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What’s new in this Version 0.16 of October 28, 2020/ version 0.15 of October 6, 2020

• The last paragraph of the introduction has been reworked, to advocate the comparison between our νt budget and the

k budget of section 2.10.

From there, ‘transport’ is preferred to ‘turbulent diffusion’ to name Tν .

• The titles of the sections 2.3, 2.4 and 2.5 have been shortened.

• The table 1, expanded and reworked, has been moved from section 5 to section 2.10.
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• In section 2.10, the property (T1) has been changed.

A more detailed comparison between our νt budget and the k budget is proposed.

To refer to ε profiles I cite Hoyas & Jiménez (2008).

I created the figures 9 to show production-over-dissipation; thus the former figures 9 to 16 become figures 10 to 17.

• In section 5 I now advocate the log layer and insist on the novelty of our νt budgets.

Abstract

A recent theory has been developed (Heinz 2018, 2019) for three canonical turbulent wall flows: channel flow, pipe

flow and zero-pressure gradient boundary layer, that offers exact analytical formulas for the RANS eddy-viscosity, as

a product of a function of y+ (the wall-normal distance scaled in inner units) with functions of y/δ (the same distance

scaled in outer units). By calculating the eddy-viscosity turbulent diffusion term for these flows where the turbulence

is stationary, one identifies a high-Reynolds number eddy-viscosity equation with one production and two dissipation

terms. One dissipation term is universal, peaks in the near-wall region, and scales mainly with y+. The second one,

smaller in magnitude, is flow-dependent, peaks in the wake region, and scales mainly with y/δ. The production term is

flow-dependent, peaks in between, and scales also mainly with y/δ. The universal dissipation term implies a damping

function and a length scale analogous to the von Karman length scale used in the Scale-Adaptive Simulation models

of Menter et al. This length scale also appears in the production term. This confirms on firm theoretical bases the

relevance of von Karman length scales, and is an occasion to analyze these in more details. An asymptotic analysis

of all terms in the eddy-viscosity budget in the limit of infinite Reynolds numbers is also proposed. Asymptotic limit

profiles are identified for all terms both in the inner region (y+ scaling) and in the outer region (y/δ scaling). This

allows a review and tests of existing RANS models that imply an eddy-viscosity equation. We thus explain some

deficiencies of Spalart & Allmaras (1994); Yoshizawa et al. (2012) and propose a modification of the most promising

model, i.e., the Scale-Adaptive Simulation model of Menter et al. (2006); Menter & Egorov (2010).

1 Introduction

Reynolds-Averaged Navier-Stokes (RANS) models are still widely used in Engineering Computational Fluid Dynamics,

because they allow studies in complex setups for a lower computational cost than more sophisticated methods like

Large Eddy Simulations or Hybrid methods (Wilcox 2006; Hanjalić & Launder 2011). Among RANS models, two-

equations models like the k − ω (Kolmogorov 1942; Wilcox 1988) and k − ε (Launder & Spalding 1974) models are

popular. Their equation for the turbulent kinetic energy k is known to be rather accurate. Indeed, its high-Reynolds

number form can be validated with direct numerical simulations (DNS - we use those of Lee & Moser 2015) in channel

flows, out of the viscous and buffer layers, as shown in the appendix A. On the contrary, the equations for the turbulent

dissipation ε or the turbulent frequency ω of these models are much less accurate, as shown, with the same DNS data,

in the appendix B. These problems are related to the fact that these equations have been constructed empirically

on phenomenological and dimensional bases. Alternate RANS models where one turbulent field is the eddy-viscosity

νt itself, which evolves according to its own equation, look appealing since νt is doubtless a quite relevant variable.

Whereas the first models of this kind also constructed the νt - equation on phenomenological and dimensional bases

(Nee & Kovasznay 1969; Baldwin & Barth 1990; Spalart & Allmaras 1994), there have been recently attempts to use

more systematic approaches (Yoshizawa et al. 2012; Hamba 2013). The Scale-Adaptive Simulation (SAS) models of

Menter et al. (2006); Menter & Egorov (2010) are also k−νt models, which are more phenomenological than the ones

of Yoshizawa et al. (2012); Hamba (2013), but may work as Hybrid models. Their νt - equation implies, through the

so-called von Karman length scale `vK , the second gradient of the mean velocity, which renders them ‘sensitive’. In

highly non-homogeneous flows the second gradient of the mean velocity, which appears in the denominator of `vK ,

increases, hence `vK decreases, hence the corresponding dissipation term increases, hence νt decreases. This allows

resolved motions in unsteady simulations. Relevant applications of variants of this model to quite complex flows are

for instance presented in Menter et al. (2006); Egorov et al. (2010); Abdol-Hamid (2015). Jakirlic & Maduta (2015)

also proposed an interesting extension of the SAS approach under the form of a Reynolds stress model.

The facts that many variants of the SAS models exist, and that their equations are built on phenomenological grounds,

raise however theoretical questions. Accordingly, it is noticeable that the more systematic approaches of Yoshizawa

et al. (2012); Hamba (2013) are quite different: whereas Yoshizawa et al. (2012) started from a conventional Reynolds

stress model, Hamba (2013) started from the nonlocal analysis presented in Hamba (2005). Obviously, there is no

perfect way to analytically derive the νt - equation.
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The aim of this work is to offer a third way, at least for a relevant class of flows: established channel and pipe

flows, together with zero-pressure gradient boundary layers over a flat plate. For these three canonical flows, denoted

hereafter ‘turbulent wall flows’, Heinz (2018, 2019) proposed analytic models of the mean flow U , Reynolds shear

stress −〈uxuy〉 and eddy viscosity νt , built after a thorough analysis of recent DNS, including those of Lee & Moser

(2015); Chin et al. (2014); Sillero et al. (2013), and experimental data, for instance those of Vallikivi et al. (2015).

One interest of these models is that they are valid for friction-based Reynolds numbers Reτ & 500: the limit Reτ →∞
is included. Our approach is then to analytically calculate the turbulent diffusion of νt and to identify the opposite

of this as the sum of a positive production term minus positive dissipation terms, see equation (12). The fact that

these terms are analytical offers a much better intellectual understanding of the νt - equation, and also a practical

understanding of the scaling properties of all terms in this equation. This also permits an accurate description of the

limit Reτ →∞. Another goal is the creation of a basis for the numerical and physical evaluation of existing models.

This is exemplified on the study of three existing models, and a promising modification of one SAS model is finally

derived.

In section 2, we offer a presentation and physical analysis of our model, which considers only high-Reynolds

number turbulent wall flows. The physical questions that we want to answer concern the scalings of the production

and dissipation terms in the νt - equation, and the effects of the flow cases and Reynolds number. Asymptotic formulas

valid in the limit Reτ → ∞, for all terms in the νt - equation, either in the near-wall region (y+ scaling) or in the

outer region (y/δ scaling), are in particular given in the sections 2.6 to 2.9. An overview of all our physical results

is offered in the section 2.10, where the differences between the eddy-viscosity budget thus obtained and the known

turbulent kinetic energy budget are stressed. The physical results obtained yield a test bench of existing models that

imply a νt - equation with a standard turbulent diffusion or transport term (Tν in equation 12). This test bench is

used in the section 3 to evaluate three such models: the models of Spalart & Allmaras (1994); Yoshizawa et al. (2012)

and the SAS models of Menter et al. (2006); Menter & Egorov (2010), which have some variants. Finally, the output

of these tests is used to propose a modified SAS model in section 4. A concluding section 5 closes this article.

2 Analysis: exact eddy-viscosity formula and transport equation

2.1 Turbulent wall flows - Exact eddy viscosity formula

Following Heinz (2018, 2019), we consider turbulent wall flows of incompressible fluids of mass density ρ and kinematic

viscosity ν. Locally, a cartesian system of coordinates Oxyz is used, such that x points in the streamwise direction,

and y measures the distance to the closest wall. To lowest order, the mean flow

U = U(y) ex (1)

with ex the unit vector in the x-direction. A relevant quantity is the mean strain rate

S = ∂U/∂y . (2)

The macroscopic length scale δ is the half-channel height, pipe radius, or 99% boundary layer thickness with respect

to channel flow, pipe flow, and boundary layer, respectively. Denoting uxex + uyey + uzez the fluctuating velocity,

the RANS eddy viscosity

νt = −〈uxuy〉 /S (3)

where the angular brackets denote the Reynolds average. The mean wall shear stress τw is used to define the friction

velocity uτ =
√
τw/ρ. From this are defined wall or inner units: y+ = uτy/ν, U

+ = U/uτ and

S+ = ∂U+/∂y+ . (4)

Finally, the friction-velocity Reynolds number Reτ = δ+ = uτδ/ν. In the equation (11) of Heinz (2019), an analytic

expression is proposed for the reduced eddy viscosity, which is valid at high Reynolds number, Reτ & 500,

ν+ = νt/ν = (1/S+
12 − 1) W . (5)

There S+
12 = S+

1 + S+
2 is a very good approximation of the dimensionless mean strain rate S+ (4) in the inner region

of the flows, i.e., disregarding wake effects, see the equation (7) of Heinz (2018) and the corresponding discussion.

Precisely, the universal function

S+
12 = S+

12(y+) = 1 −

[
(y+/a)b/c

1 + (y+/a)b/c

]c
+

1

κy+

1 + h2/(1 + y+/h1)

1 + yk/(y+H)
, (6)
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Fig. 1 : (a) Continuous curve: S+
12 , dashed line: 1/(κy+). (b) Continuous curve: 1/S+

12 − 1, dashed line: κy+.
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Fig. 2 : (a) W (b) W ′ (c) W ′′ for channel (blue), pipe (green), boundary layer (red).

with

a = 9, b = 3.04, c = 1.4, H = H(y+) = (1 + h1/y
+)−h2 , h1 = 12.36, h2 = 6.47, yk = 75.8 , (7)

and the von Karman constant

κ = 0.40 . (8)

The function S+
12 , plotted on the figure 1a, approaches naturally 1 as y+ → 0 in the viscous sublayer. On the contrary,

as y+ →∞, S+
12 ∼ 1/(κy+), in agreement with the log law. Therefore the function 1/S+

12−1, plotted on the figure 1b,

which appears in the eddy viscosity (5), vanishes in the limit y+ → 0, and then increases smoothly to approach the

function κy+ as y+ →∞.

The second ingredient of the theory is the function W , which is flow-dependent and in outer scaling, because it

describes wake effects. With the notations of Heinz (2018, 2019), W = 1/GCP for channel and pipe flows, MBL/GBL
for boundary layers, where GCP and GBL characterize the wake contribution S+

3 to the dimensionless mean strain

rate S+ (see the equations 7 and A.22 of Heinz 2018), MBL characterizes the total stress in boundary layers (see the

equation 4 of Heinz 2019). For channel and pipe flows

W = WX(y/δ) with WX(y) =
KXy + (1− y)2(0.6y2 + 1.1y + 1)

1 + y + y2(1.6 + 1.8y)
, (9)

X = C, KC = 0.933 for channel, X = P, KP = 0.687 for pipe; for boundary layers

W = WBL(y/δ) with WBL(y) =
1 + 0.285 y ey(0.9+y+1.09y2)

1 + (0.9 + 2y + 3.27y2)y
e−y

6−1.57y2 . (10)

The wake function W is plotted for these three flows on the figure 2a. In the near-wall region, when y/δ → 0, W → 1,

hence the eddy viscosity (5), ν+ = (1/S+
12(y+) − 1) W (y+/δ+) ∼ (1/S+

12(y+) − 1). Therefore the log-layer eddy

viscosity κy+ is approximately recovered if 1 � y+ � δ+; for a more precise discussion, see the section 4.1 of Heinz

(2019). When y becomes of the order of δ, wake effects come in, that saturate the growth of the eddy viscosity

(5), since W decreases. The maximum value of y is δ in channel and pipe flows: if y ∈ [δ, 2δ] the mean fields can

be obtained by suitable symmetries from the mean fields for y ∈ [0, δ]. On the contrary, y may be much larger in

boundary layers. Naturally, WBL → 0 as y →∞; precisely WBL < 10−3 as soon as y > 1.36δ.

This model has been validated by a study of DNS and experimental data. For instance, the figures S.6abc of the

supplementary material to Heinz (2019) show the eddy viscosity of various DNS, one for each canonical flow, compared
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with two variants of the eddy-viscosity model (5). In particular, the magenta curves show ν+ = κy+ W with our

notations, i.e. (1/S+
12 − 1) in (5) has been replaced by κy+. The agreement with the DNS is good, except in the

outer region, where in (3) both the numerator 〈uxuy〉 and the denominator S tend to zero, hence the DNS noise is

amplified. A direct comparison between the model (5) and channel flow DNS is displayed on our figures 15bc.

Since the derivatives W ′ and W ′′ will be needed hereafer, they are plotted on the figures 2bc. Whereas the functions

W for the three flow cases are similar (figure 2a), their first and second derivatives show larger differences (figures 2bc).

Naturally, W ′BL and W ′′BL → 0 as y →∞.

2.2 Exact eddy-viscosity equation for turbulent wall flows

Since the focus of our study is on high-Reynolds numbers wall-bounded flows, we assume that the eddy-viscosity

equation takes the standard form

σ
∂νt
∂t

=
∂

∂y

(
νt
∂νt
∂y

)
+ Pν − Dν (11)

with Pν > 0 the production, Dν > 0 the dissipation term. The dimensionless coefficient σ, of order 1, which is a

‘turbulent Prandtl number’, plays no role in the turbulent wall flows, where the mean fields are steady, but is kept

in (11) for the sake of comparison with existing turbulence models. In turbulent wall flows, according to (11), the

opposite of the turbulent diffusion term, or transport term,

− Tν = − ∂

∂y

(
νt
∂νt
∂y

)
= Pν − Dν . (12)

A calculation of Tν starting from (5) leads to Dν = Dνi + Dνo and

Dνi = κ2 ν2
t

L2
vK

1

f2
, (13a)

Pν = κ
ν2
t

LvK δ

1

1− S+
12

(
− 4W ′

W

)
= κ

ν νt
LvK δ

1

S+
12

(−4W ′) , (13b)

Dνo =
ν2
t

δ2

W ′2 +WW ′′

W 2
=

ν2

δ2
(1/S+

12 − 1)2 (W ′2 +WW ′′) . (13c)

The indices i and o refer to ‘inner’ and ‘outer’ terms, respectively, and the notation Dνo is slightly improper since

this term is slightly negative in the near-wall region. However, Dνo is much smaller in this region than in the outer

region where it peaks, as it will be shown in the figure 6b for channel flow, 7b for pipe flow, 8b for boundary layers.

Moreover Dν = Dνi + Dνo > 0 everywhere, as it will be shown in the figures 6cd for channel flow, 7cd for pipe

flow, 8cd for boundary layers, hence the notation Dν is fully justified.

In addition to the functions S+
12 and W defined in the section 2.1, there appears in the equations (13) other functions

that are built on these. The first one is the asymptotic von Karman length scale

LvK = κ
∣∣∣ S12

∂S12/∂y

∣∣∣ or L+
vK = κ

∣∣∣ S+
12

∂S+
12/∂y

+

∣∣∣ . (14)

It is defined as the von Karman length scale used by the SAS models

`vK = κ
∣∣∣ S

∂S/∂y

∣∣∣ , (15)

but replacing S by S12 , i.e., disregarding ‘wake effects’. The fact that the length scale LvK appears in (13a) and

(13b) confirms on very firm bases the relevance of this length scale, which was not so clear in the derivation of Menter

et al. (2006); Menter & Egorov (2010). Only the inner-units L+
vK(y+) is universal, whereas in outer units LvK(y)/δ

has to be calculated as L+
vK/δ

+ at y+ = δ+(y/δ): it depends on δ+ = Reτ . Since, as y+ →∞, in agreement with the

log law, S+
12 ∼ 1/(κy+), L+

vK ∼ κy+, as confirmed by the figure 3a. The functions `+vK(y+) (figure 3a) or `vK(y/δ)

(figure 3b), that depend on the flow case and Reynolds-number, have been computed using the accurate expressions

of S+ of the equation (7) of Heinz (2018), that take into account wake effects. In channel or pipe flow, U presents a

maximum at the centerplane or pipe axis y = δ, hence S and `vK vanish there. On the contrary, in boundary layer

flow, S and `vK vanish only in the limit y → ∞. Phenomenologically, LvK and `vK become large in the viscous

sublayer, because there the velocity profile becomes linear (U ∝ y), then they diminish in the buffer layer where

there are strong gradients; further away in the outer region LvK and `vK again become large because the velocity

profile flattens. The wake effects finally saturate the growth of `vK and even impose a decrease of `vK , as already

explained, but do not influence LvK . The figure 3c suggests that, because the dimensional factor in Dνi (13a), Pν
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dashed); the von Karman length scale `vK (15) for channel (blue), pipe (green), boundary layer (red). The `+vK curves of

the figure (a) and all curves of the figure (b) have been computed at Reτ = 1995. The figure (c) shows the same curves as

figure (b) but with the inverse ordinates and linear-log scales. All curves in (a,b,c) start at y+ = 1.
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Fig. 4 : (a,b) The damping function f . The vertical lines are at y+ = 66. (c) The function W ′2 +WW ′′ for channel (blue),

pipe (green), boundary layer (red).

(first expression in 13b) and Dνo (first expression in 13c) are respectively ν2
t /L

2
vK , ν2

t /(LvKδ) and ν2
t /δ

2, in the

ratii δ2/L2
vK , δ/LvK , 1, those will peak in the inner, intermediate and outer regions. This will be confirmed in the

figures 6 for channel flow, 7 for pipe flow, 8 for boundary layers.

Another ingredient in Dνi (13a) is the universal damping function

f = f(y+) = (1− S+
12)
( (S+

12 − 1) S+
12 d

2S+
12/dy

+2

(dS+
12/dy

+)2
+ 3− 2S+

12

)−1/2

. (16)

It is plotted on the figures 4ab. It does tend to zero as y+ → 0 and 1 as y+ →∞.

Finally, in Pν (13b) and Dνo (13c) the rightmost functions depend only on W and its derivatives. In Pν there appears

−4W ′ which is positive according to the figure 2b, hence Pν > 0 as required. In Dνo there appears W ′2 + WW ′′

which is plotted on the figure 4c. The function W ′2 + WW ′′ > 0 except in a more or less narrow near-wall region,

depending on the flow case: this impacts the sign of Dνo as already discussed after the equations (13).

2.3 The channel flow case

In typical channel flow cases, a comparison of the opposite of the dimensionless transport term

− T+
ν = − ∂

∂y+

(
ν+ ∂ν

+

∂y+

)
= − Tν

u2
τ

(17)

computed with finite differences from two DNS of Lee & Moser (2015) and its model (12,13),

− T+
ν = P+

ν − D+
ν = − D+

νi + P+
ν − D+

νo (18)

is shown on the figures 5. Except in the outer region, where the DNS noise is amplified, there is a good agreement

between the model and the DNS, especially for the highest Reynolds number case.

The separation of −T+
ν into the three terms of the model, −D+

νi , P
+
ν and −D+

νo , is illustrated on the figures 6. The

figures 6a, c and g shows that the dissipation term D+
νi dominates in the near-wall region. In this region, and in inner



Confidential draft PlautHeinz20.pdf - Version 0.16 of October 28, 2020 7

(a)

10
0

10
1

10
2

-0.3

-0.2

-0.1

0

0.1

(b)

10
0

10
1

10
2

10
3

-0.3

-0.2

-0.1

0

0.1

Fig. 5 : The black curve shows the opposite of the dimensionless transport term −T+
ν (17) computed with the channel flow

DNS of Lee & Moser (2015) at Reτ = 543 (a), 5186 (b). The colored curves show the same term computed with our model

(18).

scalings, D+
νi(y

+), D+
ν (y+) and T+

ν (y+) approach as Reτ →∞ a limit profile −D+
νia , which is plotted in black, and

will be studied in the section 2.6. A plateau around y+ ' 400 and

D+
νi ' D+

ν ' T+
ν ' κ2

builds up as Reτ → ∞, in agreement with the formula for the log-layer reduced eddy viscosity, ν+ = κy+. For

larger values of y/δ, after this plateau, the figures 6bdfh show that all terms, considered in inner-outer scalings,

D+
νi(y/δ), D

+
νo(y/δ), D

+
ν (y/δ), P+

ν (y/δ) and T+
ν (y/δ), approach limit profiles as Reτ → ∞. These limit profiles,

plotted in black for the three latest functions, denoted −D+
νa , P

+
νa and −T+

νa , will be studied in the sections 2.7, 2.8

and 2.9.

2.4 The pipe flow case

In the eddy-viscosity formula (5), the only difference between channel and pipe flows is described by the change of the

coefficient KX in the function WX (9) that contains the wake effects. This change from KC = 0.933 to KP = 0.687

is moderate, therefore the transport term and its contributions are close to the ones of channel flow, as shows the

comparison between the figures 6 and figures 7. All the comments made on the figures 6 at the end of section 2.3 also

apply to the figures 7.

2.5 The boundary layer case

The boundary layer case differs from the channel and pipe flow cases in that the maximum value of y (resp. y+) is

not δ (resp. δ+ = Reτ ) but, in principle, infinity. Moreover, the wake function WBL of boundary layers (10) differs

significantly from the one of channel and pipe flows (9). The comparison of the figures 8 with the figures 6 and 7

shows similar behaviours in the ranges y ∈ [0, δ[ i.e. y+ ∈ [0, δ+[, whereas there are differences in the outer region.

At y = δ, i.e. the centerplane in channels or the pipe axis in pipes, the function Tν should present a vanishing slope

for symmetry reasons, as confirmed by the figures 6h and 7h; note that the outer term −D+
νo plays an important role

there. In boundary layers, one does not expect a similar property, but that Tν should approach 0 as y →∞. This is

what suggests the figure 8h, and what would confirm a figure drawn with a larger interval of the abscissas: for all the

Reynolds numbers implied, that range from 543 to 80000, |T+
ν | < 10−3 as soon as y > 1.32δ.
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Fig. 6 : For channel flows, the colored curves, at Reτ = 543 (red), 1995 (blue), 5186 (magenta), 80000 (green), show the

various contributions to −T+
ν (18) and their sum. (a,b) −D+

νi (resp. −D+
νo): continuous (resp. dashed) curves. (c,d) −D+

ν .

(e,f) P+
ν . (g,h) −T+

ν . The black curves show the asymptotic profiles approached as Reτ →∞ either at fixed y+ in (a,c,g)

or fixed y/δ in (d,f,h). (a,c,g) −D+
νia . (d) −D+

νa . (f) P+
νa . (h) −T+

νa . On (a,c,g) the vertical lines are at y+ = 31, 72

and 400; on (f,h) they are at y = 0.33δ. On (a,b,c,d,g,h) the horizontal lines are at −T+
ν = 0 and −κ2.
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Fig. 7 : Same as figure 6, but for pipe flows. On (f,h) the vertical lines are at y = 0.3δ.
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Fig. 8 : Same as figure 6, but for boundary layers. On (f) the vertical line is at y = 0.32δ, on (h) it is at y = 0.3δ.
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2.6 Universal asymptotic profile of the dissipation in the inner region

The figures 6aceg, 7aceg and 8aceg show that, as Reτ → ∞, the dissipation term Dνi dominates the eddy-viscosity

budget in the inner region, that it scales with y+, and approaches in inner units a universal asymptotic profile. This

profile is obtained by replacing, in the expression (5) of the eddy-viscosity, which appears at the power 2 in Dνi (13a),

the wake function W by 1, since then the wake region goes to infinity in inner scaling: at fixed y+, y/δ = y+/Reτ → 0

as Reτ →∞. This yields the asymptotic dissipation function

Dνia = κ2 ν2

L2
vK

(1/S+
12 − 1)2

f2
or D+

νia = κ2 (1/S+
12 − 1)2

L+2
vK

1

f2
. (19)

It is universal in that it does not depend on the flow case, but only on S+
12 , see the equations (14) and (16). Moreover,

D+
νia considered as a function of y+ also does not depend on Reτ . The function −D+

νia is plotted in black on the

figures 6acg, 7acg and 8acg. It is approached at fixed y+, when Reτ → ∞, by −D+
νi , − D+

ν and −T+
ν . On the

figures 6acg, 7acg and 8acg, the first vertical line at y+ = 31 indicates the dissipation peak, with maxD+
νia ' 0.36,

the second vertical line at y+ = 72 indicates a local minimum of dissipation, whereas the third vertical line at y+ = 400

indicates the log-layer plateau. Indeed, as y+ →∞, since 1/S+
12 − 1 and L+

vK approach κy+, whereas f → 1, one has

D+
νia → κ2, in agreement with the expression of the log-layer eddy viscosity ν+ = κy+. Precisely, |D+

νia − κ2| < 10−3

as soon as y+ ≥ 400. From a physical point of view, these results prove that near-wall dissipation is due to universal

near-wall motions.

2.7 Asymptotic profile of the production in the outer region

The figures 6ef, 7ef and 8ef show that, as Reτ →∞, the production of the eddy viscosity vanishes in the inner region,

scales with y/δ, and approaches in the outer region asymptotic profiles that depend only on the flow case. These

profiles are obtained by replacing, in the second expression of Pν (13b), transformed in inner units,

P+
ν = κ

ν+

S+
12 L

+
vK δ+

(−4W ′) , (20)

the eddy viscosity ν+, the strain rate S+
12 and the von Karman length-scale L+

vK by their approximations valid as

y+ → ∞, i.e. κy+ W, 1/κy+ and κy+ respectively, see the discussions after equations (5-8) for ν+ and S+
12 ,

equations (14-15) for L+
vK . This yields the asymptotic profiles

P+
νa = κ2 y

δ
(−4WW ′) or Pνa = κ2 u2

τ

y

δ
(−4WW ′) . (21)

The first equation shows that P+
νa is, for a fixed flow case, a function of y/δ only, because the wake function W

depends only on y/δ, see equations (9-10). The functions P+
νa are plotted in black on the figure 6f for channel flow, 7f

for pipe flow, 8f for boundary layer. These figures confirm that, at fixed y/δ, P+
ν approaches P+

νa as Reτ →∞. From

a physical point of view, these results prove that production is due to large-scale outer motions. The comparison

between the vertical scales of the figures 6f, 7f and 8f shows that these motions contribute more efficiently to the

production of νt in the boundary layer than in the other flows. This is probably related to the fact that the boundary

layer is in principle unbounded in the wall-normal direction, contrarily to channel and pipe flows.

2.8 Asymptotic profile of the dissipation in the outer region

The figures 6bd, 7bd and 8bd show that, as Reτ → ∞, in the outer region, the dissipation terms D+
νi , D

+
νo and

their sum D+
ν scale with y/δ, and approach asymptotic profiles that depend only on the flow case. These profiles are

obtained by starting from the expressions (13a) and (13c), transformed in inner units,

D+
ν = κ2 ν+2

L+2
vK

1

f2
+

1

δ+2
(1/S+

12 − 1)2 (W ′2 +WW ′′) , (22)

and applying the approximations that led from (20) to (21), plus f ' 1. This yields the asymptotic profiles

D+
νa = κ2 W 2 + κ2

(y
δ

)2

(W ′2 +WW ′′) or Dνa = κ2 u2
τ W

2 + κ2 u2
τ

(y
δ

)2

(W ′2 +WW ′′) , (23)

where the first (resp. second) terms correspond to the asymptotic profile of D+
νi or Dνi (resp. D+

νo or Dνo). Similar

to P+
νa (21), D+

νa is, for a fixed flow case, a function of y/δ only. The functions −D+
νa are plotted in black on the

figure 6d for channel flow, 7d for pipe flow, 8d for boundary layer. They are well approached by −D+
ν as Reτ →∞.
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Transport Production Dissipation

Finite Reτ Tν Pν eq. (13b) Dν = Dνi +Dνo eq. (13a,13c)

Infinite Reτ - inner region Dνia(y+) eq. (19) 0 Dνia(y+) eq. (19)

Infinite Reτ - log layer u2
τκ

2 0 u2
τκ

2

Infinite Reτ - outer region Tνa(y/δ) eq. (24) Pνa(y/δ) eq. (21) Dνa(y/δ) eq. (23)

Tab. 1 : The different terms in the νt - equation, or νt - budget, 0 = Tν + Pν −Dν , at finite and infinite Reτ , in various

regions for this latter case, with analytical formulas or references to analytical formulas.
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Fig. 9 : Production to dissipation ratio in channel flow, for Reτ = 1000 (red), 1995 (blue), 5186 (magenta). In (b) the black

curve shows the asymptotic ratio Pνa/Dνa .

2.9 Asymptotic profile of the transport term in the outer region

Obviously

− T+
νa = P+

νa − D+
νa or − Tνa = Pνa − Dνa , (24)

depending on the units, yields the asymptotic profiles of the opposite of the transport term in the outer region, as

proven by the figures 6h for channel flow, 7h for pipe flow, 8h for boundary layer.

2.10 Overview of the physical properties of the exact νt - equation

From the results of the sections 2.2 to 2.9, we can construct for an overview the table 1, and list the following physical

properties of the exact νt - equation.

(D0) The dissipation term −Dνi , that mainly scales with y+, dominates all the other terms in the inner region.

(D1) As Reτ →∞, D+
νi converges to a universal function D+

νia(y+) that peaks at maxD+
νia ' 0.36 around y+ = 31.

(D2) For larger values of y+, D+
νia has a minimum around y+ = 72, and reaches the log-layer plateau D+

νia = κ2 as

soon as y+ & 400.

All this proves that dissipation of the eddy-viscosity is mainly due to universal near-wall motions.

(T0) Beyond the log-layer plateau in terms of values of y, and as Reτ →∞, the opposite of the transport term −T+
ν

converges to asymptotic profiles −T+
νa that depend on y/δ and on the flow case only. These asymptotic profiles

start at ‘low’ y at the log-layer plateau value −T+
νa = −κ2.

(P) For larger values of y, the functions −T+
νa show a maximum due to the production term around y = 0.3δ.

The scaling with y/δ and the position of this maximum proves that production of the eddy-viscosity is due to

large-scale outer motions.

(T1) For even larger values y ≥ 0.65δ, − 0.025 < −T+
νa < 0, i.e. dissipation dominates again, but only slightly.

The properties (D) contrast with the ones of the dissipation of the turbulent kinetic energy k, i.e., ε, which peaks at

the wall and shows no clear scaling, as shown for instance in Hoyas & Jiménez (2008). The properties (P) contrast

strongly with the ones of the production of k, which scales with y+ and peaks around y+ = 11, as shown for instance

in the supplementary material to Heinz (2019). To further illustrate these differences between the eddy-viscosity and

turbulent kinetic energy budgets, the production to dissipation ratio is shown on the figures 9. The comparison of the

figure 9a with the figure 7 of Lee & Moser (2015) that displays Pk/ε−1 (with their notations, see also our appendix A)

shows huge differences: when Reτ → ∞, whereas at fixed y+ one has Pν → 0, on the contrary P+
k and ε+ seem to
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Fig. 10 : Evaluation of the model of Spalart & Allmaras (1994) in channel flow. In (a), the black curve shows −D+
νia (19),

the colored curves show −T+
νS (27) for Reτ = 1995 (blue), 5186 (magenta) and 80000 (green). In (b), for Reτ = 5186, the

curves show σScb1S
+ν+ (continuous), cb2 (∂ν+/∂y+)2 (dashed), −σScw1 fw (ν+/y+)2 (dotted). In (a,b) the vertical lines are

at y+ = 31, 72 and 400. In (c), the black curve shows −T+
νa (24), the colored curves show −T+

νS for Reτ = 1995 (blue), 5186

(magenta) and 80000 (green), the vertical line is at y = 0.33δ. In (a,b,c) the horizontal lines are at −T+
ν = 0 and −κ2.

converge to finite values. Moreover, whereas Pk = 0 at the centerplane in channel flow for symmetry reasons, Pν > 0

there. The figure 9b shows at fixed y/δ the convergence of Pν/Dν to the asymptotic profile Pνa/Dνa . Overall, the

eddy-viscosity and turbulent kinetic energy budgets differ significantly.

The robust properties (D,T,P) will now be used to study existing models of the eddy-viscosity equation.

3 Evaluation of other eddy-viscosity models

From now on, the focus is on channel flows, which are very well documented, and where the geometry is the most

simple. Our aim is a review of existing models of the eddy-viscosity equation, by a test of the properties listed in the

section 2.10 through relevant plots.

3.1 About the model of Spalart & Allmaras (1994)

The high-Reynolds number eddy-viscosity equation (4) of Spalart & Allmaras (1994) reads, for channel flow,

σS
∂νt
∂t

= 0 =
∂

∂y

(
νt
∂νt
∂y

)
+ cb2

(∂νt
∂y

)2

+ σScb1Sνt − σScw1 fw

(νt
y

)2

, (25)

with the same notations, except for σS which stands for the σ of Spalart & Allmaras (1994), and

fw = g
( 1 + c6w3

g6 + c6w3

)1/6

, g = r + cw2(r6 − r) , r =
νt

S κ2
S y

2
, (26)

σS = 2/3, cb1 = 0.1355, cb2 = 0.622, κS = 0.41, cw1 = cb1/κS + (1 + cb2)/σS = 2.763, cw2 = 0.3, cw3 = 2; their

von Karman constant κS differs slightly from ours (8). With the definitions (12) and (17) of the transport term in

physical and dimensionless forms, we identify their model for −T+
ν ,

− T+
νS = σScb1S

+ν+ + cb2

(∂ν+

∂y+

)2

− σScw1 fw

(ν+

y+

)2

(27)

with, in particular,

r =
ν+

S+ κ2
S y

+2
. (28)

To compute S+ accurately, for the evaluation of the first and third terms in (27), the equation (7) of Heinz (2018),

that takes into account wake effects, is used. The model (5) is used on the other hand to compute ν+. As a first test of

Spalart & Allmaras (1994) model, plots in the inner region, with y+ as the abscissa, are displayed on the figures 10ab.

According to the properties (D0,D1) of the exact νt − equation, the colored curves of the figure 10a should approach,

at fixed y+, as Reτ increases, the black curve showing −D+
νia . This is not the case, and more seriously the model

of Spalart & Allmaras (1994) predicts a near-wall production peak where there should be a near-wall dissipation

peak. The figure 10b confirms that the dissipation peak of the model occurs at too large values of y+, and also shows

that the inclusion of the differential production term proportional to (∂ν+/∂y+)2 does not help: it adds production

where there should be more dissipation. Thus the high-Reynolds number model of Spalart & Allmaras (1994) does
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Fig. 11 : Evaluation of the model of Yoshizawa et al. (2012) in channel flow, using the DNS of Lee & Moser (2015). In (a),

the black curve shows −D+
νia (19), the colored curves show −T+

νY (31) for Reτ = 1995 (blue) and 5186 (magenta). In (b),

for Reτ = 5186, the curves show σY CνP fν k
+ (continuous), −σY Cνε ε+

k+
Λ ν+ (dotted). In (a,b) the vertical lines are at

y+ = 31, 72 and 400. In (c), the black curve shows −T+
νa (24), the colored curves show −T+

νY for Reτ = 1995 (blue) and 5186

(magenta), the vertical line is at y = 0.33δ. In (a,b,c) the horizontal lines are at −T+
ν = 0 and −κ2.

not describe correctly the physics of the νt − equation in the near-wall region. It is also noticeable that no log-layer

plateau appears in Spalart & Allmaras’ model, even at Reτ = 80000, contrarily to what shows the exact νt − equation:

compare the figures 6g and 10a. This raises question, since the classical ‘log-layer equilibrium’ has been used in the

derivation of the model of Spalart & Allmaras (1994) to relate cw1 to the other coefficients.

Plots with y/δ as the abscissa are displayed on the figure 10c. The outer production peak of −T+
νS , which was already

visible for the lowest values of Reτ in the figure 10a, seems, on the figure 10c, to scale with y/δ. Moreover, the value

of this outer maximum has the correct magnitude. It is also remarkable that the values of −T+
νS at y = δ are quite

correct. Thus, in the outer region there is a qualitative and even semi-quantitative agreement between the model of

Spalart & Allmaras (1994) and the properties (T,P) of the exact νt − equation. However, the fact that the colored

curves of the figure 10c differ significantly from the black curve, especially for the largest value of Reτ , reveals that

there are, in the outer region, quantitatively significant differences between the model and the exact theory.

In summary, the model of Spalart & Allmaras (1994) appears to be of poor quality in the inner region, and of rather

good relevance in the outer region.

3.2 About the model of Yoshizawa et al. (2012)

The model of Yoshizawa et al. (2012) implies three turbulent fields: the eddy viscosity νt , the turbulent kinetic energy

k and the turbulent dissipation ε. It also proposes an eddy-viscosity equation, which was shown to yield a better

model of νt than the eddy-viscosity formula of the standard k − ε model in some specific cases. The high-Reynolds

number form of the νt − equation (60) of Yoshizawa et al. (2012) reads, for channel flow,

σY
∂νt
∂t

= 0 =
∂

∂y

(
νt
∂νt
∂y

)
+ σY CνP fν k − σY Cνε

νt
τ
, (29)

with the same notations, except for σY which stands for the σν of Yoshizawa et al. (2012), and

fν =
(

1− exp
(
− y∗

14

))2
(

1 +
5

R
3/4
t

exp

(
−
( Rt

200

)2
))

, τ =
k

ε Λ
, Λ =

√
1 + 2(CS + CΩ)

(kS
ε

)2

, (30)

σY = 3, CνP = 4/15, Cνε = 3.5, CS = 0.015, CΩ = 0.02CS , y∗ = (νε)1/4 y/ν, Rt = k2/(νε). Their model for

−T+
ν reads therefore

− T+
νY = σY CνP fν k

+ − σY Cνε
ε+

k+
Λ ν+ (31)

with, in particular,

k+ =
k

u2
τ

, ε+ =
νε

u4
τ

, y∗ = (ε+)1/4 y+ , Rt =
k+2

ε+
,

kS

ε
=

k+S+

ε+
. (32)

Since the fields k and ε are needed in this model, we use the DNS data of Lee & Moser (2015) to test it. The reduced

eddy viscosity ν+ is also extracted from the DNS. Plots with y+ as the abscissa are displayed on the figures 11ab.

A good property of the model of Yoshizawa et al. (2012) is that it presents a dissipation peak in the near-wall

region, that has the correct magnitude, and seems to scale with y+. Thus the properties (D0,D1) of the theory are
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qualitatively fulfilled. However, quantitatively, the dissipation peak of −T+
νY comes in too early in terms of y+ values:

for Reτ = 5186, −T+
νY shows a minimum around y+ = 10 instead of y+ = 31 for the minimum of −D+

νia . For larger

values of y+, the model of Yoshizawa et al. (2012) appears to be too productive, and there is no log-layer plateau.

Plots with y/δ as the abscissa are displayed on the figure 11c. These plots confirm that the model of Yoshizawa et al.

(2012) is too productive, moreover the scaling with y/δ does not show up, i.e., the properties (T,P) of the theory are

not fulfilled.

In summary, the model of Yoshizawa et al. (2012) appears to be of rather good relevance in the near-wall region, but

of poor quality in the outer region. Moreover, this model shows a too strong Reynolds-number dependence.

Importantly, the equation (60) of Yoshizawa et al. (2012) contains a low-Reynolds number term, the viscous

diffusion term

Vν =
∂

∂y

(
ν
∂νt
∂y

)
. (33)

A quantitative study of this term, for channel flow, is proposed in our appendix C. It is shown that, for y+ ≥ 1 and

Reτ = 1995 or 5186, |V +
ν | ≤ 0.023. This is quite smaller than the turbulent dissipation peak, maxD+

νia ' 0.36,

which gives the order of magnitude of the transport term, see the properties (D0,D1). Thus, taking into account this

term, by adding σY Vν to the rhs of the equation (29), would modify only slightly the colored curves of the figures 11,

and the discrepancies with the exact model would not disappear.

3.3 About the SAS models of Menter et al.

3.3.1 Basic model

The high-Reynolds number k −
√
k` SAS model of Menter et al. has been introduced in Menter et al. (2006); Menter

& Egorov (2010). The two turbulent fields are k and
√
k` with ` the turbulent length scale. The product

√
k` is up to

a constant factor the eddy viscosity νt , hence this model may be presented as a k − νt model. After multiplication by

ρ−1 c
1/4
µ σM , with the notations of Menter et al. (2006), except for σM which stands for their σΦ , their equation (7)

reads, for channel flow,

σM
∂νt
∂t

= 0 =
∂

∂y

(
νt
∂νt
∂y

)
+ PνM

(
ζ1 − ζ2

( `

`vK

)2
)
− σMc

1/4
µ ζ3 k (34)

with PνM = σM
ν2
t S

2

k
, ` = c−1/4

µ

νt√
k
, `vK = κM

∣∣∣ S

∂S/∂y

∣∣∣ , (35)

σM = 2/3, cµ = 0.09, κM = 0.41, ζ1 = 0.8, ζ2 = ζ1 − ζ3/c3/4µ + κ2
M/(σMc

1/2
µ ) = 1.47, ζ3 = 0.0288. The definition of

the von Karman length scale in (35) agrees perfectly with our definition (15), except for the different value of the von

Karman constant; for the sake of brevity we use the same notation `vK , whereas in this section κM is used instead

of κ for the computation of the SAS term, proportional to (`/`vK)2, in (34). Menter’s SAS model for −T+
ν reads

therefore

− T+
νM = P+

νM

(
ζ1 − ζ2

( `+
`+vK

)2
)
− σMc

1/4
µ ζ3 k

+ (36)

with P+
νM = σM

ν+2S+2

k+
, `+ = c−1/4

µ

ν+

√
k+

. (37)

The DNS data of Lee & Moser (2015) are used to test this model. Finite differences are used to compute ∂S+/∂y+

to estimate `+vK . Plots with y+ as the abscissa are displayed on the figures 12ab. The figure 12a shows that there is

a near-wall dissipation peak in the SAS model, at a fixed y+ position, i.e. the properties (D0,D1) of the theory are

qualitatively fulfilled. However, the minimum value of −T+
νM corresponding to this dissipation peak is too small, and

this peak comes in too late in terms of y+ values: for Reτ = 5186, − T+
νM shows a minimum around y+ = 43 instead

of y+ = 31 for the minimum of −D+
νia . For larger values of y+, no log-layer plateau shows up in the SAS profiles,

at least for Reτ . 5200, whereas the classical ‘log-layer equilibrium’ has been used in the derivation of the model of

Menter et al. (2006) to relate ζ2 to the other coefficients. The figure 12b showing the different contributions to −T+
νM

proves that the SAS term in (36) plays a quite important role, both around y+ = 43 where −T+
νM has a negative

peak, and near the centerplane, at y+ = δ+, where it imposes a rather large negative value.

Plots with y/δ as the abscissa are displayed on the figure 12c. They show that −T+
νM scales with y/δ in the outer

region, with a production peak around y = 0.42δ, and then a decrease towards a negative value at the centerplane.

Thus the properties (T,P) of the theory are qualitatively fulfilled.

In summary, of the three models tested up to now, the basic SAS model shows the best qualitative agreement with
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Fig. 12 : Evaluation of the SAS model of Menter et al. (2006) in channel flow, using the DNS of Lee & Moser (2015). In (a),

the black curve shows −D+
νia (19), the colored curves show −T+

νM (36) for Reτ = 1995 (blue) and 5186 (magenta). In (b), for

Reτ = 5186, the curves show ζ1 P
+
νM (continuous), −ζ2 P+

νM (`/`vK)2 (dashed), −σMc1/4µ ζ3 k
+ (dash-dot). In (a,b) the vertical

lines are at y+ = 31, 72 and 400. In (c), the black curve shows −T+
νa (24), the colored curves show −T+

νM for Reτ = 1995

(blue) and 5186 (magenta), the vertical line is at y = 0.33δ. In (a,b,c) the horizontal lines are at −T+
ν = 0 and −κ2.

the theory. It also agrees semi-quantitatively with the theory, as shows the comparison between the figures 10c, 11c

and 12c: only the latest shows model curves (the coloured curves) that live in the interval of values of the ordinate

swept by the exact asymptotic profile (the black curve).

3.3.2 Study of the length scales and of the model with length scale limiters

In order to better analyze the SAS models, the figures 13abc display the two length scales implied and their ratio.

The figures 13ab suggest that both length scales, scaled by δ, scale with y/δ, except in a narrow near-wall region for

`vK . Since `vK/δ is computed from the DNS as

`+vK
δ+

=
κM
δ+

∣∣∣ S+

∂S+/∂y+

∣∣∣ , (38)

because both S+ and ∂S+/∂y+ become quite small in the outer region for large Reτ , the DNS noise is amplified

there. This explains the oscillations in the figures 13bc, that also blur some profiles in the figures 12. Smoother

profiles of `vK may be obtained from the exact model of Heinz (2018, 2019) and have been shown on the figure 3.

The laws that result from the log-layer theory,

` = `vK = κMy , (39)

are relevant in a narrow near-wall region for ` and in a larger region for `vK , which otherwise vanishes at the

centerplane as already discussed after equation (15). The ratio `/`vK displayed on the figure 13c shows consequently

a near-wall peak of maximum value of order 1, which locates somehow the log-layer region. It then decays, since `vK
increases first faster than `, and finally increases again and diverges as y → δ. Obviously, the infinite value of `/`vK
at the centerplane plays a role in the too large value of −T+

νM in this region, see the figures 12bc.

From these observations, it seems relevant to test also the SAS model with length scale limiters, since these limiters

have been defined ‘in order of avoiding overly large or small values of the length scale ratio’ `/`vK , as explained by

Menter et al. (2006) at the level of their equation (12). These length scale limiters are defined by

`/c`1 < `vK < c`2 κM y (40)

with c`1 = 10, c`2 = 1.3. The minimum and maximum limiters are displayed on the figures 13de for the highest

Reynolds number available in the DNS database of Lee & Moser (2015). The maximum limiter is active in a narrow

near-wall region, for y+ . 8. There ` is quite small, hence `/`vK remains small and is unchanged at the scales of the

figures 13cf. The minimum limiter is active in a narrow region near the centerplane. As displayed on the figure 13f,

the length scale ratio is mainly affected in this outer region, where it saturates to `/`vK = c`1 . This saturates the

minimum peak of −T+
νM at the centerplane only marginaly, with reference to the figures 12bc. From this point of

view, a lower value of c`1 would help.
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Fig. 13 : For channel flow, using the DNS of Lee & Moser (2015) at Reτ = 1995 (blue) and 5186 (magenta), the turbulent

length scale ` (a), the von Karman length scale `vK (b), their ratio (c). In (a,b) the dashed line shows the log-layer length

scale κMy
+. The effects of the length scale limiters (40) is shown on (d,e) for Reτ = 5186, with the limiters shown by the

dashed curves, and on (f) for both Reynolds numbers.
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Fig. 14 : Same as the figures 12, but adding the viscous sublayer term VSM+
ν (43) to −T+

νM (36); VSM+
ν is shown with the

dotted curve in (b).

3.3.3 Model with a viscous sublayer term

In order to have a model valid through the viscous sublayer, Menter et al. (2006) add a viscous sublayer term to the

r.h.s. of their νt - equation (34),

VSMν = − 6σM fΦ
ννt
y2

. (41)

The dimensional factor in this term, ννt/y
2, has similarities with the one of the last term of the νt - equation (25) of

Spalart & Allmaras (1994), ν2
t /y

2, with, however, one eddy viscosity replaced by the fluid viscosity. In (41),

fΦ =
1 + cd1ξ

1 + ξ4
, ξ =

√
0.3 k y

20ν
, cd1 = 4.7 . (42)

In inner units,

VSM+
ν = − 6σM fΦ

ν+

y+2
with ξ =

√
0.3 k+ y+

20
(43)

in the damping function fΦ . The figures 14 show that the addition of VSM+
ν to −T+

νM introduce a new near-wall

minimum peak in −T+
νM , which does not really help since it occurs at too low values of y+, and is too weak.
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Fig. 15 : (a) The turbulent kinetic energy k+ for the channel flow DNS of Lee & Moser (2015) at Reτ = 1995 (blue) and

5186 (magenta). (b,c) For Reτ = 1995 (b) or 5186 (c) the continuous colored curve shows ν+ computed from the DNS, the

continuous dashed curve ν+ (5), the black dashed curve ν+m (44).

3.3.4 Model with νt limiter

For the sake of completeness, we check that the νt limiter introduced in Menter et al. (2006) to deal with adverse

pressure gradients or stagnation regions is inactive in channel flow. The equations (11) of Menter et al. (2006) state

that the reduced eddy viscosity ν+ should be smaller than

ν+
m =

a1k
+

S+
with a1 = aSST1 fb + (1− fb)aREAL

1 , fb = tanh

[( 20(ν+ + 1)

κMS+y+2 + 0.01

)2
]
, (44)

aSST1 = 0.32, aREAL
1 = 0.577. Because the turbulent kinetic energy k+ reaches rather large levels in the near-wall

region, and then does not decrease too much outside, as shown on the figure 15a, whereas the mean strain rate S+

decreases fast from 1 to 0 as y increases from 0 to δ, ν+
m is everywhere larger than ν+, as shown on the figures 15bc.

4 A modified SAS model

In channel flow, the comparison of the figures 6 and 12 suggests that the SAS dissipation term −ζ2PνM (`/`vK)2

of equation (34) may be responsible of the main discrepancies between the exact and SAS models. We therefore

propose a modified SAS model where the terms proportional to ζ1 and ζ3 in equation (34) are kept, whereas the SAS

dissipation term is replaced by a term similar to Dνi (13a),

DνN = κ2 ν2
t

`2vK

1

f2
. (45)

Our modified SAS νt - equation thus reads, in turbulent wall flows,

σM
∂νt
∂t

= 0 =
∂

∂y

(
νt
∂νt
∂y

)
+ ζ1PνM − DνN − σMc

1/4
µ ζ3 k . (46)

The replacement of LvK in Dνi by `vK in DνN is important to insure that this modified model may be as ‘sensitive’

as the original SAS model: both the original dissipation term −ζ2PνM (`/`vK)2 and the modified dissipation term

−DνN are proportional to `−2
vK . To obtain a correct behaviour of DνN in the near-wall region, that is, a behaviour

similar to that of Dνi , it is important to not use a maximum limiter of `vK proportional to y, as Menter et al. did

it, see (40). This would impose `vK = 0 at the wall, which is according to us not physical. Therefore, we use only a

minimum limiter on `vK ,

`/c`1 < `vK , (47)

with a lower value of c`1 = 1 to saturate DνN near the centerplane. With the same coefficients ζ1 , ζ3 as the ones

chosen by Menter et al., a test of this modified model, which leads to

− T+
νN = ζ1P

+
νM − D+

νN − σMc
1/4
µ ζ3 k

+ (48)

with D+
νN = κ2 ν+2

`+2
vK

1

f2
, (49)

is proposed on the figures 16. The comparison with the figures 12 proves that a much better agreement with the

exact model is reached. More precisely, the curves of the figure 16a are quite similar to the corresponding ones of the
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Fig. 16 : Evaluation of the modified SAS model (46) in channel flow, using the DNS of Lee & Moser (2015). In (a), the

black curve shows −D+
νia (19), the colored curves show −T+

νN (48) for Reτ = 1995 (blue) and 5186 (magenta). In (b), for

Reτ = 5186, the curves show ζ1 P
+
νM (continuous), −D+

νN (dashed), −σMc1/4µ ζ3 k
+ (dash-dot). In (a,b) the vertical lines are

at y+ = 31, 72 and 400. In (c), the black curve shows −T+
νa (24), the colored curves show −T+

νM for Reτ = 1995 (blue) and

5186 (magenta), the vertical line is at y = 0.33δ. In (a,b,c) the horizontal lines are at −T+
ν = 0 and −κ2.
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Fig. 17 : Characterization of the modified SAS model (46) regarding length scales, for channel flow, using the DNS of Lee

& Moser (2015) at Reτ = 5186. The magenta curves show the limited von Karman length scale `vK and the black curves its

limiter, i.e., the turbulent length scale `.

figure 6g, whereas the ones of the figure 16c are very similar to the corresponding ones of the figure 6h: now all the

properties (D,T,P) of the exact model, listed in the section 2.10, are quantitatively recovered.

To complete the presentation of this modified model, the von Karman length scale and its minimum limiter, i.e.,

the turbulent length scale, are plotted on the figures 17, which should be compared to the figures 13de. Note that

κ = 0.40 has been used in this section, instead of κM = 0.41 in the previous one.

5 Concluding discussion

The recent availability of the large DNS and experimental databases of Lee & Moser (2015) in channel flows, Chin

et al. (2014) in pipe flows, Sillero et al. (2013); Vallikivi et al. (2015) in boundary layers, that span wide intervals

of values of Reynolds numbers, has allowed the development of the analytic RANS theory of Heinz (2018, 2019) for

these ‘turbulent wall flows’. This theory, which offers the analytic formula (5) for the eddy viscosity νt , has been

used here as a starting point to propose an order 2 transport equation (11) for νt , based on the idea that it contains

a standard transport term Tν balanced by production and dissipation terms, Pν and Dν , in steady mean flows: for

such flows the eddy viscosity budget reads simply Tν + Pν −Dν = 0. These terms are known analytically, at finite

and infinite Reτ , either in the inner, log layer or outer regions for the latter case, as summarized on the table 1. To

our knowledge, this is the first time that a systematic budget for the eddy viscosity is presented at finite and infinite

Reynolds numbers, and the first time that a budget of a turbulent quantity at infinite Reynolds number is presented.

All this offers an understanding of the mechanisms at play, as summarized in our section 2.10, which also shows

that our νt budget and the known k budget (at finite Reynolds number only) differ quite much. In the νt budget,

noticeable is the fact that dissipation dominates in the inner region, and takes the same universal form Dνi (13a) for

all turbulent wall flows. This form identifies as the relevant length scale the universal asymptotic von Karman length

scale LvK (14) and a universal damping function f (16). All this has been used as a test bench of existing models

that present a νt - equation with the same transport term. Thus, we have evidenced some deficiencies of the models

of Spalart & Allmaras (1994); Yoshizawa et al. (2012), which were designed before the publication of the databases
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mentioned hereabove. The SAS models of Menter et al. (2006); Menter & Egorov (2010) have also been studied, and

have given better results. Finally, quantitative discrepancies between the SAS νt - budget and our exact νt - budget

have been resolved by a modification of the SAS dissipation term in the νt - equation. We suggest to use the form of

the exact Dνi (13a), but replacing the universal asymptotic von Karman length scale LvK by the local von Karman

length scale `vK (15), limited from below by the turbulent length scale `. This limited von Karman length scale

shows, at least in channel flow, a profile similar to the one of LvK : compare the figures 3ab and 17ab. The fact that

the limited von Karman length scale is flow-dependent and appears at the power −2 in the dissipation term suggests

that the modified model could be, in unsteady simulations of complex flows, as ‘sensitive’ or ‘scale-adaptive’ as the

models of Menter et al. (2006); Menter & Egorov (2010), but with a better behaviour in the near-wall region.
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Fig. A.1 : The continuous curve shows the opposite of the normalized transport term −T ′
k (A.2) vs the production-to-

dissipation ratio Pk/ε for the channel flow DNS of Lee & Moser (2015) at Reτ = 543 (a), 5186 (b). The thin (resp. thick)

curve corresponds to the inner region y+ < 15 (resp. outer region y+ > 15). The dashed (resp. dotted) line shows the model

(A.3) with σk = 2/3 (resp. 1).

Appendices

A Validation of the standard k - equation with channel flow DNS

In the standard, high-Reynolds number k− ε (Launder & Spalding 1974) and k−ω (Wilcox 1988) models, for channel

flows, the closed k - equation reads

σk
∂k

∂t
= 0 =

∂

∂y

(
νt
∂k

∂y

)
+ σk (Pk − ε) (A.1)

with σk a model coefficient, and the production term

Pk = νt S
2

according to the eddy-viscosity hypothesis, with the notations of section 2.1. The equation (A.1) is also used in the

SAS model of Menter et al. (2006); Menter & Egorov (2010). Various values of σk are recommended: σk = 1 in

Launder & Spalding (1974), 2 in Wilcox (1988), 2/3 in Menter et al. (2006). To discriminate between those, and

confirm the relevance of the k - equation, we analyze the equation (A.1) with the approach of Heinz (2006). After

division by ε, equation (A.1) states that the opposite of the dimensionless normalized transport term

− T ′k = − 1

ε

∂

∂y

(
νt
∂k

∂y

)
(A.2)

should be a linear function of the production-to-dissipation ratio Pk/ε,

− T ′k = σk (Pk/ε − 1) . (A.3)

This prediction is tested on the channel flow DNS data of Lee & Moser (2015) on the figures A.1. Note that Lee &

Moser (2015) offer in their figure 7 plots of Pk/ε vs y+. The eddy viscosity νt is computed according to its definition

(3), and the derivatives by y in T ′k are computed by finite differences. The figures A.1 show that, in the outer region

y+ > 15, the DNS curves remain close to the line (A.3): this confirms the relevance of the high-Reynolds number

k - equation (A.1), and supports Menter et al. (2006) in their choice σk = 2/3. The value of Launder & Spalding

(1974), σk = 1, seems a bit too large, whereas the value of Wilcox (1988), σk = 2, seems clearly too large.

B Study of the standard ε and ω - equations with channel flow DNS

By analogy with (A.1), Launder & Spalding (1974) postulated in the k − ε model the ε - equation, for channel flows,

σε
∂ε

∂t
= 0 =

∂

∂y

(
νt

∂ε

∂y

)
+ σε

ε

k
(C1Pk − C2ε) (B.1)

with σε = 1.3, C1 = 1.44, C2 = 1.92 . After division by ε2/k, equation (B.1) states that the opposite of the normalized

transport term

− T ′ε = − k

ε2
∂

∂y

(
νt

∂ε

∂y

)
(B.2)
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Fig. B.1 : The continuous curve shows the opposite of the normalized transport term −T ′
ε (B.2) for the channel flow DNS of

Lee & Moser (2015) at Reτ = 543 (a), 5186 (b). The thin (resp. thick) curve corresponds to the inner region y+ < 15 (resp.

outer region y+ > 15). The dashed line shows the standard model (B.3).
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Fig. B.2 : The continuous curve shows the opposite of the normalized transport term −T ′
ω (B.5) for the channel flow DNS of

Lee & Moser (2015) at Reτ = 543 (a), 5186 (b). The thin (resp. thick) curve corresponds to the inner region y+ < 15 (resp.

outer region y+ > 15). The dashed line shows the standard model (B.6).

should be a linear function of Pk/ε,

− T ′ε = σε (C1Pk/ε − C2) . (B.3)

This prediction is tested on the channel flow DNS of Lee & Moser (2015) on the figures B.1. Since ε becomes

quite small near the centerplane (see e.g. the figure 9 of Heinz 2019), there the DNS noise is amplified: this region

corresponds to the lower intersection of the curves of the figures B.1 with the axis Pk/ε = 0 i.e. Pk = 0 (see the

figure 7 of Lee & Moser 2015). The figures B.1, to be compared with the figures A.1, show DNS curves that do not

align with the linear model (B.3), even if one considers only their outer-region part. The structure of the curves is

highly nonlinear, therefore a change of the model constants σε , C1 and C2 cannot solve this problem.

A similar flaw exists with the ω - equation of the standard k−ω model of Wilcox (1988). With a slight change of

notation, to introduce a coefficient σω that plays a role similar to the coefficients σk in (A.1) and σε in (B.1), Wilcox’

equation for

ω = ε/(β∗k)

reads, for channel flows,

σω
∂ω

∂t
= 0 =

∂

∂y

(
νt
∂ω

∂y

)
+ σω

ω

k

(
γPk −

β

β∗
ε
)

(B.4)

where σω = 2, γ = 5/9, β = 3/40, β∗ = 9/100. After division by ω2, equation (B.4) states that

− T ′ω = − 1

ω2

∂

∂y

(
νt
∂ω

∂y

)
(B.5)

should be a linear function of Pk/ε,

− T ′ω = σω (β∗γPk/ε − β) . (B.6)

The figures B.2 show again a highly nonlinear structure of the channel flow DNS curves, that cannot fit a linear model

such as (B.6), even in the outer region y+ > 15.
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Fig. C.1 : The continuous curve shows the dimensionless viscous diffusion term V +
ν (C.1) for the channel flow DNS of Lee

& Moser (2015) at Reτ = 1995 (a), 5186 (b). The dashed curve shows the analytical model that can be derived from (5). The

horizontal lines are at V +
ν = 0 and 0.023.

C Study of the viscous diffusion term in the νt - equation

The viscous diffusion term Vν defined in the equation (33) reads, in dimensionless form,

V +
ν =

Vν
u2
τ

=
∂2ν+

∂y+2
. (C.1)

It can be computed numerically with finite differences from channel flow DNS data. It can also be computed analyti-

cally starting from (5). A comparison of both estimates of V +
ν , for relevant cases (the ones also studied in section 3.2),

is displayed on the figures C.1. The analytic model is overall quite good. Moreover, everywhere, |V +
ν | ≤ 0.023.
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Hanjalić, K. & Launder, B. 2011 Modelling turbulence in engineering and the environment: second-moment routes to closure. Cambridge
University Press.

Heinz, S. 2006 Turbulent supersonic channel flow: direct numerical simulation and modeling. AIAA Journal 44, 3040–3050.

Heinz, S. 2018 On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis. J. Turbulence 19, 929–958.

Heinz, S. 2019 On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis. J. Turbulence 20, 174–193.
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Archives: links to important previous versions

• V0.135 of August 26, 2020, quite similar to the V0.13 of July 17, 2020 read by Stefan: memory of the

QR7,8 regarding variants of the SAS model.

• V0.11 of June 18, 2020: memory of the section 4.3 About the model of Hamba (2013) with a study of its

production term.

• V0.085 of June 4, 2020: memory of the section 3.8 QR6 on the BL case inspired from Spalart & Allmaras

(1994) - possible advection effects that might change the lhs of the νt eq.

• V0.055 of May 19, 2020: memory of the section 4.1 Comparison with Hamba (2013), of figure 9 for Pν and

PνH , of QR5 regarding this comparison.

• V0.025 of May 7, 2020: memory of figure 5 for W ′/W and (W ′2 + WW ′′)/W 2, QR3 regarding comparisons with

DNS of pipe flow, QR4 regarding comparisons with DNS of BL, figure 10 for −T+
ν et al. in BL with an extended range

of y+.

• V0.015 of April 29, 2020: memory of QR1 regarding near-wall effects / the kinematic viscosity & QR2 regarding

pipe flow / curvature effects.
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