction.
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2.1.2 Power performance - Betz limit

In the plane of the rotor blades, the flow-rate is given by

ṁ = ρAu2 , (2.6)

where the velocity u2 can be determined following Froude-Rankine by calculating the thrust T

given by

T = ṁ(u1 − u3) . (2.7)

The corresponding power, based on the thrust Pthrust, is given by

Pthrust = ṁ(u1 − u3)u2 . (2.8)

This power is equal to the extracted power Pex from equation (2.5)

ṁ(u1 − u3)u2 =
1

2
ṁ(u2

1 − u2
3) , (2.9)

which can be solved for the velocity in the rotor plane leading to

u2 =
u1 + u3

2
. (2.10)

Inserting equations (2.10) and (2.6) into equation (2.5) yields

P (µ) =
1

2
ρAu3

1

1

2
(1 + µ− µ2 − µ3) = Pwind(u1) cp(µ) (2.11)

where µ = u3/u1 is the wind speed reduction factor. The theoretical definition of the power

coefficient is then

cp(µ) =
1

2
(1 + µ− µ2 − µ3) , (2.12)

as shown in figure 2.2. The optimal power performance is obtained for a ratio µ such that the

derivative of cp(µ) with respect to µ is zero

d

dµ
cp(µ) =

(
−1

2

)
×
(
3µ2 + 2µ− 1

)
= 0 . (2.13)

This leads to

µmax =
1

3
⇐⇒ cp(µmax) =

16

27
' 0.593 , (2.14)

as shown in figure 2.2.

This limit is called the Betz limit, see Betz (1927). In other words, a wind turbine can

extract at most 59.3% of the power contained in the wind. This can be obtained when the

wind speed downstream is one-third of the wind speed upstream.

A widely used representation of power performance is given by the relation of cp to the tip

speed ratio

λ =
ωR

u1
, (2.15)

where ω and R are the angular frequency and radius of the rotor. λ is the ratio of the rotational

speed at the tip of the blades to the upstream wind speed. If the rotational speed increases, more

air is ‘slowed down’ by the turbine, i.e., the wind speed reduction factor µ decreases: λ is directly

related to µ. The dimensionless cp − λ curve will be introduced in the next section.
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Fig. 2.2 : Power coefficient cp as a function of the wind speed ratio µ = u3/u1.

Betz’ momentum theory only considers the mechanical transfer of energy from the wind

to the rotor blades. The next step of the conversion from mechanical to electrical energy has

not been taken into account, as well as all energy losses. The more complex design of wind

turbines causes lower values of cp, as discussed in section 2.1.4. The power coefficients of

modern commercial wind turbines reach values of order 0.5. Also, criticism of Betz theory is

given in Rauh & Seelert (1984); Rauh (2008), leading to a less well defined upper limit of cp.

2.1.3 Energy conversion - Pressure drop

Wind turbines convert kinetic energy into electrical energy at the rotor plane. Therefore the

question arises, which physical quantity is affected by this conversion process. Using the notation

from figure 2.3 we can use Bernoulli equation to calculate the energy within the volume that

approaches the wind turbine and which is left once the volume passed the turbine.

Ein = Vin

(
p1 +

1

2
ρ u2

1

)
= Vin

(
p−2 +

1

2
ρ u2
−2

)
(2.16)

Eout = Vout

(
p3 +

1

2
ρ u2

3

)
= Vout

(
p+2 +

1

2
ρu2

+2

)
(2.17)

Assuming

Vin = Vout

p1 = p3

u−2 = u+2

equations (2.16) and (2.17) read

p1 +
1

2
ρ u2

1 = p−2 +
1

2
ρ u2
−2 (2.18)

p1 +
1

2
ρ u2

3 = p+2 +
1

2
ρ u2
−2 . (2.19)

Solving equation (2.19) for 1
2 ρ u

2
−2 we get

1

2
ρ u2
−2 = p1 +

1

2
ρ u2

3 − p+2
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Fig. 2.3 : Idealized ‘streamtube’ with velocities u1, u2 = 2
3u1 and u3 = 1

3u1 according to Betz limit.

The green line indicates one possible behaviour of the velocity through the wind turbine. The blue curve

sketches the behaviour of the static pressure, where p1 denotes the pressure far in front of the turbine and

p3 the pressure far behind the turbine. p−2 denotes the pressure right before the rotor plane and p+2 the

pressure right behind the rotor plane.

and substituting in equation (2.18) leads to

p1 +
1

2
ρ u2

1 = p−2 + p1 +
1

2
ρ u2

3 − p+2 . (2.20)

Solving equation (2.20) for p+2, which is the static pressure right behind the rotor plane reveals

that the conversion of kinetic into electrical energy results in a pressure drop,

p+2 = p−2 −
1

2
ρ
(
u2

1 − u2
3

)
. (2.21)

2.1.4 Limitations of Betz theory - Energy losses

Although it is based on a simplified approach, the Betz limit is a widely used and accepted value.

But more realistic considerations indicate that real wind turbine designs have even lower efficiency

due to additional limitations. In this section, the three main limitations to reach the optimal value

of cp = 16/27 are introduced. This section only aims to give a first idea. For a more detailed

understanding of the mathematical equations presented here, the reader is kindly referred to the

literature.

Bouncing losses

Betz’ consideration does not take into account that there is not only a reduction of wind speed

downstream, but also an additional angular momentum that is transferred to the air flow, as shown

in figure 2.4. This effect follows Newton’s third law, as a reaction to the rotational motion of the

rotor. For slow rotating wind turbines (λ small), these losses are much more severe than for fast

rotating machines. For λ ≈ 1 an optimum value of cp of only 0.42 can be reached instead of the

Betz optimum of 0.59. cp approaches the Betz optimum with increasing tip speed ratio.
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Fig. 2.4 : Flow around a wind turbine. After passing the turbine the velocity field has a rotational

component due to the rotating rotor blades.

Profile losses

Another important source of energy loss is the quality of the airfoil profile for which the realistic

or ideal cases, including drag force or not, can be considered.

The efficiency η can now be defined as the ratio between equation realistic and ideal situation.

This leads to the efficiency given by

η = 1− ξ . (2.22)

The profile losses ξprof follow the relation

ξprof ∝ rλ . (2.23)

In contrast to the bouncing losses, the profile losses mainly affect fast rotating machines. For higher

tip speed ratios, the lift to drag ratio Cl/Cd must be optimized. Furthermore the losses increase

with the radius, such that the manufacturing quality of the blade tips is of primary importance

for power performance.

Tip losses

A good quality of the tips especially means that they should be as narrow as possible because

this corresponds to an (ideal) airfoil with length infinity, R/c → ∞ with R the distance to the

rotation axis and c the chord. For real blades there is always a flow around the end of the blade

(forming an eddy that is advected by the flow) from the high pressure area to the low pressure

area. This is partly levelling the pressure difference and consequently the lift force. The tip losses

obey approximately the following relation

ξtip ∝
1

zλ
. (2.24)

Different to the profile losses an increasing tip speed ratio decreases the tip losses, as well as an

increased number of blades.
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Fig. 2.5 : Typical cp − λ curve (black dotted line). The influence on the efficiency of Betz limit, the

bouncing, profile and tip losses is illustrated. These results were obtained with a lift to drag ratio CL/CD =

60 and z = 3 blades. Maximum performance cp ' 0.475 is obtained at λ ' 7.

Impact on power performance

The figure 2.5 shows an overview of the different kinds of losses and their influence on the value

of cp. One can see that bouncing losses cause the largest reduction in the power coefficient for

small values of λ, similar to the finite number of blades. This is the opposite for the profile losses.

Three-bladed wind turbines can reach optimal cp values of order 0.50 for typical values of λ ≈ 6−8,

which naturally sets the strategy for optimal power performance in terms of rotational frequency ω.

2.1.5 Power curve

Along with the cp − λ curve, a standard representation of a wind turbine power performance is

given by a so-called power curve. The power curve gives the relation between the simultaneous

wind speed u and power output P . Following usual practice, the wind speed u will refer to the

upstream horizontal wind speed u1 from now on, such that u = u1. Also, the net electrical

power output P that the wind turbine actually delivers to the grid is considered, integrating all

possible losses. The two quantities u and P will follow these specifications until the end of the

chapter. Following equation (2.11), the theoretical power curve reads

P (u) = cp(u) Pwind(u) = cp(u)
1

2
ρAu3 . (2.25)

In most of the modern wind turbine designs, the regulation of the power output is performed

through changes both in the rotational frequency of the generator and in the pitch angle of

each blade. (Note other wind turbine designs involve fixed rotational frequency, so-called fixed-

speed wind turbines, or fixed pitch angle, so- called fixed-pitch wind turbines). A more detailed

description on control strategies is given in Bianchi et al. (2006). The rotational frequency of the

generator is physically linked to the wind speed, such that it cannot be changed freely. However,

the pitch angle of the blades can be controlled at will, and almost independently of the wind

speed, to reach the chosen control strategy, and hence represents the central mean of control for

the operation. Pitching plainly consists of a rotation of the blades by a pitch angle θ in the plane

of their cross-section.
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The power production is then controlled by changing the lift forces on the rotor blades (Burton

et al. 2001; Bianchi et al. 2006). The power production can be reduced or stopped by pitching

the blades towards stall1. In modern wind turbines, this is achieved by a so-called active pitch

control. The power coefficient cp depends strongly on this pitch angle θ and on the tip speed ratio

λ, i.e. cp = cp(λ(u), θ). As λ can typically not be controlled, cp is optimized via θ to a desired

power production. In particular for high wind speeds, cp is lowered to protect the wind turbine

machinery and prevent from overshoots in the power production.

This pitch regulation is commanded by the controller of the wind turbine, which constitutes of

several composite mechanical-electrical components that operate actively for the optimum power

performance2. For the common pitch-controlled wind turbines, the control strategy gives four

distinct modes of operation:

• for u ≤ ucut−in, here ucut−in represents the minimum wind speed such that the wind turbine

can extract power, typically in the order of 3−4 m/s. In this range the power contained in the

wind is not sufficient to maintain the wind turbine into motion, and no power is produced;

• in partial load ucut−in ≤ u ≤ urated, here urated denoted the rated wind speed at which

the wind turbine extracts the rated, maximum allowed power Prated. urated is typically in

the order of 12 − 15 m/s. In this range the wind turbine works at its maximum power

performance, i.e. cp is maximized, and the pitch angle θ is normally maintained constant;

• in full load urated ≤ u ≤ ucut−out, here ucut−out represents the maximum wind speed at which

the wind turbine can safely extract power, typically in the order of 25 − 35 m/s. In this

range the wind turbine power output is limited to the rated power Prated. In this mode of

operation, the pitch angle θ is adjusted in real-time to maintain P ≈ Prated;

• for u > ucut−out the pitch angle θ is maximized to the feathered position so as to eliminate

the lift forces on the blades. A braking device can be used in addition to block the rotation

for safety reasons. As a consequence, the power production is stopped.

An illustration of the theoretical strategy for cp(u) and P (u) is given in figure 2.6.

It is important to precise that this theoretical estimation is valid for a laminar flow,

which never occurs in real situations. The more complex atmospheric winds call for more com-

plex descriptions of power performance. Following the path of turbulence research, statistical

models are introduced in Appendix A to deal with this complexity.

2.2 Rotor blade: blade element momentum theory (BEM)

In this section we use the momentum theory for elements of the rotor blades to derive the design

or layout of a blade.

1Stall effects are obtained when the angle of attack of an airfoil exceeds a critical value, resulting in a sudden

reduction in the lift force generated.
2Additional considerations such as mechanical loads or power stability are usually taken into account as well

Bianchi et al. (2006), but reach out of the scope of this chapter.
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Fig. 2.6 : (a) Theoretical power curve P (u); (b) Theoretical power coefficient cp(u) for a pitch-controlled

wind turbine with ucut−in = 4 m/s, urated = 13 m/s and ucut−out = 25 m/s.

Modern wind turbines rotate due to the lift forces Fl acting on the airfoils. For an airfoil the

effective area can be expressed in terms of the depth, also called chord, c, and the span of the

wing b, similar to the rotor radius R. Therefore the drag force Fd and the lift force Fl read

Fd = Cd(α)
1

2
ρ u2 (c b) , Fl = Cl(α)

1

2
ρ u2 (c b) , (2.26)

where α is the angle of attack, as displayed in figure 2.7. The lift-to-drag ratio Fl/Fd relates to

the quality of the airfoil, which should be maximized.

Incident velocity

In figure 2.7, the velocity vector ures gives the wind velocity in the frame of reference of the airfoil.

The wind velocity at the rotor is 2
3u1 in the frame of the ground, where u1 is the free wind velocity

upstream in front of the turbine. Additionally, the rotational motion must be considered for the

motion of the wind with respect to the blades. The velocity of the rotational motion at a radial

position r is urot = ωr, such that

u2
res(r) = (2u1/3)2 + (ωr)2 (2.27)

gives the effective or resulting velocity ures of the air in the reference frame of the blade, see fig-

ure 2.7.

Forces on blade section dr

Blade element momentum theory is commonly used to estimate the total force acting on the

rotor by summing up the local force on each infinitesimal blade element of size dr. The total

force is divided into its rotational component Frot and its axial component Fa, which causes the
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Fig. 2.7 : (color online) Cut through an airfoil rotating around the wind turbine axis. The rotational

velocity urot = ωr (black) is perpendicular to the axial velocity u2 = 2u1/3 (blue). The angle of attack α is

the angle between the air velocity ures (green) and airfoil chord (dashed black line). The angle β denotes

the angle between the air velocity ures and the plane of rotation. γ denotes the angle between the chord

and the plane of rotation. The lift and drag forces Fl and Fd are displayed (green and red), giving the total

force F (gray), as well as the rotational and thrust projections Frot and Fa (blue).

thrust. Considering an infinitesimal cut dr at radial position r in the polar plane of the rotor, the

infinitesimal components are

dFrot =
ρ

2
u2
res c(r) dr

[
Cl(α) sin(β)− Cd(α) cos(β)

]
,

dFa =
ρ

2
u2
res c(r) dr

[
Cl(α) cos(β) + Cd(α) sin(β)

]
. (2.28)

Now we take the chord as a quantity that may change with the radius, i.e. c = c(r).

Involved angles

The angle β from the velocity triangle (see figure 2.7) reads

tan(β) =
2u1/3

ωr
=

2

3

u1

ωR

R

r
=

2

3

R

rλ
, (2.29)

and denotes the angle between the resulting velocity ures and the plane of rotation at the distance

to the root r. γ describes the local angle between the profile’s chord and the plane of rotation

and is a result of the designed twist of the rotor blade, where α is the local angle of attack of the

profile with respect to the resulting velocity ures. The angles are connected through

α = β − γ . (2.30)

Pitching the whole rotor blade by the angle θ will therefore change the orientation γ of the profile

allowing to actively control the aerodynamic forces through the angle of attack α.
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Power of blade section dr

Only the rotational component Frot is of use to rotate the rotor. The force Fa in the axial direction

does not contribute to the power production but to the thrust acting on the turbine structure. Fa

should be minimized to reduce mechanical fatigue. The infinitesimal power (force times velocity)

associated to the rotational force acting on z rotor blades is

dProt = z dFrot ωr = z
ρ

2
u2
res c(r) dr

[
Cl sin(β)− Cd cos(β)

]
ωr . (2.31)

Optimized power leads to c(r)

The goal is to construct the blades in such a way that they extract the optimal power following

Betz limit out of the wind. It should be noted that in this idealized case, the drag force is taken

to be zero, which can be practically approached if Cd � Cl. Each infinitesimal radial annulus of

size 2πrdr should extract a fraction 16/27 of the wind power

dPideal = dProt ⇐⇒ 16

27

ρ

2
u3

1 (2πrdr) = z
ρ

2
u2
res c(r) ωr dr Cl sin(β) (2.32)

based on equation (2.31). In order to approach such ideal case, the blade depth c(r) must follow

c(r) =
16π

9

1

z Cl

R

λ

1√
λ2 r2

R2 + 4
9

. (2.33)

For r > R/7 the square root gets approximately λ r
R and thus we obtain

c(r)

R
≈ 16π

9

1

zCl
r
Rλ

2
. (2.34)

Here all lengths are given with respect to the blade length R. This approximation has an important

consequence on the design of rotor blades. The depth c(r) decreases when increasing either the

number of blades, z, the lift coefficient Cl, the radius r or the tip speed ratio λ. This explains

why fast rotating wind turbines tend to have only two or three narrow blades to optimize power

extraction, while old western-mill machines have many, rather broad blades (in order to maximize

mechanical torque).

As a last remark we point out that the optimized chord function c(r) of eq. (2.34) was derived

without any condition on the value of Cl(α). Thus an optimal blade shape can be designed also

for values of the angle of attack α below the one that gives the maximal lift force. It is good to

avoid maximal lift forces as for such conditions small fluctuations in the angle of attack may lead

to the stall effect, a sudden decrease in lift.

2.3 IEC power curve and annual energy production

In the previous sections, we have set theoretical models to predict and optimize power production,

however, with ‘laminar flow’ approaches. Now, we look at real wind turbines, that operate in

a turbulent, non stationary wind. We describe a normalized way of monitoring power

production performances. We assume that wind velocities u and power P are measured at a

sampling frequency of the order of a few Hz, and focus on the processing of these data. This

processing is mainly performed in two steps.
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Fig. 2.8 : (color online) Typical power curve (black line) and corresponding error bars (thin red lines

underneath) obtained according to the IEC norm. The blue dots represent the 10-minute average values.

After adequate normalization of the data, the first step consists in averaging the measured data

over time intervals of 10 minutes. The IEC power curve (IEC 2005) is derived in a second step

from the ten-minute averages using the so-called method of bins, i.e. the data is separated into

wind speed intervals of width 0.5 m/s. In each of these intervals, labeled i, bin averages of wind

speed ui and power output Pi are calculated according to

ui =
1

Ni

Ni∑
j=1

unorm,i,j , Pi =
1

Ni

Ni∑
j=1

Pnorm,i,j , (2.35)

where unorm,i,j and Pnorm,i,j are the normalized 10-minute average values of wind speed and power,

and Ni is the number of 10 min data sets in the ith bin.

For the power curve to be complete and reliable, each wind speed bin must include at least 30

minutes of sampled data. Also, the total measurement time must cover at least a period of 180

hours. The range of wind speeds must range from 1 m/s below cut-in wind speed to 1.5 times the

wind speed at 85% of the rated power of the wind turbine. The norm also provides an estimation

of uncertainty as the standard error of the normalized power data, plus additional uncertainties

related to the instruments, the data acquisition system and the surrounding terrain. A typical

IEC power curve is presented in figure 2.8.

The IEC norm also defines the annual energy production or AEP, as it will be presented

in section 2.3.2 below. The AEP is a central feature for economical considerations, as it gives a

first estimate of the long-time energy production of a wind turbine. As it sets a unique ground for

wind power performance worldwide, the IEC norm helps building a general understanding between

manufacturers, scientists and end-users. This statement comes to be ever more important as the

wind energy sector grows. Hence, focusing on this standard is paramount to any study on power

performance.

2.3.1 Turbulence-induced deviations

As a downside to its simplicity, the IEC power curve method presents a limitation. It suffers a

physical and mathematical imperfection. In order to deal with the complexity of the wind speed
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and power signals, the data is systematically averaged over time. Although a statistical averaging

is necessary to extract the main features from the complex processes, the averaging procedure

over 10-minute intervals lacks a clear physical meaning, beyond its statistical definition. As the

wind3 fluctuates on various time scales (down to seconds and less), a systematic averaging over ten

minutes filters out all the short-scale turbulent dynamics. Combining these turbulent fluctuations

with the nonlinear power curve P (u), P (u) being proportional to u3 for small u, and being more

complicated for large u, the resulting IEC power curve is spoiled by mathematical errors. To show

this, one can first split the wind speed u(t) sampled at 1Hz into its mean value and the fluctuations

around this mean value

u(t) = u(t) + u′(t) , (2.36)

where the operation x(t) on a given signal x(t) represents the 10-minutes average of x(t) as defined

by the IEC norm. Assuming that u′(t) � u(t), a Taylor expansion of P (u(t)) reads (Böttcher

et al. 2007)

P (u(t)) = P
(
u(t)

)
+ u′(t)

(
∂P (u)

∂u

)
u=u(t)

+
u′(t)2

2!

(
∂2P (u)

∂u2

)
u=u(t)

+
u′(t)3

3!

(
∂3P (u)

∂u3

)
u=u(t)

+ o
(
u′(t)4

)
. (2.37)

Averaging equation (2.37) yields

P (u(t)) = P
(
u(t)

)
+ 0

+
u′(t)2

2

(
∂2P (u)

∂u2

)
u=u(t)

+
u′(t)3

6

(
∂3P (u)

∂u3

)
u=u(t)

+ o
(
u′(t)4

)
, (2.38)

because u′(t) = u(t)− u(t) = 0. This means that the average of the power is not equal to the

power of the average, and must be corrected by the 2nd and 3rd-order terms. As the IEC power

curve directly relates the 10-minute averages of wind speed and of power output, it neglects the

higher-order terms in the Taylor expansion. The 2nd-order term is the product of the variance

σ2 = u′(t)2 of u(t)4 and the second-order derivative of the power curve5. This demonstrates that

the IEC power curve cannot describe in a mathematically rigorous way the nonlinear relation of

power to wind speed when coupled with wind fluctuations (stemming from turbulence), at least

not without higher-order corrections.

As a consequence of this mathematical over-simplification, the result depends on the ‘tur-

bulence intensity’ I = σ/u, so on the wind condition during the measurement Böttcher et al.

(2007). It is illustrated in figure 2.9, where the IEC power curve deviates from the theoretical

power curve with increasing turbulence intensity, as predicted by equation (2.38). As it does

not characterize the wind turbine only, but also the measurement condition, this raises the

question of its reproducibility and stability.

3To some extent the power output also fluctuates on short time scales, but its high-frequency dynamics are limited

by the inertia of the wind turbine.
4σ2 = (u− u)2 = u′(t)2.
5Assuming a cubic power curve P (u) ∝ u3, P (u) has non-zero derivatives up to 3rd-order. Moreover, the transition

point to rated power may have non-zero derivatives of arbitrary order, see figure 2.9.
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Fig. 2.9 : Typical IEC power curves for various turbulence intensities I = 0.1, 0.2, 0.3 (dashed lines). The

full line represents the theoretical power curve. This result was obtained from numerical model simulations

from Böttcher et al. (2007).

2.3.2 Annual energy production

The one-dimensional limitation of the IEC power curve becomes an advantage for long-term energy

production, as PIEC(u) relates unambiguously a unique value of power for each wind speed. As

the AEP estimates the energy produced over a year, it can be seen as a prediction estimate. A

prediction of power production at high-frequency is also possible using the Langevin approach, as

it will be shown in the next section. The estimation of the AEP extrapolates the power production

of a wind turbine characterized by its power curve in a given location. Here we do not give an exact

transcription of the AEP procedure from the IEC norm (IEC 2005), but rather a comprehensive

introduction on how power production can be estimated simply from a wind speed measurement.

For such, the AEP procedure introduced here is not the official AEP procedure following IEC, but

a similar version. In both cases, the availability of the wind turbine is assumed to be 100%.

Estimating the wind resource

Any location scheduled to host a wind turbine can be categorized in advance by a characteri-

zation of its wind resource. A local measurement of wind speed from a met mast at hub height6 of

the hypothetical wind turbine must be performed, typically over one year7. From this wind speed

measurement u(t), a ten-minute (or hourly) averaging is applied on u(t). The probability density

function (PDF) f(ui) of the ten-minute average values ui is established. For clarity, the values ui

will be labelled u. f(u) returns the probability of occurrence of the wind speed u. For long enough

measurements, f(u) is known to fit a Weibull distribution (Richardson 1922)

f(u;λ, k) =
k

λ

(u
λ

)k−1
e(−u/λ)k , (2.39)

6Typical hub heights of commercial multi-MW class wind turbines are in the order of 100 m, justifying the interest

for a portable LIDAR sensor...
7A measurement of wind speed over one year covers the various wind situations resulting from various seasonal

behaviors.
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where k and λ8 are called respectively the shape and scale factors 9. Visual examples of such

wind speed distributions are given in Burton et al. (2001).

Estimating the AEP

A given wind site is characterized for the AEP by its wind speed PDF f(u), while a given wind

turbine is characterized by its IEC power curve. As PIEC relates unambiguously a given wind

speed u to the corresponding average power output PIEC(u), the power curve serves as a transfer

function from wind speed to average power output. An estimation of the average power output P

can be obtained following

P =

∫ ∞
0

f(u) PIEC(u) du , (2.40)

and an estimation for the energy production over a period T reads

T P = T

∫ ∞
0

f(u) PIEC(u) du . (2.41)

Over one year, T = 8766 hours, therefore

AEP = P 8766 , (2.42)

where P is given in Watt and AEP is given in Watt hour.

Thanks to its simple mathematical procedure, the AEP is commonly used to make rough

predictions of energy production, as well as for financial estimations. It can predict how

much energy a wind turbine will generate on a given site before installing it. This allows for

an optimal choice of design for the optimal location. This result however remains a rough

estimation, as it neglects e.g. wake losses generated by other surrounding wind turbines.

2.4 A new alternative: the Langevin power curve

An alternative to the standard IEC power curve is proposed in this section. As the IEC norm

defines the measurement procedure with relevance, the same conditions will be considered for the

Langevin analysis. The difference lies in the different approach to process the measured data.

One additional point on the sampling frequency is however important for the Langevin

analysis. Because the method resolves the dynamics of a wind turbine in the order of seconds,

a minimum sampling frequency in the order of 1Hz is necessary for the measurements of wind

speed and power output.

8λ is not the tip speed ratio of a wind turbine, but a parameter of the Weibull distribution.
9IEC (2005) refers to the Rayleigh distribution, which is a special case of the Weibull distribution for k = 2.
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Fig. 2.10 : Illustration of the concept of stable fixed point PL(u). For constant wind speed, the power

output would relax to a stable value PL(u). This sketch is inspired from Anahua et al. (2008).

2.4.1 A dynamical concept

The power characteristic of a wind turbine can be derived from high-frequency measurements

without using temporal averaging. One can regard the power conversion as a relaxation process

which is driven by the turbulent wind fluctuations (Rosen & Sheinman 1994; Rauh & Peinke

2004). More precisely, the wind turbine is seen as a dynamical system which permanently tries to

adapt its power output to the fluctuating wind. For the (hypothetical) case of a laminar inflow

at constant speed u, the power output would relax to a fixed value PL(u)10, as illustrated in

figure 2.10. Mathematically, these attractive power values PL(u) are called stable fixed points of

the power conversion process.

2.4.2 The Langevin equation

The Langevin power curve11 is derived from high-frequency measurements of wind speed u(t) and

power output P (t). All necessary corrections and normalizations from the IEC norm IEC (2005)

should be applied on the two time series.

The wind speed measurements are divided into bins ui of 0.5 m/s width, as done in IEC

(2005). This accounts, to some degree, for the non-stationary nature of the wind, yielding quasi-

stationary segments Pi(t) for those times t with u(t) ∈ ui. The following mathematical analysis

will be performed on these segments Pi(t). From now on, the subscript i will be omitted and the

term P (t) will refer to the quasi-stationary segments Pi(t). The power conversion process is then

modeled by a first-order stochastic differential equation called the Langevin equation12

d

dt
P (t) = D(1)(P ) +

√
D(2)(P ) Γ(t) . (2.43)

10The subscript L stands for “Langevin” as PL(u) will be associated to the formalism of the Langevin equation.
11In former publications on the topic, the Langevin power curve was called dynamical power curve or Markovian

power curve. It is nonetheless the same approach.
12This equation is the reason for the name of the Langevin power curve.
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In this model, the time evolution of the power output is controlled by two terms13.

• D(1)(P ) represents the deterministic relaxation of the wind turbine, leading the power output

towards the attractive fixed point PL(u) of the system. For such, D(1)(P ) is commonly called

the deterministic drift function.

• The second term
√
D(2)(P ) Γ(t) represents the stochastic (random) part of the time evolu-

tion, and serves as a simplified model for the turbulent wind fluctuations that drive the system

out of equilibrium. The function Γ(t) is a Gaussian-distributed, delta-correlated noise with

variance 2 and mean value 0. D(2)(P ) is commonly called the diffusion function. A

mathematical approach to the Langevin equation can be found in Risken (1996).

The mathematical background for this ‘Langevin’ approach is presented in the Appendix A, which

is an introduction to stochastic theory.

2.4.3 The drift function and the Langevin power curve

The deterministic drift function D(1)(P ) is of interest as it quantifies the relaxation of the power

output towards the stable fixed points of the system. When the system is in a stable state,

no deterministic drift occurs14, and D(1)(P ) = 0. Following equation (2.44), D(1)(P ) can be

understood as the average time derivative of the power signal P (t) in each region of wind speed ui

and power output P .

The drift and diffusion functions can be derived directly from measurement data as condi-

tional moments (Risken 1996)

D(n)(P ) = lim
τ→0

1

n!τ
〈 (P (t+ τ)− P (t))n |P (t) = P 〉t , (2.44)

where n = 1, 2 respectively for the drift and diffusion functions. The averaging 〈·〉t is performed

over t, as the condition means that the calculation is only considered for those times during

which P (t) = P .

This means that the averaging is done separately for each wind speed bin ui and also for each

level of the power P . One could speak of a state-based averaging on u and P , in contrast to the

temporal averaging performed in the IEC norm. A typical drift function is displayed in figure 2.11.

The dynamics of the power signal can be directly related to the local sign and value of D(1).

A positive drift indicates that the power tends to increase (arrows pointing up in figure 2.11),

in regions where the wind turbine does not produce enough power for the given wind speed.

On the contrary, a negative drift corresponds to a decreasing power (arrows pointing down),

in regions where the wind turbine produces too much power for the given wind speed. At

the intersection are the points where D(1) = 0, indicating that when at this value, the power

13D(1) and D(2) are the first two coefficients of the general Kramers-Moyal coefficients.
14To separate stable (attractive) from unstable (repulsive) fixed points, also the slope of D(1)(P ) must be consid-

ered.
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Fig. 2.11 : Typical drift function D(1)(P ). Each arrow represents the local value of D(1)(P ) in magnitude

(length of the arrow) and direction (pointing up for positive values). The stable fixed points where D(1)(P ) =

0 are given by the black dots.

output is in a stable configuration (the average time derivative is zero). The collection of all

the points where the drift function is zero is defined as the Langevin power curve, and will

be further labelled PL(u).

The stable fixed points PL(u) of the power conversion process can be extracted from the

measurement data as solutions of

D(1) (PL(u)) = 0 . (2.45)

An illustration is given in figure 2.12.

Following the mathematical framework of equations (2.43) and (2.44), an estimation of uncer-

tainty for PL(u) can be performed (Gottschall 2009). One can see on figure 2.12 that, for most

wind speeds, the power curve has very little uncertainty. Nevertheless, larger uncertainties occur

in the region of transition to rated power. There the power conversion is close to stability over a

wider range of power values, as a consequence of the changing control strategy from partial load

to full load operation (see figure 2.6). It is a region of great interest as the controller of the wind

turbine is highly solicited for the transition to rated power.

2.4.4 Advantages of the Langevin approach

The Langevin equation (2.43) is a simplifying model for the power conversion process. The question

of its validity for wind turbine power signals was positively answered in recent developments (Milan

et al. 2010), as the power signal of a wind turbine could be successfully modelled. Also, the drift

function D(1) is well-defined for a large class of stochastic processes, and is not limited only to the

class of the Langevin processes.

Moreover, the definition of the drift function does not suffer the systematic errors caused by

temporal averaging. For such, the Langevin power curve characterizes the wind turbine dynamics

only, regardless of the wind condition during the measurement15. The results are therefore machine-

15Assuming that the measurement period is sufficiently long to reach statistical convergence.
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Fig. 2.12 : Typical Langevin power curve (black dots with corresponding error bars) and IEC power curve

(solid line).

dependent only, and not site- or measurement-dependent, as the intensity of turbulence has no

influence on the Langevin power curve.

Additionally, this approach can show complex characteristics of the investigated system, such

as regions where the system is close to stability, as mentioned above, or multiple stable states, see

also Anahua et al. (2008); Gottschall & Peinke (2008). For these various reasons, the Langevin

power curve represents a promising tool for power performance monitoring, too.

2.4.5 Detecting dynamical anomalies

The intention of dynamical monitoring is to detect dynamical anomalies that appear on operat-

ing wind turbines. Monitoring refers to the time evolution of the power performance here. A good

monitoring procedure should be reliable16, as fast as available, and possibly also inform on the

source of the anomaly. While monitoring procedures come to be ever more complex, the approach

presented here is based only on a power curve estimation. This approach is not intended to give

a full-featured method, but rather an illustration of the amount of information given by power

curves. More advanced studies on the topic of power curves for monitoring are being developed,

but remain outside the scope of this introduction as they represent active research topics.

The monitoring procedure simply consists in computing PL(u) at an initial time that will serve

as a reference17. Potential changes in time of PL(u) are considered anomalies, or malfunctions

inside the wind turbine that spoil the conversion dynamics. While this strategy is very simple, the

challenge lies in defining the right threshold for a change in PL(u) to be considered an anomaly.

This threshold, along with other parameters such as the necessary measurement time or time

reactivity of the method depend on the wind turbine design and location.

To illustrate the ability of the method, the monitoring procedure was applied on a numerical

simulation. The simulation was applied on measurement data, where an anomaly was introduced.

This artificial anomaly limits the power production to P ' 0.55 Pr for intermediate wind speeds,

16An over-sensitive procedure might indicate non-existing anomalies, while an under-sensitive procedure would

fail to detect a major malfunction.
17The reference time is chosen when the wind turbine is believed to work with full capacity.
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Fig. 2.13 : (color online) Comparison of PIEC(u)

before the anomaly (black in background) and after

the anomaly (grey or red in front). The artificial

anomaly was applied in the grey rectangle.

Fig. 2.14 : (color online) Comparison of PL(u)

before the anomaly (black in background) and after

the anomaly (grey or red in front). The artificial

anomaly was applied in the grey rectangle.

as represented by the grey rectangles in figure 2.13 and 2.14. More clearly, when in this rectangle,

the power signal was sometimes forced to reduce towards 0.55 Pr. From this artificial data,

PL(u) and PIEC(u) were then computed and compared to the original data. This is illustrated in

figure 2.13 and 2.14.

Similar anomalies were observed on several real wind turbines, justifying the reason for this

artificial anomaly. For information, the total energy production was reduced to 96.6% compared

to the original energy production due to the presence of the anomaly. figure 2.14 illustrates the

higher reactivity of PL(u). While in figure 2.13 PIEC(u) only shows a minor deviation in the region

of the anomaly, PL(u) clearly detaches from the typical cubic curve to adjust to the new dynamics.

PL(u) can detect changes in the dynamics of the conversion process, unlike PIEC(u) that is better

suited for the AEP.

The Langevin power curve is more reactive to changes in the dynamics. As the IEC power

curve averages over 10 minutes intervals, the information about high-frequency dynamics is

lost. Also, the second averaging in wind speed prevents from seeing multi-stable behaviors.

In addition, the Langevin power curve does not depend on the turbulence intensity, unlike

the IEC power curve, see section 2.3.1. A deviation in the Langevin power curve indicates a

change in the conversion dynamics, regardless of the wind situation. This makes the Langevin

power curve a promising tool for dynamical monitoring.
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2.5 Turbulence modelling

For the bibliography, especially concerning the ‘old’ papers, see Frisch (1995).

2.5.1 General definitions - Experimental results

The question here, to go beyond the basic description in terms of scales introduced in Plaut

(2021a), is how to characterize the spatial complexity of a turbulent field. Of course, the

starting point is still the definition of the two length scales between which the complex structures

of turbulence are. There is a large scale L, called integral length scale18. For scales larger than

L, if they exist19, unstructured, i.e. uncorrelated random fluctuations are left. In other words,

L can often be defined as a correlation length. There is a small scale η, called dissipation or

Kolmogorov scale20. Any turbulent structure is smooth out by dissipation for length smaller

then η. Thus the complex structure of turbulence lives at length scales between these two limiting

scales L and η.

Besides these length there is the ‘turbulent energy’ which determines the complexity. As

turbulence is a dissipative structure, it can be sustained only if there is a permanent flow of energy

into the system, i.e., a permanent power driving the flow structure. For a steady state there must

be an equilibrium between the driving power and the dissipated power. This size is measured as a

quantity ε called turbulent energy, what is not precise, as it is a power. Normalized by the mass

the dimension is [m2/s3]. The cascade picture of turbulence is that this power ε is fed into the

system at large scales, transfered by a cascade process to smaller scales and dissipated at smallest

scales.

The spatial dependencies can be investigated by studying the velocity increments and their

structure functions, as defined below for a length scale r,

η ≤ r ≤ L .

Hereafter u (resp. u) denotes one component of (resp. the whole) velocity field. One uses a

Reynolds decomposition

u = 〈u〉 + u′ (2.46)

with u′ the fluctuating velocity.

Definitions

Velocity increments:

ur(x) := u(x+ r)− u(x) . (2.47)

Structure functions:

Sn(r) := 〈(ur(x))n〉 = 〈(u(x+ r)− u(x))n〉 . (2.48)

18Denoted ` in Plaut (2021a).
19Often, L can be the size of the system.
20Denoted `K in Plaut (2021a).
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Fig. 2.15 : Statistical analysis of Experimental data acquired with Hot Wire Anemometry on a Laboratory

Turbulent Flow, an air into air round free jet (Renner et al. 2001; these data are also available on the web

page of the module). (a) : PDF p(ur) of the velocity increments ur for different values of r; the values of ur
are normalized with the corresponding standard deviation σr of ur. (b) : Corresponding form parameters,

see equation (2.71) below.

Comments

In principle all can be expressed for vectors: u→ u, x→ x and r → r.

Some probability density functions (PDF) p(ur) of velocity increments ur for different

values of r are shown in figure 2.15a. One observes a non-Gaussian character for small values of r,

with events corresponding to large increments that are rather ‘frequent’, at least, with respect to

what a Gaussian PDF would give. This is a signature of the intermittent character of small-scale

turbulent flows. Observe that, for larger values of r, the PDF become more and more Gaussian.

We will write a model for p(ur) in section 2.5.4, with the ‘multiplicative cascade approach’ by

Castaing. However, firstly, we present ‘older’ models that paved the way to arrive to this point of

view.

2.5.2 Kolmogorov & Obukov 1941

From the idea of a cascade, Kolmogorov deduced that the structure function should be Sn(r) =

f(ε, r) with ε the energy (power density) transferred in the cascade. Using dimensional analysis,

one gets

Sn(r) = f(ε, r) = Cn ε
n/3 rn/3 (2.49)

with Cn a universal constant. For n = 2 we obtain S2(r) ∼ r2/3, and for n = 3, S3(r) ∼ r, as

tested experimentally in figure 2.16. Note the dimension of the ”transferred energy” in the cascade

ε ≡ E/(t m) ≡ `2/t3.

Karmann, Howarth & Kolmogorov derived from the Navier-Stokes equation and isotropy the

so-called −4
5-law

S3(r) = −4

5
εr + 6ν

dS2(r)

dr
. (2.50)

According to the equation (2.49) 6ν dS
2(r)
dr ∝ r−1/3, thus for large scales (r → L) one has S3(L) ∝
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Fig. 2.16 : Experimental test of the law |S3| ∝ r, by Chabaud, B. & Chanal, O., CNRS Grenoble, France;

reprinted from Friedrich & Peinke (2009). (a) Absolute value of the third-order structure function plotted

with log-log scales. (b) and (c) absolute value of the compensated third-order structure function plotted

with (b) log-log scales (c) log-lin scales.

−4
5εL. From this L/η can be estimated. Using

ε ≈ S3

L
=

< (u(x+ L)− u(x))3 >

L
≈ < u′3 >

L
, (2.51)

one obtains

L/η =
L(

ν3

ε

)1/4
=

Lε1/4

ν3/4
≈ L<u

′3>
L

1/4

ν3/4
=

(
u′L

ν

)3/4

= Re3/4 . (2.52)
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2.5.3 Kolmogorov & Obukov 1962

L.D. Landau pointed out that

‘It is not obvious why ε is not a fluctuating quantity’.

The idea of Kolmogorov 1941 can be taken as 〈εL〉 = 〈εr〉 = 〈εη〉 - i.e the mean transfered energy

in the cascade is conserved.

After the comment of Landau, Kolmogorov claimed that it is reasonable for ε(r) to assume a

log-normal distribution

p(ε) =
1√

2πσ2
exp

(
−(lnx)2

2σ2

)
. (2.53)

Short argumentation for log-normal distribution

Some notations: The length scales of the turbulent cascade are denoted as rn < rn−1 < ...r0 = L,

and εri := εi the energy transferred at scale ri.

The idea of a cascade is that now the sequence of εr1 = εr2 = . . . = εL may become random by

multipliers such that

εi = ai εi−1 .

The energy conservation is given by the condition < ai > = 1. Thus one gets for the cascade:

εrn = an εrn−1 = an an−1εrn−2 = . . . = an an−1 . . . a1 εL . (2.54)

Taking the log of this equation:

ln
εrn
εL

=
n∑
i=1

ln ai . (2.55)

This is now taken as a sum over independent random numbers ln ai. The ”central limit theorem”

from Kolmogorov says that such a sum of independent random numbers converges towards a

Gaussian distribution, hence

p(εrn) = p

(
ln
εrn
εL

)
=

1√
2πΛ2

exp

−
(

ln εrn
εL

)2

2Λ2

 (2.56)

where the variance Λ2 can still be a function of rn.

Kolmogorov 1962 assumes that

Λ2(r) = Λ2
0 − µ ln

r

L
. (2.57)

Some argumentation for Kolmogorov 1962 hypothesis

As ln ai are assumed to be uncorrelated (〈(ln ai)(ln aj)〉 = 0),

Λ2(r) =

〈(
ln
εr
εL

)2
〉

=

〈(
n∑
i=1

ln ai

)2〉
= n

〈
(ln ai)

2
〉
∝ n . (2.58)
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Thus Λ2(r) ∼ n with n the depth of the cascade. Furthermore it is assumed that rn+1 = k rn,

for example k = 1
2 → rn+1 = 1

2 rn. Thus

rn+1 = k rn ⇐⇒ rn = kn L

⇐⇒ kn =
rn
L

⇐⇒ n ln k = ln
rn
L

⇐⇒ n = ln
rn
L

1

ln k
. (2.59)

As k < 1, is follows that ln k < 0. Thus we can define µ := − 1
ln k and one obtains

n = − µ ln
r

L
. (2.60)

Thus the hypothesis follows

Λ2(r) = Λ2
0 − µ ln

r

L
(2.61)

with µ an intermittency coefficient.

Knowing p(ε) and Λ2(r) one can calculate

〈εn/3〉 ∼ r−µ
n(n−3)

18 .

This is the results of Obukov & Kolmogorov 1962.

One deduces from this that the structure functions

Sn(r) = Cn〈εn/3〉rn/3 ∼ Cεnr
n/3−µn(n−3)

18 (2.62)

This equation is known as the intermittency correction to Kolomogov 1941 (2.49). It is easy

to see that for n = 3 (2.62) the −4
5-law is fulfilled, and that

S2(r) = Cε2r
2/3+µ 1

9 , (2.63)

S3(r) = Cε3r , (2.64)

S6(r) = Cε6r
2−µ . (2.65)

S6 is good to estimate the intermittency correction µ.

The structure functions can also be seen as spatial 2-point-correlations,

Sn(r) = 〈(u(x+ r)− u(x))n〉 = 〈unr 〉 =

∫ ∞
−∞

unr p(ur)dur . (2.66)

Thus the structure functions Sn(r) are the general moments of p(ur).

If the increments ur are normalized by
√
< u2

r > to ur =
√
< u2

r > wr we obtain

Sn(r) =

∫ ∞
−∞

unr p(ur)dur = < u2
r >

n/2

∫
wnr P (wr) dwr . (2.67)

If the integral over wr is independent of r , this is the case if P (wr) is the same for all r, then

Kolmogorov 1941 is obtained again. The other way round, from the intermittency correction,

expressed by µ must have the consequence that P (wr) is changing its from with r.



68 Chapter 2. Wind energy and turbulence

2.5.4 Multiplicative cascade after Castaing

We follow here Castaing et al. (1990). One studies the probability density function (PDF)

p(ur) of the velocity increments. One can write p(ur) as function of the conditioned probability

p(ur|εr), as

p(ur) =

∫ +∞

0
p(u, εr, r) dεr =

∫ +∞

0
p(ur|εr) p(εr, r) dεr . (2.68)

Castaing assumed (all this is experimentally verified, see e.g. Naert et al. 1998) that p(ur|εr)
is Gaussian distributed:

p(ur|εr, r) =
1√

2π s(εr)
exp

(
− u2

2 s2(εr)

)
. (2.69)

Next the standard deviation s depends on εr as

s(εr) ∝ εαr . (2.70)

As ln(s) ∝ α ln(εr) also s must be log-normal distributed. Thus

p(ur) =
1

2πλ(r)

∫ +∞

−∞
exp

(
− ln2 (s/s0(r))

2λ2(r)

)
exp

(
− u2

2s2

)
d ln s

s
. (2.71)

There are two parameters s0(r) and λ2(r). The first one s0(r) is the maximum of the distribution

of s and determines the variance of p(ur). The second one λ2(r) is the variance of the log-normal

distribution for s. It determines the form of p(ur) and is thus called the form parameter. In

the limit λ2(r) → 0 a Gaussian distribution is obtained. This is the case for r > L, as shows

the figure 2.15a. On the contrary for small scales r the values λ2 increase thus a departure from

Gauss is seen. By fitting the p(ur), on can estimate the parameter λ2(r) (figure 2.15b). Thus

informations on Λ(r) can be obtained, since, as shown in Castaing et al. (1990), Λ = 3λ.

2.6 Data analysis - Wind data

As can be deduced from the previous Section, wind turbulence leads to power fluctuations,

fatigue and extreme loads on wind Turbines. Therefore a thorough description and characteri-

zation of wind turbulence is crucial for a reliable design and efficient operation of wind Turbines.

On the other hand, due to the presence of many phenomena at many different scales in the atmo-

sphere, a comprehensive and direct analytical description of turbulence remains a challenge.

A way to handle this complexity is to describe the phenomena in terms of statistical quantities.

However which statistical information is necessary and sufficient for a certain purpose is not a trivial

question. A useful characterization should enable comparison of wind situations between different

sites and allow for the adequate selection of a wind Turbine class and layout. IEC (2005) defines

a procedure to achieve these requirements based on 10 minutes mean values of the wind speed

and respective deviations from this mean. Definitions are given for wind Turbine classes, wind

situations and probability estimations of certain extreme events. While necessity and usefulness

of standards are beyond doubt, in the recent years growing demand for a more comprehensive

and more detailed characterization has become evident. This is an active field of research, for

example Bierbooms (2009) worked on the extreme operative gust and how to incorporate this in

the generation of synthetic wind time series. Also recently in Larsen & Hansen (2008) calibrations
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of the extreme cases with return periods of 50 and 1 years in the standard IEC 61400 were presented.

Common to the cited works is the explicit role of the particular wind Turbine under consideration.

Here we try to review and clarify which kind and which amount of information is grasped by

different levels of statistical descriptions of wind turbulence. Our aim is not to give a detailed

review of every different statistical approach, but to provide a general and systematic framework

which allows to classify and distinguish these approaches and their reach. This is particular

important for a systematic review of the statistical methods present in the mentioned IEC norm,

while recognizing the value and power of the methods therein but also in the realization of their

limitations and where they stand within a systematic and consistent statistical description of wind

turbulence. Such statistical framework is also important when defining benchmarks for synthethic

and simulated turbulent wind fields.

The structure of this section is such, that with every subsection more statistical information for

the description of the wind turbulence is taken into account, therefore enhancing the classification

of wind turbulence gradually from low order one-point statistics to nth-order two-point statistics,

look at Tab. 2.1 page 80. Note also that we differentiate between statistics taken from some data

point xi or taken from pairs of data like xi, xi+n, the latter is denoted as two-point statistics. Based

on examples we show the suitability and completeness of every step of the statistical description.

Thus we start with one-point statistics proceed with two-point statistics and finally comment on

n-point statistics. Each time lower and higher order moments of the statistics are discussed.

For illustration purposes we use wind data of the research platform FINO 121. Trying to

avoid wake effects caused by the measurement tower we use data from the top anemometer at

100 m height. The wind speed is recorded with a sampling rate of 1 Hz, for our examples we

used one month of data namely January 2006. For simplicity we work just with the horizontal

magnitude u(t) of the wind velocity vector. It is straight forward to extend our scheme to different

directional components of the wind vector, as well as to spatial instead of temporal separations.

To demonstrate the importance of this method of data analysis, we compare the results from

measured data with a synthetic time series, which was obtained from a common package used by

the wind energy community called TurbSim22.

2.6.1 One-point statistics

One-point statistics up to second order

Given a wind time series, a common approach in the context of wind energy is to define turbulent

fluctuations u′(t) superimposed over a mean wind speed (Burton et al. 2001),

u(t) = 〈u〉T + u′(t)〈u〉T . (2.72)

Here 〈·〉 denotes time average and T the particular time span taken for calculating the average. In

general 〈xn〉 is the nth moment of x. These fluctuations around the mean value have themselves

a mean value of zero, 〈u′(t)〈u〉T 〉 = 0. figure 2.17 (a) shows a typical wind time series and its 10

minutes mean values. figure 2.17 (b) shows the corresponding fluctuations u′(t). Note that in our

notation the index in u′(t)〈u〉T makes explicit the fact that these fluctuations are always defined

through 〈u〉T . In our case we take a simple average over the time window T , filtering or more

elaborated detrending methods would change the actual value of u′ and there statistical properties.

21www.fino1.de/en .
22https://nwtc.nrel.gov/TurbSim .

www.fino1.de/en
https://nwtc.nrel.gov/TurbSim
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Fig. 2.17 : (a) Time series of the horizontal wind speed u(t) measured on the research platform FINO I

at 100m height, with 10-minute mean values and standard deviations. (b) Fluctuations u′(t) defined over

10-minute mean values.

One issue with this definition is the need of an averaging period T over which to define the

mean wind speed used as reference for the fluctuations. Due to the strong non-stationarity of the

wind, this task is not trivial, but 10 minutes spans are the usual practice. This particular time

span is often motivated by the so-called ‘spectral gap’, cf. Stull (1994). It is assumed that there is

a clear cut between mesoscale variations (large-scale meteorological patterns) and high frequency

fluctuations. Another argumentation for an averaging time scale T could be attributed to the

response dynamics of a wind Turbine. Wind Turbines can follow adiabatically changes in the wind

acting on sufficiently large time scales. In this way one might propose a wind Turbine based time

span T , which would change from wind Turbine to wind Turbine, depending on size and control

system.

For simplicity, from now on we will just write u′(t) for u′(t)〈u〉T , and we will also adopt the

usual T = 10 min. Our following arguments could be applied to any other characteristic or

desired value of T .

In addition to the 10 minutes mean values 〈u〉10min, an estimation of turbulence strength in
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the wind during the time span T is the turbulence intensity

I =

√
〈u′2〉T
〈u〉T

=
σT

〈u〉10min
. (2.73)

Here σT is the standard deviation of the fluctuations departing from the mean wind speed in

the considered period of time. The turbulence intensity is a crucial parameter by which, e.g.,

certification and site assessment procedures are defined, and it is indeed a design constraint IEC

(2005). Details on how this parameter changes with height, mean wind speed or surface roughness

can be found for example in IEC (2005); Hansen & Larsen (2005) and for offshore data in Türk &

Emeis (2007). As important as it is, the statistical information of this parameter is restricted to

the standard deviation or the second moment of the fluctuations. Formally the statistics contained

in the turbulence intensity are one-point statistics of second order. As we will introduce in the

next section, higher order moments of the fluctuations, 〈u′n〉 with n > 2, are necessary for the

description of extreme values of u′.

Higher order one-point statistics

In the previous subsection we discussed first-order (〈u〉10min) and second-order (σT ) one point

statistics. In general higher order moments are also significant, and this information is contained

in the form of the probability density function (PDF) of fluctuations, p(u′). Generally, for a PDF

there are as characterising quantities, its mean value, its width or standard deviation and its form,

which may be Gaussian or not and which is best shown in a normalized presentation, p(u′/σ). Note,

〈xn〉 =
∫
xnp(x)dx, the complete set of moments is contained in the knowledge of the PDF of a

statistical quantity. The only case where the first two moments will give a complete description of

one-point statistics, is the case where the PDF of the fluctuations follows a Gaussian distribution,

since only this distribution is completely defined by its first two moments.

The question whether wind fluctuations follow a Gaussian distribution or not becomes relevant

in order to understand how much parameters like the turbulence intensity I are needed to charac-

terize such fluctuations. To consider the Gaussianity of the fluctuations, figure 2.18 presents the

PDFs for different sets of u′(t). figure 2.18a shows the PDFs for some arbitrary single 10-minutes

intervals. Which can be understood as p(u′(t)|σiT ), where σiT denotes the standard deviation of the

ith 10-minutes interval. Within such intervals fluctuations seem to follow the Gaussian distribu-

tion, and the pdfs can be characterized by the corresponding σiT . In contrast to this in figure 2.18b

the complete set (20 days) of u′(t) is shown. We see that in this case the probabilities of large

values of fluctuations are clearly underestimated by a Gaussian distribution. Note the logarithmic

y-axis and note that the observed 10σ∞ events are underestimated by the Gaussian distribution

by a factor of 108 i.e. this probability difference translates into the event ocurring once every week

or once every 2 106 years.

Finally figure 2.18c shows again the PDF of the total data set, but here in each ith 10-minutes

interval the fluctuations u′(t) were normalized by the corresponding σiT standard deviation of

the respective ith 10-minutes interval. For these locally rescaled fluctuations, the resulting PDF

p(u′(t)/σiT ) is well described by a Gaussian distribution within ±5σ. Small deviations may be seen

for the largest values, but the significance here is rather questionable. Nevertheless comparing

figure 2.18b and c we clearly see that for p(u′(t)/σiT ) a Gaussian distribution is a very good

approximation.
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Fig. 2.18 : (a) p(u′(t)|σT ) for three arbitrary ten-minute intervals. From top to bottom the values of the

respective σT are 0.456, 0.452 and 0.616 m/s, the flatness 〈u′4〉/σ4
T are 2.82, 2.82, and 2.89±0.79. (b) PDF

of u′(t) considering all the data set. The flatness is 6.30± 0.11, and 〈(lnσ′T − lnσ′T )2〉 = 0.2037. (c) PDF of

u′(t)/σT where σT is the standard deviation in each interval of length T (see also discussion with the text).

Flatness is 2.98± 0.01. Symbols represent wind data and solid lines Gaussian distributions in all figures.

These findings support the hypothesis that u′(t) is Gaussian distributed within ten minute in-

tervals, but with different standard deviations σT for each interval. It is known that the standard

deviations σT of u′(t) for single ten-minute intervals are closely log-normal distributed and the pa-

rameters of the log-normal distributions depend on the mean wind speed (Hansen & Larsen 2005).

Thus if fluctuations u′(t) are considered without normalization, the superposition of the different

Gaussians distributions with different σT leads to the intermittent distribution in figure 2.18b.

For a more quantitative evaluation of deviations from Gaussianity, it is common to calculate

the third and fourth moments of the fluctuations normalized by the standard deviation, which are

called skewness Skew and flatness F , respectively. For a general signal x(t) the definitions are

Skew(x) =
〈(x− x̄)3〉

σ3
x

(2.74)

F (x) =
〈(x− x̄)4〉

σ4
x

. (2.75)

A Gaussian distribution has a skewness value of zero and a flatness of three. For all the cases

in figure 2.18, the values of the skewness do not differ significantly from zero, confirming the

symmetry of the distributions. The values of the flatness are 2.82, 2.82, and 2.89± 0.79 from top

to bottom in figure 2.18a and thus do not contradict the Gaussian distribution for arbitrary single

ten-minute intervals, while the large deviations from Gaussianity in figure 2.18b result in a flatness

of 6.30± 0.11. For the PDF of all the rescaled ten-minute intervals in figure 2.18c the flatness of

2.98± 0.01 is again surprisingly close to the Gaussian value.

From the discussion above it follows that an assumption of Gaussianity for u′(t) holds only

for single ten-minute intervals, and caution should be taken when estimating the probability of

extreme values of u′, where the actual values of u′ and not the rescaled vaules u/σT are relevant.

Here general higher moments than 〈u′2〉, or related quantities like the flatness (see eq. 2.75), will

be needed for a correct description of p(u′). This non-Gaussianity of the extreme excursions from
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the mean wind speed has been already noted in, e.g., Panofsky & Dutton (1984). More recently in

Larsen & Hansen (2006) an asymptotic expression for describing the distribution of such extreme

events was presented.

Based on our above findings that p(u′(t)|σT ) can be approximated by a Gaussian, we can apply

a superposition approach similar to Castaing et al. (1990),

p(u′) =

∫
p(u′|σ′T ) · p(σ′T )dσ′T . (2.76)

Here p(u′|σ′T ) represents a Gaussian distribution and p(σ′T ) a log-normal distribution. The key

parameter is 〈(lnσ′T − lnσ′T )2〉 which gives directly a measurement of the intermittency of p(u′)

and is therefore actually related to the flatness of the distribution. figure 2.18b shows that our

model based on equation (2.76) is able to describe the PDF p(u′) properly even in the tails.

Up to this point we have been discussing stepwise one-point statistics of first order 〈u〉, of

second order in σT , and of higher orders summarized in the PDF of u′. However even a complete

knowledge of p(u′), or respectively of all the moments 〈u′n〉, is not unique in the sense that many

different time series can share these statistics. To make this point more clear we refer to figure 2.19,

which shows three time series which have Gaussian distributions p(u′). Those time series share the

same one-point statistics, thus the same value of standard deviation and will give the same value

of turbulence intensity once added to the same mean wind speed. Clearly the nature of these time

series is different.

This is not surprising since the PDF of u′(t) gives no information regarding which path the

process follows in order to achieve the observed distribution. In order to distinguish more features

of the time series a proper correlation analysis is necessary. The next section will therefore deal

with the characterization of correlations by two-point statistics.

2.6.2 Two-point statistics

Two-point statistics up to second order

As seen previously and in figure 2.19 it is in general necessary to obtain knowledge on the correla-

tions between two points in the time series of wind fluctuations. The basic statistical tool for this

purpose is the autocorrelation function

Ru′u′(τ) =
1

σ2
u′

〈
u′(t+ τ) u′(t)

〉
(2.77)

which quantifies the correlation of two data points separated by the time lag τ . The Wiener-

Khintchine theorem (Press et al. 1996) relates it to the power spectral density S(f) via a Fourier

Transformation F , thus both functions contain the same information:

S(f)
F⇐⇒ Ru′u′(τ) with σ2

u′ =

∫
S(f)df . (2.78)

These are second order two-point statistics and give information on the intensity or amplitude with

which different frequencies contribute to the fluctuations. This statistical tool already enables us

to distinguish between the signals shown in figure 2.19 despite that they share the same one-point

statistics. As we can see in figure 2.19 in the case of the random signal our description would be

complete with the turbulence intensity because the PDFs of the fluctuations are Gaussian and the

fluctuations are completely uncorrelated, i.e.,

Ru′u′(τ) = δ(τ). (2.79)
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Fig. 2.19 : Three different time series, their autocorrelation functions Ru′u′(τ) = 〈u′(t+τ)u′(t)〉, and power

spectral densities S(f). From left to right, atmospheric fluctuations u′ (measured at FINO 1), a random

Gaussian distributed time series, and an ordered time series constructed from the random series. All three

share the same standard deviation σT , and closely the same p(u′) . In the top column the dashed lines

correspond to one standard deviation. The straight line shown with the FINO 1 power spectral density

corresponds to S(f) ∝ f−5/3. From the figure it is clear how even a complete knowledge of one-point

statistics is not sufficient in order to characterize wind turbulence.
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However as we know this special case would be very difficult to find in the atmosphere where

many different interactions occur over many scales Stull (1994). Instead as can be seen again in

figure 2.19 the atmospheric turbulence exhibits a lot of structure regarding the power spectrum. In

the so-called inertial range usually a Kolmogorov similarity theory is adopted in order to explain

the spectrum over a range of frequencies (S(f) ∝ f−5/3). In practice either the Kaimal or the von

Karman spectra are used not only for the description of atmospheric turbulence but also in the

generation of synthetic wind fields.

Similar to the one-point statistics up to second-order summarized in the turbulence intensity I,

the autocorrelation function and the power spectral density are important and widely used statisti-

cal quantities. Nevertheless, in the general case higher order two-point statistics are indispensable.

In principle we should ask ourselves for higher correlations of the form

Ru′nu′m(τ) =
1

σn+m
u′

〈
u′(t+ τ)n u′(t)m

〉
. (2.80)

However, it is more general and even practical to work with the statistics of wind speed differ-

ences. As we will see in the next subsection these are also two-point statistics and their moments

contain the arbitrary order two-point correlations defined in eq. (2.80). These will be discussed in

the next subsection in terms of wind speed differences.

Higher-order two-point statistics

To investigate more generally two-point statistics and higher order correlations in wind turbulence,

let us now consider wind speed differences over a specific time lag τ ,

uτ (t) = u(t+ τ)− u(t) = u′(t+ τ)− u′(t) , (2.81)

which we will refer to as wind speed increments in the following. Wind speed increments

statistics are clearly by definition two-point statistics, and the necessity of selecting a time span

for calculating the mean wind speed is avoided. Instead the increments are defined over a scale τ ,

and the nature of wind speed variations can be studied against the evolution of this scale. The

increment’s second moment is directly connected to Ruu(τ) by the simple calculation

〈uτ (t)2〉 = 2〈u(t)2〉 − 2〈u(t)u(t+ τ)〉 = 2〈u(t)2〉 (1−Ruu(τ)) , (2.82)

where it is assumed that the time series is long enough to ensure 〈u(t)2〉 = 〈u(t + τ)2〉 within

the desired precision. Note that these considerations apply for the wind speeds u(t) as well as for

their fluctuations u′(t), at least inside a ten minute interval, see eq. (2.81). Thus, from the power

spectral density and autocorrelation function we obtain the variances or the second moment of

the wind speed increments as a function of τ . It is straight forward to see that higher moments

of wind speed increments, 〈uτ (t)n〉 with n > 2, are related to higher order correlations, compare

with eq. (2.80).

In figure 2.20a we show PDFs of wind speed increments for different time scales τ , together

with Gaussian PDFs which share the same standard deviation. Typically PDFs of atmospheric

wind speed increments are non-Gaussian for a wide range of scales and have a special ‘heavy-tailed’

shape Böttcher et al. (2003). As already noted in section 2.6.1, the Gaussian distribution is the

only one completely determined by the first two moments. Therefore it becomes clear that for

wind speed increments the knowledge of higher-order moments than the second is necessary for
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Fig. 2.20 : PDFs of wind speed increments, uτ (t), displayed by symbols and shifted vertically. Scales from

bottom to top are τ = 2, 4, 10, and 60 s. Additionally, the PDFs are modeled by (a) Gaussian distributions

with identical standard deviations, and (b) Castaing’s formula (2.83) with (2.84) and (2.85).

a proper characterization of their PDFs. This is a well known and heavily discussed phenomena

for turbulence (Frisch 1995) and this is analogous to the case presented in subsection 2.6.1, where

we found that higher moments of one-point statistics 〈u′n〉 were needed in order to describe the

corresponding u′ PDFs. AgaThe observed tails in the PDFs imply an increased probability of

extreme events, as much as several orders of magnitudes, compared to a Gaussian distribution.

Therefore these tails have to be properly reflected in the statistical description.

To this end we follow Böttcher et al. (2003) and parameterize the PDFs using Castaing’s

model Castaing et al. (1990), which with some minor modifications is also an explicit formula for

eq. (2.76),

p(uτ ) =
1

2πλ(τ)

∫ ∞
0

dσ

σ2
exp

[
− u2

τ

2σ2

]
exp

[
− ln

2(σ/σ0)

2λ2(τ)

]
. (2.83)

In this equation the PDF is considered as a continuous superposition of Gaussian distributions

with different standard deviations, which are weighted by a log-normal distribution function. The

shape of the resulting PDF is determined by the two parameters λ2(τ) and σ0. Here, σ0 fixes the

median of the lognormal function, while λ2(τ) mainly dictates the shape of the distribution and is

accordingly called the shape parameter. λ2(τ) is zero for Gaussian distributions and for positive

values intermittent distributions are achieved. In general for an emprically given PDF, both

parameters can be estimated straightforwardly by an optimization procedure based on equation

(2.83). Chilla et al. (1996) and Beck Beck (2004) showed that for the case when log-normal

superstatistics is the right model, then λ2(τ) can be directly estimated from the flatness. Following

such procedure for Eq. (2.83) we obtain

λ2(τ) =
ln (Fuτ /3)

4
(2.84)

where Fuτ is the flatness of the increment PDF at a given scale τ , cf. equation (2.75). Considering

the moments of Gaussian and log-normal distributions we obtain for σ0, also from Beck (2004),

σ2
0 = 〈u2

τ 〉 exp
[
−2λ2(τ)

]
. (2.85)

In figure 2.20b we model the PDFs by Castaing’s formula (2.83), using (2.84) and (2.85) for a

simplified estimation of λ2(τ) and σ0. It can be seen that the measured increment PDFs are well

reproduced for all scales τ .
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Fig. 2.21 : λ2(τ) against τ for all wind speeds of the data set (◦), for conditioned wind speeds (10±1)m/s

(5), and for a synthetic time series (∗, see text).

Now, in figure 2.21 we show how the shape parameter behaves against the scale τ for our

offshore data. It is important to note the difference between unconditioned and conditioned (by

a mean wind speed bin) values of atmospheric data. The behavior of the PDFs or respectively of

λ2(τ) against scale is similar, but the conditioned PDFs show a reduced overall intermittency. The

reduction of intermittency for conditioned data sets is due to the fact that part of this intermittency

stems from the non-stationarity of the wind.

Regardless of the absolute value of λ(τ) it is important to note that, for both the conditioned

and unconditioned sets, there is a clear range of scales τ where λ2(τ) ∼ ln τ . This logarithmic

dependency has a deep meaning in turbulence and is directly related to the intermittency correction

of turbulence in the Kolmogorov 1962 theory (Frisch 1995). In particular with

λ2(τ) ≈ λ2
0 − µ · ln τ, (2.86)

and using eq. (2.83) one gets

〈unτ 〉 ∝ τ
n
3
−µn(n−3)

18 , (2.87)

which is the well known multifractal behaviour of turbulence, see the discussion of Kolmogorov

1962 theory at the end of section 2.5.3.

In summary, we have found that higher moments of the increments are neccessary for the

proper estimation of the wind speed increments uτ PDFs, in particular for the correct estimation of

extreme events. Fortunately in many cases with σδu(τ) and Fδu(τ), we achieve a precise estimation

of arbitrary-order two-point statistics of the wind speed. The according wind speed increment

PDFs can be modeled following equations (2.83) to (2.85).
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Fig. 2.22 : Basic (a) PDF of u′(t). (b) Normalized FINO and Synthetic spectral densities. A curve

following S ∝ f−5/3 has been added for comparison.

2.6.3 Synthetic time series vs atmospheric turbulence

Previously, we have presented a hierarchical statistical description of atmospheric turbulence. To

summarize and contrast this with what is usually standard and used in the wind energy industry,

we next apply and compare our statistical scheme to a standard synthetic turbulent wind field

and a conditioned FINO data set (〈u〉T = 10± 1m/s). We generate with the TurbSim package22.

10-min. blocks of synthetic time series with Gaussian pdfs p(u′|σ′T ). The 10-minutes blocks are

summed up following the distribution p(σ′T ) of the conditioned FINO data set (compare with

subsection 2.6.1). The resultant synthetic time series reproduce closely p(u′) (complete one-point

statistics) of the conditioned data as seen in figure 2.22a. We have used TurbSim with the option of

a Kaimal power spectrum, therefore the synthetic time series power spectrum follows nicely the law

S(f) ∝ f−5/3, the conditioned atmospheric data follows a similar scaling as seen in figure 2.22b.

On the other hand, when we analyse higher-order two-point statistics, summarized in the

behavior of λ2 against scale τ , we find that the synthetic time series do not at all reproduce the

wind PDFs (see figure 2.21). For the synthetic time series the characteristic values of λ2 remain

nearly constant at some low values, i.e. the corresponding PDFs are more Gaussian like.

As discussed in the previous section, the ln dependency of λ2 against τ , expressed in Eq. (2.86),

has an important meaning in terms of the turbulent energy cascade. The failure in reproducing

such behaviour by the synthetic time series can not be ignored and represents and important

weakness of the models used for the synthetic generation. Moreover, as the response time of

different control aspects of a wind Turbine are well within time scales τ < 20s this part of the

scaling plays an important role for the wind Turbine dynamics.

2.6.4 Outlook: n-point statistics

Previously we proposed a comprehensive characterization of increments PDFs by the shape param-

eter λ(τ)2. These increment PDFs provide information on arbitrary-order two-point correlations.

The natural next step in our hierarchical description would be the study of n-scale statistics. The

complete stochastic information is contained in the general n-scale joint PDF,

p(uτ1 , uτ2 , ....., uτn). (2.88)
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This PDF quantifies the probability that at the same time the wind speed increments uτ1 , uτ2 , ....., uτn
are observed on the scales τ1, ....., τn. Note that by the definition of eq. (2.82) and that all in-

crements u(t, τ) = u(t + τ) − u(t) share the common point u(t) the n-scale probability (2.88)

corresponds to an n-point statistics and would capture the arbitrary n-point correlation.

2.6.5 Conclusions

A statistical characterization of wind turbulence has been presented in a hierarchical and math-

ematically consistent way. In doing so, we have reviewed the well known one-point statistics up

to second order summarized in the turbulence intensity as well as the two-point statistics up to

second order reflected in the spectral density. We have shown that in general, in the case of wind

speed time series, higher order moments contain relevant statistical information in both one and

two-point statistics and can not be ignored. Therefore we propose to use the probability density

functions of wind speed fluctuations u′ and wind speed increments uτ (t) in order to grasp the

statistical information of higher moments. In the case of the fluctuations u′ we have presented a

superposition model which describes the measured PDFs very well. A similar approach is used

for the increments statistics. Historically this approach has been already applied in laboratory

turbulence by Castaing et al. (1990), and for atmospheric turbulence by Böttcher et al. (2007).

For the characterization of wind speed increments uτ (t) it is in many cases possible to characterize

these increment PDFs just by the shape parameter λ(τ)2. This parameter can be estimated by the

second and fourth moment as shown in eq. (2.84) (this has to be done in a careful way by checking

the quality of this approach like in Fig. 2.20). Moreover, after conditioning on certain mean wind

speeds, a logarithmic decay of λ(τ)2 has been shown (see figure 2.21) and its meaning on the

turbulent cascade has been pointed out. We would like to note that the current practice in wind

energy assessment and according regulations (IEC 2005) do not include the characterization of

higher-order two point statistics. An easy improvement in the assessment of turbulent conditions

would be the systematic estimation of the shape parameter as a function of τ . Of course a question

of special practical importance is which scales τ are relevant for WECs. It seems reasonable to

expect that these critical scales will depend on every type of machine, however reaction times on

the order of seconds can be expected. Thus the scaling behavior of λ(τ)2 presented in Fig. 2.21

results probably relevant for many machines. As shown here and in Mücke et al. (2009), common

models and simulation packages for generating synthetic wind fields do not reproduce these two-

point statistics. As a consequence, quantitative evaluations of possible effects on WECs due to

the non-Gaussian behavior of wind speed increments have not been carried out until very recently

Mücke et al. (2009). An outlook was given on n-point statistics for the characterization of, e.g.,

gust clustering and the identification of critical wind gusts shapes. Here we have presented an

example on the verification of Markov properties of wind speed increment time series. We pointed

out how these Markov properties could ease the description of n-point statistics.

Table 2.1 presents a summary of the observed statistical features in wind time series, as well

as the statistical parameters we propose to characterize them. Additionally, columns for synthetic

time series generated by spectral models and a random time series (see figure 2.19) are presented

for comparison purposes.
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Characterization

1-point 1 Mean speed • • • ū = 〈u(t)〉T
2 Turbulence

Intensity

• • • I = σu′/ū

n Extreme

Fluctuations

- ∗ • p(u′)

2-point 2 Distribution of

σu over f

- • • S(f) = F {Ruu(τ)}

n Intermittency of

p(δu(τ))

- - • λ(τ)

n-point n Arbitrary-order

n-point

correlations

- - • To be investigated

Tab. 2.1 : Turbulence Characterization Scheme.

2.7 Exercises

These exercises will be done with the program R which is free and available for all operating

systems. The basic concept is comparable with MatLab, since R also works with vectors and

matrices, which makes the handling of large data sets quite comfortable. The program can be

downloaded from the webpage www.r-project.org where also documentation and tutorials can

be found.

The RStudio Desktop is an extra program that provides an extra user interface. It should

be downloaded from www.rstudio.com/products/rstudio. It helps e.g. by setting the working

directory and also in managing plots generated by the programmed codes.

There are parts in the data analysis that occur more often, e.g. plotting graphs. For this it could

be helpful to use and define own functions() to save time.

Exercise 2.1 Study of aerodynamic forces and losses

1a Calculate the pressure drop at the rotor plane of a wind turbine operating under ideal Betz

conditions (no losses) for an incoming velocity u1 = 10 m/s and an air density ρ = 1.2 kg/m3.

1b Use the result from 1a to calculate the acting thrust force on a wind turbine with a rotor radius

R = 60 m and compare it with the expected thrust force at Betz conditions.

1c Use the result from 1b to calculate the optimal thrust coefficient cth for a machine operating

under ideal Betz conditions.

Hint : The thrust force can be seen as a drag force acting on the rotor with u1 as the reference

velocity.

2 Let us assume we have two rotor blades (R = 40 m) of three bladed wind turbines with optimal

twist distribution along the rotor blade where rotor blade

www.r-project.org
www.rstudio.com/products/rstudio
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a) has a constant chord of 4 m

b) has the optimal chord distribution according to the Betz limit.

Calculate for both rotor blades the distribution of the acting lift force along the blade for a constant

lift coefficient cl = 1.4, an incoming velocity u1 = 8 m/s, an air density ρ = 1.2 kg/m3 and a tip

speed ratio λ = 7. Additionally we assume operational conditions according to Betz. Plot both

distributions on one graph. Discuss the differences.

3 We consider a three bladed wind turbine with optimal chord and twist distribution accounting

for the Betz limit. The rotor radius is R = 50 m and the turbine is operating at a tip speed ratio

of λ = 7.

3a Calculate and plot the losses (in %) along the rotor blade due to drag forces with

a) a constant lift to drag ratio of ε = 45

b) a varying lift to drag ratio according to ε(r) = 40 + 2.8
√
r. Plot both distributions in

one graph and compare.

3b Calculate the losses (in %) due to tip vortices.

3c Calculate losses (in %) due to conservation of angular momentum

Compare all three losses - which contributes the most? Is it always like this?

Perform the calculation from 3a to 3c with λ = 3 and λ = 12.

Exercise 2.2 Study of time series of wind speed and wind turbine power

On the ARCHE page of the module, there are two synchronous time series wind.txt and

power.txt, which contain (normalized) measurements of wind speed u in front of a turbine, and

the corresponding (normalized) wind turbine power P at the same time values. The sampling

frequency is 1 Hz. The velocity is normalized to its maximum value maxu = 24.35 m/s. The

power is normalized to its maximum value of the order of a few MW.

1 Import these files and allocate the time series of the real wind speed u in m/s and of the

normalized power P to variables wind and power. Plot subsets of u and P of about 1000 - 10000

data points in the plane (u, P ) to see the evolution and comment.

Hint : You can use a while loop with a counter that increases the limits of the plotted vectors

every time the loop runs:

i <- 1

inc <- 10000

stopp <- "n"

while (stopp != "y")

{

plot(...)

i <- i + inc

stopp <- readline(prompt = "press y to stop loop: ")

}

2 Apply the procedure defined by the IEC norm (IEC 2005), described in section 2.3, to construct

the IEC power curve for this case. Comment.
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Hints:

First, to construct the data averaged over time intervals of 10 minutes, you may use a program

of the form, where sf denotes the sampling frequency of the data and x the time series itself:

tenminave <- function(x,sf)

{

windo <- seq(1,length(x),(600*sf))

xave <- c()

for (i in 1:(length(windo)-1))

{

xave <- c(xave, mean(x[windo[i]:windo[i+1]]))

}

return(xave)

}

Second, to construct the IEC power curve, you may use a program of the form:

breaks <- seq(0, ceiling(max(wind10)), 0.5)

IEC <- rep(0, (length(breaks)-1) )

for (i in 1:length(IEC))

{

count <- which( (wind10 > breaks[i]) \& (wind10 <= breaks[i+1]) )

if (length(count) > 0)

{

IEC[i] <- mean(power10[count])

}

}

mids <- seq(breaks[1]+ 0.25, max(breaks)-0.25, 0.5)

points(mids, IEC, col = 2, type = "b", lwd = 3)

where wind10 and power10 contain already the time averaged information.

Exercise 2.3 Study of time series of turbulent flows

On the web page of the module, there are two time series of turbulent flows, an air into air round

free jet - file Jet.txt -, and a wind flow - file Wind.txt -; moreover on the ARCHE page, there

is a time series of a turbulent flow behind a grid grid.txt. In all cases we note T the time step

between two measurements which is related to the sampling frequency fs for each measurement.

Here we have fs,jet = 8 kHz, fs,wind = 1 Hz and fs,grid = 60 kHz.

1 Import the file Jet.txt, Wind.txt and grid.txt and compute the number Nd of data points.

Hint : The command data <− as.matrix(read.table(file= " ") ) can be used to read

in the data and allocate it to a data-variable to make sure that it can be used directly by other

functions.
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Solve the following questions for all three time series

2 Plot the first 5000 and the last 5000 data points of the series. Compare and comment. Play also

with the number of data points chosen.

3 Determine the mean velocity for the first 5000 and for the last 5000 data points. Compare and

comment. Play also with the number of data points chosen.

Hint : Use the plot() function and use the options to draw lines instead of points. Since the

1-dimensional data will be stored as a vector, parts of it can be accessed by data[start:end].

4.a Determine the histogram of the data u(t), normalized as a Probability Density Function, and

plot it. Indicate the mean value and the standard deviation. Comment.

Hint : Use the function hist() and set the options in order to get the Probability Density

Function. Plot the results also using the plot() function to be able to add vertical lines for the

mean and standard deviation using abline().

4.b Plot the PDF of u but in linear - log scales. Comment on the character, Gaussian or non

Gaussian, of u(t).

5 Determine the total mean value 〈u(t)〉 and its standard deviation σ =
√
〈u′(t)2〉 with the

fluctuating velocity u′(t) = u(t) − 〈u(t)〉.

6 Estimate the turbulence intensity I and comment.

7 Determine the histogram of the data u′(t), normalized as a Probability Density Function, and

plot it in linear - log scales. Comment on the statistical properties of u′(t).

8 Construct a variable with the velocity increments

uτ (t) = u(t+ τ)− u(t) ,

for τ = 2T . Determine the histogram of the data uτ (t), normalized as a Probability Density

Function, and plot it in linear - log scales.

Comment on the statistical properties of uτ (t), also, as compared with the ones of u′(t).

9 What do we expect, if we redo the same analysis as in question 8, but with increasing values of

τ ?

Solve the following questions just for the grid time series

10 We admit that the time lapse τ corresponding to the integral length scale L is τ0 = 1040T .

Compute τ0 in physical units and the integral length scale L according to the Taylor hypothesis.

11 Estimate the Reynolds number at scale L, Re = σL/ν .

12 Deduce from this and the theory of Kolmogorov 1941 an estimate of the dissipation length

scale η.
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Appendix A

Elements on stochastic theory

This appendix provides the mathematical background for the Langevin-power curve introduced

physically in section 2.4.

Complex system can be regarded as systems composed of many microscopic interactions, which

lead to some random-like dynamics of macroscopic estimates or macroscopic variables. Let us

consider a one-dimensional1 dynamical system described by the macroscopic variable x(t). The

process x(t) is defined as stochastic because its time evolution is described in a probabilistic

sense2. Although the sample path x(t) can be continuous, and should be for a purely Markov

process, practical applications mostly involve discrete signals. From the continuous process

x(t), only N samples x1, x2, ..., xN are known at discrete times t1 < t2 < ... < tN . x(ti) = xi and

x(ti+1) = xi+1 are known, yet x(t) for ti < t < ti+1 is unknown. The dynamical system is then

described by the discrete samples xi, so that a complete (statistical) description is given through

the joint probability distribution

f(xN , tN ; xN−1, tN−1; ...; x1, t1) , (A.1)

where f(A;B;C) is the probability of A and B and C happening. The value of sample xi at time

ti is stochastic, but its probability to have a given value is fixed. Similarly, one can define the

conditional probability p following

f(xN , tN ; xN−1, tN−1; ...; x1, t1) = p(xN , tN |xN−1, tN−1; ...;x1, t1) f(xN−1, tN−1; ...; x1, t1) ,

(A.2)

where p(A|B;C) is the probability of A happening conditioned on (given) B and C happen.

The simplest stochastic process that can be thought of is a purely random process with in-

dependent samples xi (Risken 1996). Independence implies that p(xi, ti|Y ) = f(xi, ti) for any

arbitrary condition Y , that is, no matter what the condition Y is, xi will not depend on it. As a

consequence, the joint probability of an independent process is

f(xN , tN ;xN−1, tN−1; ...; x1, t1) =

N∏
i=1

f(xi, ti) . (A.3)

1Only an account of one-dimensional stochastic systems is given here, as it suffices for the problem at hand.
2Under some weak conditions (that are not presented here for the sake of brevity), if one would let several

realizations xa(t), xb(t), ..., xz(t) of that process x evolve in time, one would see that at a given future time t′, the

exact values of the process have a random character, i.e., xa(t′) 6= xb(t
′) 6= ... 6= xz(t

′). Yet the probability to obtain

a given value remains fixed, giving for the probability distribution f(xa, t
′) = f(xb, t

′) = ... = f(xz, t
′).
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A.1 Markov property

Besides the trivial case of an independent process, the next simplest process is a Markov process

(Risken 1996). For a Markov process, only information about the present state is necessary to

describe the next future state, regardless of the past state. This means that the state of system xi

at time ti depends on xi−1 at time ti−1, and the conditional probability can be simplified following

p(xi, ti|xi−1, ti−1; ...; x1, t1) = p(xi, ti|xi−1, ti−1) . (A.4)

Equation (A.2) can be rewritten for a Markov process as

f(xN , tN ; xN−1, tN−1; ...; x1, t1) = f(x1, t1)
N∏
i=2

p(xi, ti|xi−1, ti−1) . (A.5)

The Markov property is often described as memoryless. One should note that a (one-dimensional)

Markov process x(t) cannot describe n-order differential systems with n > 13. In some cases, the

Markov property can emerge by introducing new variables (which remain to be found) to a non-

Markov dynamical system, i.e., by making it higher-dimensional.

The total probability theorem gives (Papoulis & Pillai 2002)

f(xi, ti) =

∫
dxi−1 f(xi, ti;xi−1, ti−1) . (A.6)

Similarly for the conditional probability

p(xi, ti|xi−2, ti−2) =

∫
dxi−1 p(xi, ti;xi−1, ti−1|xi−2, ti−2)

=

∫
dxi−1 p(xi, ti|xi−1, ti−1;xi−2, ti−2) p(xi−1, ti−1|xi−2, ti−2) . (A.7)

Using the Markov assumption in equation (A.4), equation (A.7) becomes the Chapman-Kolmogorov

equation

p(xi, ti|xi−2, ti−2) =

∫
dxi−1 p(xi, ti|xi−1, ti−1) p(xi−1, ti−1|xi−2, ti−2) . (A.8)

For non-Markov processes, the future state does not depend only on the present state, but

also on a number of past states, see also Risken (1996); Fox (1977); Farias et al. (2009). One can

define the Einstein-Markov length τmar (further referred to as Markov length) as the length of the

memory kernel, that is the number of past states that influence the present state. Einstein (1905)

presents this coarse-graining as a necessary time interval such that the stochastic forces become

independent events . This implies the relation

p(xi, ti|xi−1, ti−1; ...; x1, t1) = p(xi, ti|xi−1, ti−1; ...; xj , tj) (A.9)

with tj = ti−τmar. Experimental signals usually exhibit a non-vanishing, yet finite Markov length,

see e.g. Lück et al. (2006); Stresing et al. (2011) for turbulence. Various Markov tests exist to

search for a Markov length in data sets.

3Let us consider the example of a deterministic (a special case of stochastic) process x(t) governed by an arbitrary

second-order differential equation ẍ = F (x, ẋ). x(t) is not a Markov process because the future state x(t+ dt) does

not depend only on the present state x(t), but also on ẋ(t). Knowing x(t) does not suffice to know x(t+dt). However,

the two-dimensional process {x(t), ẋ(t)} is a (two-dimensional) Markov process, so that knowing {x(t), ẋ(t)} suffices

to know {x(t+ dt), ẋ(t+ dt)}.
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A.2 Kramers-Moyal expansion

The stochastic process x(t) evolves probabilistically in time. Because of its partly random nature,

it is inappropriate to describe its exact time evolution, which is not reproducible. Instead, a

description of the probability f(x, t) to find a value x at time t is relevant. For a Markov process,

f(x, t) follows a master equation

∂f(x, t)

∂t
=

∫
dx′

[
w(x′ → x)f(x′, t)− w(x→ x′)f(x, t)

]
, (A.10)

where w(a → b) is the transition rate from state a to state b. More concretely, the law of total

probability implies

f(x, t+ τ) =

∫
dx′ f(x, t+ τ ;x′, t) =

∫
dx′ p(x, t+ τ |x′, t)f(x′, t) (A.11)

with τ ≥ 0.

Conditional moments are defined following Risken (1996),

M (n)(x′, t, τ) =

∫
dx (x− x′)n p(x, t+ τ |x′, t) =

〈[
x(t+ τ)− x(t)

]n∣∣∣∣x(t) = x′
〉

(A.12)

where 〈A|B〉 is defined as the mean value of A given that condition B is fulfilled. One can derive

the Kramers-Moyal expansion (see complete derivation in Risken 1996)

∂f(x, t)

∂t
=

∞∑
n=1

(
− ∂

∂x

)n
D(n)(x, t)f(x, t) (A.13)

with the Kramers-Moyal coefficients defined as

D(n)(x, t) =
1

n!
lim
τ→0

1

τ
M (n)(x, t, τ)

=
1

n!
lim
τ→0

1

τ

〈[
x(t+ τ)− x(t)

]n∣∣∣∣x(t) = x

〉
D(n)(x, t) =

1

n!

∂M (n)(x, t, τ)

∂τ

∣∣∣∣∣
τ=0

, (A.14)

where the third relation owes to M (n)(x, t, τ = 0) = 0.

The Kramers-Moyal expansion can be formally written

∂f(x, t)

∂t
= LKM(x, t) f(x, t) (A.15)

with the Kramers-Moyal operator defined as

LKM(x, t) =
∞∑
n=1

(
− ∂

∂x

)n
D(n)(x, t) . (A.16)

Risken (1996) assumes4 that the Kramers-Moyal expansion describes a Markov process, as the

evolution ∂f(x, t)/∂t of the process at time t depends only on its present state f(x, t), and not on

some past states f(x, t′) for t′ < t.

4Some criticism of the Kramers-Moyal expansion is formulated in Gardiner (1985), where it is argued that the

Kramers-Moyal expansion cannot describe the evolution of some Markov jump processes, but only approximate it.
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A.3 Fokker-Planck equation

The Fokker-Planck equation is a special case of the Kramers-Moyal expansion for whichD(n)(x) = 0

for n ≥ 3. This relates to the Pawula theorem, which states5 that the Kramers-Moyal expansion

(A.13) either stops after n = 1, after n = 2, or require an infinity of terms, see Risken (1996). This

theorem shows from the generalized Schwartz inequality that [M (2n+m)]2 ≤ M (2n) M (2n+2m) for

any set of integers (n,m ≥ 0). This implies that D(n>2) = 0 if there exists one integer r > 0 such

that D(2r) = 0.

If a Markov process x(t) satisfies the Pawula theorem, the Kramers-Moyal expansion stops

after the second term and the probability distribution f(x, t) is described by the Fokker-Planck

equation

∂f(x, t)

∂t
=

[
− ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t)

]
f(x, t) = LFP (x, t) f(x, t) . (A.17)

The Fokker-Planck operator reads

LFP (x, t) = − ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t). (A.18)

The stationary solution fst(x) of the Fokker-Planck equation, for time-independent coefficients

D(1,2)(x), can be derived from

∂fst(x)

∂t
=

[
− ∂

∂x
D(1)(x) +

∂2

∂x2
D(2)(x)

]
fst(x) = 0 . (A.19)

The solution reads

fst(x) =
N

D(2)(x)
exp

(∫ x D(1)(x′)

D(2)(x′)
dx′

)
(A.20)

with N a normalization constant such that
∫∞
−∞ fst(x)dx = 1.

Similarly, the Fokker-Planck equation exists for a conditional probability p(x, t|x′, t′) (that is

the distribution f(x, t) for the initial condition f(x, t′) = δ(x− x′)) and gives

∂

∂t
p(x, t|x′, t′) = LFP (x, t) p(x, t|x′, t′) , (A.21)

which has a unique initial condition p(x, t|x′, t) = δ(x− x′).
Let us now consider a process that is stationary in time:

f(xN , tN ; ...;x1, t1) = f(xN , tN + τ ; ...;x1, t1 + τ)

for an arbitrary time shift τ . Then LFP (x, t) = LFP (x) and D(n)(x, t) = D(n)(x), so equation

(A.21) has a formal solution

p(x, t+ τ |x′, t) = eτ LFP (x)δ(x− x′) (A.22)

owing to the initial condition p(x, t|x′, t) = δ(x− x′).
It is shown in Risken (1996) that equation (A.22) also holds for a time-dependent LFP (x, t) if

the time increment τ is sufficiently small so that D(n) can be seen as unchanged coefficients. Based

5The Pawula theorem only applies if the conditional probability p(x, t+ τ |x′, t) is a non-negative function.



Appendix A. Introduction to stochastic theory 93

on the definition of the delta function δ(x − x′), equation (A.22) gives the short-time propagator

of the Fokker-Planck equation for small τ (for details see Risken 1996):

p(x, t+ τ |x′, t) =
1√

4πτD(2)(x′, t)
exp

(
− [x− x′ − τD(1)(x′, t)]2

4τD(2)(x′, t)

)
. (A.23)

The Fokker-Planck equation (A.17) is a linear partial differential equation that can be solved

numerically. Besides the direct method that consists in numerically approximating the differential

operators, one can use a path integral method (Risken 1996). Similarly to what is done in quantum

mechanics to solve the Schrödinger equation, this method is easy to implement. Given an initial

condition f(x, t0), equation (A.11) gives f(x, t0 + τ) using p
(
x, t0 + τ

∣∣x, t0). This can be iterated

n−times to calculate f(x, tn) from f(x, tn−1) for time tn = t0 + nτ . One can formulate this

following

f(x, tn) =

∫
dxn−1

∫
dxn−2...

∫
dx0

p
(
x, tn

∣∣xn−1, tn−1

)
p
(
xn−1, tn−1

∣∣xn−2, tn−2

)
...p
(
x1, t1

∣∣x0, t0
)
f(x0, t0) . (A.24)

For a small enough time increment τ , the conditional probability is given by equation (A.23). A

similar approach can be used for p(x, t0 +nτ |x′, t0) using the Chapman-Kolmogorov equation (A.8)

and the initial condition p(x, t0|x′, t0) = δ(x− x′).

A.4 Langevin equation

Based on the historical example of Brownian motion, a Langevin equation for a Langevin

process x(t) reads

dx

dt
= D(1)(x, t) +

√
D(2)(x, t) · Γ(t) . (A.25)

The Kramers-Moyal coefficients are the coefficients defined in equation (A.14).

The time evolution of a sample path x(t) is described by the so-called drift coefficient D(1)(x, t)

and diffusion coefficient D(2)(x, t). In parallel, the probability f(x, t) is described by the Fokker-

Planck equation (A.17). For a given set of drift and diffusion coefficients, the Fokker-Planck

equation gives a unique solution f(x, t). On the contrary, the Langevin equation can generate

different sample paths xi(t) that have different values (due to the randomness of the Langevin

noise Γi(t)). Yet the probability that xi(tj) = X is the unique solution of the Fokker-Planck

equation f(X, tj).

The Langevin equation can be discretized following

x(t+ dt) = x(t) +

∫ t+dt

t

dx

dt
(t′)dt′

= x(t) +

∫ t+dt

t
D(1)(x, t′)dt′ +

∫ t+dt

t

√
D(2)(x, t′)Γ(t′)dt′ . (A.26)

The integration of Γ(t) is not defined mathematically, yet a physical interpretation of the stochastic

integral is needed. The definition of stochastic integration in the sense of Itô gives∫ t+dt

t
g(x, t′)Γ(t′)dt′ = g(x, t)

∫ t+dt

t
Γ(t′)dt′ . (A.27)
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For dt� 1, D(n) can be taken as unchanged coefficients and equation (A.26) becomes

x(t+ dt) = x(t) +D(1)(x, t)dt+
√
D(2)(x, t)

∫ t+dt

t
Γ(t′)dt′ . (A.28)

The Langevin noise Γ(t) fluctuates much faster than the stochastic process x(t) and has a corre-

lation length much shorter than dt (its theoretical correlation length is zero). The Langevin noise

is related to a Wiener process W (t) in that Ẇ = Γ(t), bringing the Stieltjes integral∫ t+dt

t
Γ(t′)dt′ =

∫ t+dt

t
dW (t′) =

√
dt · η(t) (A.29)

with η(t) a set of independent, Gaussian-distributed samples following 〈η(t)〉 = 0 and 〈η(t)2〉 = 2.

The discrete form of the Langevin equation for a small time increment dt becomes

x(t+ dt) = x(t) +D(1)(x, t)dt+
√
D(2)(x, t)dt · η(t) . (A.30)

A sample path x(t0 + n dt) can be generated by iterating n−times the integration from an initial

condition x(t0).

Remark concerning the stochastic integrals

In equation (A.27) we used the definition of stochastic integration in the sense of Itô. Another

common approach to carry out a stochastic integral is the Stratanovich definition that reads∫ t+dt

t
g(x, t′)Γ(t′)dt′ = g

(x(t+ dt)− x(t)

2
, t+ dt/2

)∫ t+dt

t
Γ(t′)dt′ .

The Stratanovich approach is more intuitive because it considers the value of the function g at the

middle point of the integration range. Only the Itô interpretation is used here, as it is easier to

implement numerically. Also, the definition of the Kramers-Moyal coefficients is different in the

Stratanovich interpretation. Both interpretations are equivalent, as they yield identical probability

distributions (Friedrich et al. 2011). Sokolov (2010) summarizes various interpretations of the

Langevin equation in the presence of non-constant D(2).
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