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Abstract (to be reworked)

A recent theory has been developed (Heinz 2018, 2019) for three canonical turbulent wall flows: channel flow, pipe

flow and zero-pressure gradient boundary layer, that offers exact analytical formulas for the RANS eddy-viscosity,

as a product of a function of y+ (the wall-normal distance scaled in inner units) with functions of y/δ (the same

distance scaled in outer units). By calculating the eddy-viscosity turbulent diffusion term for these flows where the

turbulence is stationary, one identifies a high-Reynolds number RANS eddy-viscosity equation with one production

and two dissipation terms. One dissipation term is universal, peaks in the near-wall region, and scales mainly with y+.

The second one, smaller in magnitude, is flow-dependent, peaks in the wake region, and scales mainly with y/δ. The

production term is flow-dependent, peaks in between, and scales also mainly with y/δ. The universal dissipation term

implies a damping function and a length scale analogous to the von Karman length scale used in the Scale-Adaptative

Simulation models. This length scale also appears in the production term. This confirms on firm theoretical bases

the relevance of von Karman length scales. This is an occasion to analyze these length scales in more details. An

asymptotic analysis of all terms in the eddy-viscosity budget in the limit of infinite Reynolds numbers is also proposed.

This allows a review and tests of existing RANS models that imply an eddy-viscosity equation. Finally, we propose

a new version of the eddy-viscosity equation of the Scale-Adaptative Simulation models.

1 Introduction

Reynolds-Averaged Navier-Stokes (RANS) models are still widely used in Engineering Computational Fluid Dynamics,

because they allow studies in complex setups for a lower computational cost than more sophisticated methods like

Large Eddy Simulations or Hybrid methods (Wilcox 2006; Hanjalić & Launder 2011). Among RANS models, two-

equations models like the k − ω (Kolmogorov 1942; Wilcox 1988) and k − ε (Launder & Spalding 1974) models are

popular. Their equation for the turbulent kinetic energy k is known to be rather accurate. Indeed, its high-Reynolds

number form can be validated with direct numerical simulations (DNS - we use those of Lee & Moser 2015) in channel

flows, out of the viscous and buffer layers, as shown in the appendix A. On the contrary, the equations for the turbulent

dissipation ε or the turbulent frequency ω of these models are much less accurate, as shown, with the same DNS data,

in the appendix B. These problems are related to the fact that these equations have been constructed empirically

on phenomenological and dimensional bases. Alternate RANS models where one turbulent field is the eddy-viscosity

νt itself, which evolves according to its own equation, look appealing since νt is doubtless a quite relevant variable.

Whereas the first models of this kind also constructed the νt - equation on phenomenological and dimensional bases

(Nee & Kovasznay 1969; Baldwin & Barth 1990; Spalart & Allmaras 1994), there have been recently attempts to use

more systematic approaches (Yoshizawa et al. 2012; Hamba 2013). The Scale-Adaptive Simulation (SAS) models of

Menter et al. (2006); Menter & Egorov (2010) are also k−νt models, which are more phenomenological than the ones

of Yoshizawa et al. (2012); Hamba (2013), but may work as Hybrid models. They imply through the so-called von

Karman length scale `vK the second gradient of the mean velocity, which renders them ‘sensitive’. In highly non-

homogeneous flows the second gradient of the mean velocity, which appears in the denominator of `vK , increases,

hence `vK decreases, hence νt decreases: this allows resolved motions in unsteady simulations. Relevant applications

of variants of this model to quite complex flows are for instance presented in Menter et al. (2006); Egorov et al. (2010);

Abdol-Hamid (2015). Jakirlic & Maduta (2015) also proposed an interesting extension of the SAS approach under

the form of a Reynolds stress model.

The facts that many variants of the SAS models exist, and that their equations are built on phenomenological grounds,

raise however theoretical questions. Accordingly, it is noticeable that the more systematic approaches of Yoshizawa

et al. (2012); Hamba (2013) are quite different: whereas Yoshizawa et al. (2012) started from a conventional Reynolds-

stress model, Hamba (2013) started from the nonlocal analysis presented in Hamba (2005). Obviously, there is no

perfect way to analytically derive the νt - equation.

The aim of this work is to offer a third way, at least for a relevant class of flows: established channel and pipe

flows, together with zero-pressure gradient boundary layers over a flat plate. For these three canonical flows, denoted

hereafter ‘turbulent wall flows’, Heinz (2018, 2019) proposed analytic models of the mean flow U , main Reynolds

stress −〈uxuy〉 and eddy viscosity νt , built after a thorough analysis of recent DNS, including those of Lee & Moser

(2015); Chin et al. (2014); Sillero et al. (2013), and experimental data, for instance those of Vallikivi et al. (2015).

One interest of these models is that they are valid for friction-based Reynolds numbers Reτ & 500: the limit Reτ →∞
is included. Our approach is then to analytically calculate the turbulent diffusion of νt and to identify the opposite

of this as the sum of a positive production term plus negative dissipation terms, see equation (12). The fact that
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these terms are analytical offers a much better intellectual understanding of the νt - equation, and also a practical

understanding of the scaling properties of all terms in this equation. This also permits an accurate description of the

limit Reτ →∞. Another goal is the creation of a basis for the numerical and physical evaluation of existing models.

In section 2, we offer a presentation and physical analysis of our model, which considers only high-Reynolds

number turbulent wall flows. The physical questions that we want to answer concern the scalings of the production

and dissipation terms in the νt - equation, and the effects of the flow cases and Reynolds number. Asymptotic formulas

valid in the limit Reτ → ∞, for all terms in the νt - equation, are in particular given in the sections 2.6 to 2.9. An

overview of all our physical results closes in the section 2.10.

An evaluation of existing models is performed in the section 3.

...

2 Analysis: exact eddy-viscosity formula and transport equation

2.1 Turbulent wall flows - Exact eddy viscosity formula

Following Heinz (2018, 2019), we consider turbulent wall flows of incompressible fluids of mass density ρ and kinematic

viscosity ν. Locally a cartesian system of coordinates Oxyz is used, such that x points in the streamwise direction,

and y measures the distance to the closest wall. To lowest order, the mean flow

U = U(y) ex (1)

with ex the unit vector in the x-direction. A relevant quantity is the mean strain rate

S = ∂U/∂y . (2)

The macroscopic length scale δ is the half-channel height, pipe radius, or 99% boundary layer thickness with respect

to channel flow, pipe flow, and boundary layer, respectively. Denoting uxex + uyey + uzez the fluctuating velocity,

the RANS eddy viscosity

νt = −〈uxuy〉 /S (3)

where the angular brackets denote the Reynolds average. The mean wall shear stress τw is used to define the friction

velocity uτ =
√
τw/ρ. From this are defined wall or inner units: y+ = uτy/ν, U

+ = U/uτ and

S+ = ∂U+/∂y+ . (4)

Finally, the friction-velocity Reynolds number Reτ = δ+ = uτδ/ν. In the equation (11) of Heinz (2019), an analytic

expression is proposed for the reduced eddy viscosity, which is valid at high Reynolds number, Reτ & 500,

ν+ = νt/ν = (1/S+
12 − 1) W . (5)

There S+
12 = S+

1 + S+
2 is a very good approximation of the dimensionless mean strain rate S+ (4) in the inner region

of the flows, i.e., disregarding wake effects, see the equation (7) of Heinz (2018) and the corresponding discussion.

Precisely, the universal function

S+
12 = S+

12(y+) = 1 −

[
(y+/a)b/c

1 + (y+/a)b/c

]c
+

1

κy+

1 + h2/(1 + y+/h1)

1 + yk/(y+H)
, (6)

with

a = 9, b = 3.04, c = 1.4, H = H(y+) = (1 + h1/y
+)−h2 , h1 = 12.36, h2 = 6.47, yk = 75.8 , (7)

and the von Karman constant

κ = 0.40 . (8)

The function S+
12 , plotted on the figure 1a, approaches naturally 1 as y+ → 0 in the viscous sublayer. On the contrary,

as y+ →∞, S+
12 ∼ 1/(κy+), in agreement with the log law. Therefore the function 1/S+

12−1, plotted on the figure 1b,

which appears in the eddy viscosity (5), vanishes in the limit y+ → 0, and then increases smoothly to approach the

function κy+ as y+ →∞.

The second ingredient of the theory is the function W , which is flow-dependent and in outer scaling, because it

describes wake effects. With the notations of Heinz (2018, 2019), W = 1/GCP for channel and pipe flows, MBL/GBL
for boundary layers, where GCP and GBL characterize the wake contribution S+

3 to the dimensionless mean strain
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Fig. 1 : (a) Continuous line: S+
12 , dashed line: 1/(κy+). (b) Continuous line: 1/S+

12 − 1, dashed line: κy+.
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Fig. 2 : (a) W (b) W ′ (c) W ′′ for channel (blue), pipe (green), boundary layer (red).

rate S+ (see the equations 7 and A.22 of Heinz 2018), MBL characterizes the total stress in boundary layers (see the

equation 4 of Heinz 2019). For channel and pipe flows

W = WX(y/δ) with WX(y) =
KXy + (1− y)2(0.6y2 + 1.1y + 1)

1 + y + y2(1.6 + 1.8y)
, (9)

X = C, KC = 0.933 for channel, X = P, KP = 0.687 for pipe; for boundary layers

W = WBL(y/δ) with WBL(y) =
1 + 0.285 y ey(0.9+y+1.09y2)

1 + (0.9 + 2y + 3.27y2)y
e−y

6−1.57y2 . (10)

The wake function W is plotted for these three flows on the figure 2a. In the near-wall region, when y/δ → 0, W → 1,

hence the eddy viscosity (5), ν+ = (1/S+
12(y+)− 1) W (y+/δ+) ∼ (1/S+

12(y+)− 1) where δ+ = Reτ . Therefore the

log-layer eddy viscosity κy+ is approximately recovered if 1� y+ � δ+; for a more precise study, see the section 4.1

of Heinz (2019). When y becomes of the order of δ, wake effects come in, that saturate the growth of the eddy

viscosity (5), since W decreases. Whereas the maximum value of y is δ in channel and pipe flows (if y ∈ [δ, 2δ] the

mean fields can be obtained by suitable symmetries from the mean fields for y ∈ [0, δ]), y may be much larger in

boundary layers. Naturally, WBL → 0 as y →∞; precisely WBL < 10−3 as soon as y > 1.36δ.

This model has been validated by a study of DNS and experimental data. For instance, the figures S.6abc of the

supplementary material to Heinz (2019) show the eddy viscosity of various DNS, one for each canonical flow, compared

with two variants of the eddy-viscosity model (5). In particular, the magenta curves show ν+ = κy+ W with our

notations, i.e. (1/S+
12 − 1) in (5) has been replaced by κy+. The agreement with the DNS is good, except in the

outer region, where in (3) both the numerator 〈uxuy〉 and the denominator S tend to zero, hence the DNS noise is

amplified.

Since the derivatives W ′ and W ′′ will be needed hereafer, they are plotted on the figures 2bc. Whereas the functions

W for the three flow cases are quite similar (figure 2a), their first and second derivatives show larger differences

(figures 2bc). Naturally, W ′BL and W ′′BL → 0 as y →∞.

2.2 Exact eddy-viscosity equation for turbulent wall flows

Since the focus of our study is on high-Reynolds numbers wall-bounded flows, we assume that the eddy-viscosity

equation reads

σ
∂νt
∂t

=
∂

∂y

(
νt
∂νt
∂y

)
+ Pν − Dν (11)
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with Pν > 0 the production, Dν > 0 the dissipation term. The dimensionless coefficient σ, of order 1, which is a

‘turbulent Prandtl number’, plays no role in the turbulent wall flows, where the mean fields are steady, but is kept

in (11) for the sake of comparison with existing turbulence models. In turbulent wall flows, according to (11), the

opposite of the turbulent diffusion term

− Tν = − ∂

∂y

(
νt
∂νt
∂y

)
= Pν − Dν . (12)

A formal computation of Tν starting from (5) leads to Dν = Dνi + Dνo and

Dνi = κ2 ν2
t

L2
vK

1

f2
, (13a)

Pν = κ
ν2
t

LvK δ

1

1− S+
12

(
− 4W ′

W

)
= κ

ν νt
LvK δ

1

S+
12

(−4W ′) , (13b)

Dνo =
ν2
t

δ2

W ′2 +WW ′′

W 2
=

ν2

δ2
(1/S+

12 − 1)2 (W ′2 +WW ′′) . (13c)

The indices i and o refer to ‘inner’ and ‘outer’ terms, respectively, and the notation Dνo is slightly improper since

this term is slightly negative in the near-wall region. However, Dνo is much smaller in this region than in the outer

region where it peaks, as it will be shown in the figure 6b for channel flow, 7b for pipe flow, 8b for boundary layers.

Moreover Dν = Dνi + Dνo > 0 everywhere, as it will be shown in the figures 6cd for channel flow, 7cd for pipe

flow, 8cd for boundary layers, hence the notation Dν is fully justified.

In addition to the functions S+
12 and W defined in the section 2.1, there appears in the equations (13) other functions

that are built on these. The first one is the asymptotic von Karman length scale

LvK = κ
∣∣∣ S12

∂S12/∂y

∣∣∣ or L+
vK = κ

∣∣∣ S+
12

∂S+
12/∂y

+

∣∣∣ . (14)

It is defined as the von Karman length scale used by the SAS models

`vK = κ
∣∣∣ S

∂S/∂y

∣∣∣ , (15)

but replacing S by S12 , i.e., disregarding ‘wake effects’. The fact that the length scale LvK appears in (13a) and

(13b) confirms on very firm bases the relevance of this length scale, which was not so clear in the derivation of Menter

et al. (2006); Menter & Egorov (2010). Only the inner-units L+
vK(y+) is universal, whereas the physical LvK(y/δ)

has to be calculated as δ(L+
vK/δ

+), i.e. LvK/δ depends on δ+ = Reτ . Since, as y+ → ∞, in agreement with the

log law, S+
12 ∼ 1/(κy+), L+

vK ∼ κy+, as confirmed by the figure 3a. The functions `+vK(y+) (figure 3a) or `vK(y/δ)

(figure 3b), that depend on the flow case and Reynolds-number, have been computed using the accurate expressions

of S+ of the equation (7) of Heinz (2018), that take into account wake effects. In channel or pipe flow, U presents a

maximum at the centerplane or pipe axis y = δ, hence S and `vK vanish there. On the contrary, in boundary layer

flow, S and `vK vanish only in the limit y →∞. The figure 3c suggests that, because the dimensional factor in Dνi

(13a), Pν (first expression in 13b) and Dνo (first expression in 13c) are respectively ν2
t /L

2
vK , ν2

t /(LvKδ) and ν2
t /δ

2,

in the ratii δ2/L2
vK , δ/LvK , 1, those will peak in the inner, intermediate and outer regions; this will be confirmed

in the figures 6 for channel flow, 7 for pipe flow, 8 for boundary layers.

Another ingredient in Dνi (13a), is the universal damping function

f = f(y+) = (1− S+
12)
( (S+

12 − 1) S+
12 d

2S+
12/dy

+2

(dS+
12/dy

+)2
+ 3− 2S+

12

)−1/2

. (16)

It is plotted on the figures 4ab. It does tend to zero as y+ → 0 and 1 as y+ →∞.

Finally, in Pν (13b) and Dνo (13c) the rightmost functions depend only on W and its derivatives. In Pν there appears

−4W ′ which is positive according to the figure 2b, hence Pν > 0 as required. In Dνo there appears W ′2 + WW ′′

which is plotted on the figure 4c. As already suggested after the equations (13), the function W ′2 +WW ′′ > 0 except

in a more or less narrow near-wall region, depending on the flow case.
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Fig. 3 : (a,b) The asymptotic von Karman length scale LvK (14) (black continuous); its log law approximation κy (black

dashed); the von Karman length scale `vK (15) for channel (blue), pipe (green), boundary layer (red). The `+vK curves of

the figure (a) and all curves of the figure (b) have been computed at Reτ = 1995. The figure (c) shows the same curves as

figure (b) but with the inverse ordinates and linear-log scales. All curves in (a,b,c) start at y+ = 1.

(a)

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

(b)

0 200 400 600

0

0.5

1

1.5

(c)

0 0.25 0.5 0.75 1 1.25

-5

-4

-3

-2

-1

0

1

2

3

Fig. 4 : (a,b) The damping function f . The vertical lines are at y+ = 66. (c) The function W ′2 +WW ′′ for channel (blue),

pipe (green), boundary layer (red).

2.3 Application to channel flows

In typical channel flow cases, a comparison of the opposite of the dimensionless turbulent diffusion term

− T+
ν = − ∂

∂y+

(
ν+ ∂ν

+

∂y+

)
= − Tν

u2
τ

(17)

computed with finite differences from two DNS of Lee & Moser (2015) and its model (12,13),

− T+
ν = P+

ν − D+
ν = − D+

νi + P+
ν − D+

νo (18)

is shown on the figures 5. Except in the outer region, where the DNS noise is amplified, there is a good agreement

between the model and the DNS, especially, for the highest Reynolds number case.

The separation of −T+
ν into the three terms of the model, −D+

νi , P
+
ν and −D+

νo , is illustrated on the figures 6. The

comparison of the figures 6a, c and g shows that the dissipation term D+
νi dominates in the near-wall region. In this

region, and in inner scalings, D+
νi(y

+), D+
ν (y+) and T+

ν (y+) approach as Reτ →∞ a limit profile, with a maximum

around y+ = 31 and a minimum around y+ = 72. A plateau around y+ ' 300 and

D+
νi ' D+

ν ' T+
ν ' κ2

builds up as Reτ → ∞, in agreement with the formula for the log-layer reduced eddy viscosity, ν+ = κy+. For

larger values of y/δ, after this plateau, the figures 6bdfh show that all terms, considered in inner-outer scalings,

D+
νi(y/δ), D

+
νo(y/δ), D

+
ν (y/δ), P+

ν (y/δ) and T+
ν (y/δ), approach limit profiles as Reτ →∞.

2.4 Application to pipe flows

In the eddy-viscosity model (5), the only difference between channel and pipe flows is described by the change of the

coefficient KX in the function WX (9) that contains the wake effects. This change from KC = 0.933 to KP = 0.687 is

moderate, therefore the turbulent diffusion term and its contributions are close to the ones of channel flow, as shows

the comparison between the figures 6 and figures 7. All the comments made on the figures 6 at the end of section 2.3

also apply to the figures 7.
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Fig. 5 : The continuous line shows the opposite of the dimensionless turbulent diffusion term −T+
ν (17) computed with the

channel flow DNS of Lee & Moser (2015) at Reτ = 543 (a), 5186 (b). The dashed line shows the same term computed with

our model (18).

2.5 Application to boundary layers

The boundary layer case differs from the channel and pipe flow cases in that the maximum value of y (resp. y+) is

not δ (resp. δ+ = Reτ ) but, in principle, infinity. Moreover, the wake function W of boundary layers (10) differs

significantly from the one of channel and pipe flows (9). The comparison of the figures 8 with the figures 6 and 7

shows similar behaviours in the ranges y ∈ [0, δ[ i.e. y+ ∈ [0, δ+[, whereas there are differences in the outer region.

At y = δ, i.e. the centerplane in channels or the pipe axis in pipes, the function Tν should present a vanishing slope

for symmetry reasons, as confirmed by the figures 6h and 7h; note that the outer term −D+
νo plays an important role

there. In boundary layers, one does not expect a similar property, but that Tν should approach 0 as y → ∞. This

is what suggests the figure 8h, and what would confirm a figure drawn with a larger interval of the abscissas (not

shown): for all the Reynolds numbers implied, that range from 543 to 80000, |T+
ν | < 10−3 as soon as y > 1.32δ.
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Fig. 6 : For channel flows at Reτ = 543 (red), 1001 (black), 1995 (blue), 5186 (magenta), 80000 (green), the various

contributions to −T+
ν (18) and their sum. (a,b) −D+

νi with the continuous, −D+
νo with the dashed lines. (c,d) −D+

ν . (e,f)

P+
ν . (g,h) −T+

ν . On (a,c,g) the vertical lines are at y+ = 31 and 72; on (f,h) they are at y = 0.33δ. On (a,b,c,d,g,h) the

horizontal lines are at −T+
ν = 0 and −κ2.
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Fig. 7 : Same as figure 6, but for pipe flows. On (f,h) the vertical lines are at y = 0.3δ.
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Fig. 8 : Same as figure 6, but for boundary layers; in all graphs 1 ≤ y+ ≤ 1.4δ+. On (f) the vertical line is at y = 0.32δ, on

(h) it is at y = 0.3δ.
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Fig. 9 : The black curves show −D+
νia , see (19). The blue curves for channel flow, green curves for pipe flow, red curves for

boundary layer show, in (a) −D+
νi , (b) −D+

ν , (c) −T+
ν for Reτ = 1995 (continuous curves), 5186 (dashed curves) and 80000

(dotted curves). The vertical lines are at y+ = 31, 72 and 400, the horizontal lines are at −T+
ν = 0 and −κ2.

2.6 Asymptotic structure of the near-wall dissipation

The figures 6acg, 7acg and 8acg show that, as Reτ →∞, the dissipation term Dνi dominates the eddy-viscosity budget

in the near-wall region, that it scales with y+, and approaches in inner units a universal asymptotic profile. This

profile is obtained by replacing, in the expression (5) of the eddy-viscosity, which appears at the power 2 in Dνi (13a),

the wake function W by 1, since then the wake region goes to infinity in inner scaling: at fixed y+, y/δ = y+/Reτ → 0

as Reτ →∞. This yields, as a relevant approximation of Dνi , the asymptotic dissipation function

Dνia = κ2 ν2

L2
vK

(1/S+
12 − 1)2

f2
or D+

νia = κ2 (1/S+
12 − 1)2

L+2
vK

1

f2
. (19)

It is universal in that it does not depend on the flow case, but only on S+
12 , see the equations (14) and (16). Moreover,

D+
νia considered as a function of y+ also does not depend on Reτ . As y+ → ∞, since 1/S+

12 − 1 and L+
vK approach

κy+, whereas f → 1, one has D+
νia → κ2, in agreement with the expression of the log-layer eddy viscosity ν+ = κy+.

This is visible on the figures 9; precisely, |D+
νia − κ2| < 10−3 as soon as y+ ≥ 400. The colored curves in the figures 9

confirm that, at fixed y+, Dνi , Dν and Tν approach, as Reτ → ∞, Dνia , whatever the flow case. From a physical

point of view, these results suggest that near-wall dissipation is due to universal near-wall motions.

2.7 Asymptotic structure of the production

The figures 6ef, 7ef and 8ef show that, as Reτ → ∞, the production of the eddy viscosity vanishes in the near-wall

region, scales with y/δ, and approaches asymptotic profiles that depend only on the flow case. These profiles are

obtained by replacing, in the second expression of Pν (13b), transformed in inner units,

P+
ν = κ

ν+

S+
12 L

+
vK δ+

(−4W ′) , (20)

the eddy viscosity ν+, the strain rate S+
12 and the von Karman length-scale L+

vK by their approximations valid as

y+ → ∞, i.e. κy+ W, 1/κy+ and κy+ respectively, see the discussions after equations (5-8) for ν+ and S+
12 ,

equations (14-15) for L+
vK . This yields the asymptotic profiles

P+
νa = κ2 y

δ
(−4WW ′) or Pνa = κ2 u2

τ

y

δ
(−4WW ′) . (21)

The first equation shows that P+
νa is, for a fixed flow case, a function of y/δ only, because the wake function W

depends only on y/δ, see equations (9-10). The figures 10abc confirm that, at fixed y/δ, P+
ν approaches P+

νa as

Reτ → ∞. From a physical point of view, these results suggest that production is due to large-scale outer motions.

The comparison between the vertical scales of the figures 10abc also suggest that these motions contribute more

efficiently to the production of νt in the boundary layer than in the other flows. This is probably related to the fact

that the boundary layer is in principle unbounded in the wall-normal direction, contrarily to channel and pipe flows.

2.8 Asymptotic structure of the dissipation in the outer region

The figures 6bd, 7bd and 8bd show that, as Reτ → ∞, except in a narrow near-wall region, the dissipation terms

D+
νi , D

+
νo and their sum D+

ν scale with y/δ, and approach asymptotic profiles that depend only on the flow case.
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Fig. 10 : For channel flow (a,d,g), pipe flow (b,e,h), boundary layer (c,f,i). In (a,b,c) the black curves show P+
νa , see

(21), the blue (resp. magenta) curves P+
ν for Reτ = 1995 (resp. 5186). The vertical lines are at y/δ = 0.33 (a), 0.3 (b), 0.32

(c). In (d,e,f), the black curves show −D+
νa , see (23), the blue (resp. magenta) curves −D+

ν for Reτ = 1995 (resp. 5186). In

(g,h,i), the black curves show −T+
νa , see (24), the blue (resp. magenta) curves −T+

ν for Reτ = 1995 (resp. 5186). In (d-i)

the horizontal lines are at −T+
ν = 0 and −κ2. The vertical lines are at y/δ = 0.33 (g), 0.3 (h), 0.3 (i).

These profiles are obtained by starting from the expressions (13a) and (13c), transformed in inner units,

D+
ν = κ2 ν+2

L+2
vK

1

f2
+

1

δ+2
(1/S+

12 − 1)2 (W ′2 +WW ′′) , (22)

and applying the approximations that led from (20) to (21), plus f ' 1. This yields the asymptotic profiles

D+
νa = κ2 W 2 + κ2

(y
δ

)2

(W ′2 +WW ′′) or Dνa = κ2 u2
τ W

2 + κ2 u2
τ

(y
δ

)2

(W ′2 +WW ′′) , (23)

where the first (resp. second) term corresponds to the asymptotic profile of D+
νi or Dνi (resp. D+

νo or Dνo). Similar

to P+
νa (21), D+

νa is, for a fixed flow case, a function of y/δ only. The figures 10def confirm that, at fixed y/δ, D+
ν

approaches D+
νa as Reτ →∞.

2.9 Asymptotic structure of the turbulent diffusion term in the outer region

Obviously

− T+
νa = P+

νa − D+
νa (24)

yields the asymptotic profiles of the opposite of the turbulent diffusion term in the outer region, as proven by the

figures 10ghi.
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2.10 Overview of the physical properties of the exact νt - equation

From the results of the sections 2.2 to 2.9, we can list the following physical properties of the exact νt - equation.

(D0) The dissipation term −Dνi , that mainly scales with y+, dominates all the other terms in the near-wall region.

(D1) As Reτ → ∞, D+
νi converges to a universal function D+

νia(y+), given by the equation (19), displayed on the

figures 9, that has a maximum maxD+
νia ' 0.36 around y+ = 31.

(D2) For larger values of y+, D+
νia has a minimum minD+

νia ' 0.08 around y+ = 72, and reaches a log-layer plateau

D+
νia = κ2 as soon as y+ & 400.

All this suggests that dissipation of the eddy-viscosity is mainly due to universal near-wall motions.

(T0) Beyond the log-layer plateau in terms of values of y, and as Reτ → ∞, the opposite of the turbulent diffusion

term −T+
ν converges to asymptotic profiles −T+

νa , given by the equation (24), that depend on y/δ and on the

flow case only. These asymptotic profiles, displayed on the figures 10ghi, start at in the near-wall region the

log-layer value −T+
νa = −κ2.

(P) For larger values of y, the functions −T+
νa show a maximum due to the production term around y = 0.3δ.

The scaling with y/δ and the position of this maximum suggest that production of the eddy-viscosity is due to

large-scale outer motions.

(T1) As y → δ (resp. y →∞), the functions −T+
νa converge to a small negative value (resp. vanishing value) in the

channel and pipe flow cases (resp. boundary layer case).

The properties (P) contrast strongly with the ones of the production of the turbulent kinetic energy k, which scales

with y+ and peaks around y+ = 11, as shown for instance in the supplementary material to Heinz (2019).

These robust properties will now be used to study existing models of the eddy-viscosity equation.

3 Evaluation of other eddy-viscosity models

From now on, the focus is on channel flows, which are very well documented, and where the geometry is the most

simple. Our aim is a review of existing models of the eddy-viscosity equation, by a test of the properties listed in the

section 2.10 through relevant plots.

3.1 About the model of Spalart & Allmaras (1994)

The high-Reynolds number eddy-viscosity equation (4) of Spalart & Allmaras (1994) reads, for channel flow,

σS
∂νt
∂t

= 0 =
∂

∂y

(
νt
∂νt
∂y

)
+ cb2

(∂νt
∂y

)2

+ σScb1Sνt − σScw1 fw

(νt
y

)2

, (25)

with the same notations, except for σS which stands for the σ of Spalart & Allmaras (1994), and

fw = g
( 1 + c6w3

g6 + c6w3

)1/6

, g = r + cw2(r6 − r) , r =
νt

S κ2
S y

2
, (26)

σS = 2/3, cb1 = 0.1355, cb2 = 0.622, κS = 0.41, cw1 = cb1/κS + (1 + cb2)/σS , cw2 = 0.3, cw3 = 2; their von Karman

constant κS differs slightly from ours (8). With the definitions (12) and (17) of the turbulent diffusion term in physical

and dimensionless forms, we identify their model for −T+
ν ,

− T+
νS = σScb1S

+ν+ + cb2

(∂ν+

∂y+

)2

− σScw1 fw

(ν+

y+

)2

(27)

with, in particular,

r =
ν+

S+ κ2
S y

+2
. (28)

To compute S+ accurately, for the evaluation of the first and third terms in (27), the equation (7) of Heinz (2018),

that takes into account wake effects, is used. The model (5) is used on the other hand to compute ν+. As a first

test of Spalart & Allmaras (1994) model, plots in the near-wall region, with y+ as the abscissa, are displayed on the

figures 11ab. According to the properties (D0,D1) of the exact νt − equation, the colored curves of the figure 11a

should approach the black curve showing −D+
νia . This is not at all the case, and more seriously the model of Spalart
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Fig. 11 : Evaluation of the model of Spalart & Allmaras (1994) in channel flow. In (a), the black curve shows −D+
νia , see (19),

the colored curves show −T+
νS , see (27), for Reτ = 1995 (blue), 5186 (magenta) and 80000 (green). In (b), for Reτ = 5186, the

curves show σScb1S
+ν+ (continuous), cb2 (∂ν+/∂y+)2 (dashed), −σScw1 fw (ν+/y+)2 (dotted). In (a,b) the vertical lines are

at y+ = 31, 72 and 400. In (c), the black curve shows −T+
νa , see (24), the colored curves show −T+

νS for Reτ = 1995 (blue),

5186 (magenta) and 80000 (green), the vertical line is at y = 0.33δ. In (a,b,c) the horizontal lines are at −T+
ν = 0 and −κ2.

& Allmaras (1994) predicts a near-wall production peak where there should be a near-wall dissipation peak. The

figure 11b confirms that the dissipation peak of the model occurs at too large values of y+, and also shows that

the inclusion of the differential production term proportional to (∂ν+/∂y+)2 does not help. Thus the high-Reynolds

number model of Spalart & Allmaras (1994) does not describe correctly the physics of the νt − equation in the near-

wall region. It is also noticeable that no log-layer plateau appears in Spalart & Allmaras’ model, even at Reτ = 80000,

contrarily to what shows the exact νt − equation: compare the figures 9c and 11a. This raises questions, since the

classical ‘log-layer equilibrium’ has been used in the derivation of the model of Spalart & Allmaras (1994) to relate

cw1 to the other coefficients.

Plots with y/δ as the abscissa are displayed on the figure 11c. The outer production peak of −T+
νS , which was already

visible for the lowest values of Reτ in the figure 11a, seems, on the figure 11c, to scale with y/δ. Moreover, the value

of this outer maximum has the correct magnitude. It is also remarkable that the values of −T+
νS at y = δ are quite

correct. Thus, in the outer region there is a qualitative and even semi-quantitative agreement between the model of

Spalart & Allmaras (1994) and the properties (T,P) of the exact νt − equation. However, the fact that the colored

curves of the figure 11c differ significantly from the black curve, especially for the largest value of Reτ , reveals that

there are, in the outer region, quantitatively significant differences between the model and the exact theory.

In summary, the model of Spalart & Allmaras (1994) appears to be of poor quality in the near-wall region, and of

rather good relevance in the outer region.

3.2 About the model of Yoshizawa et al. (2012)

The model of Yoshizawa et al. (2012) implies three turbulent fields: the eddy viscosity νt , the turbulent kinetic energy

k and the turbulent dissipation ε. It also proposes an eddy-viscosity equation, which was shown to yield a better

model of νt than the eddy-viscosity formula of the standard k − ε model in some specific cases. The high-Reynolds

number form of the νt − equation (60) of Yoshizawa et al. (2012) reads, for channel flow,

σY
∂νt
∂t

= 0 =
∂

∂y

(
νt
∂νt
∂y

)
+ σY CνP fν k − σY Cνε

νt
τ
, (29)

with the same notations, except for σY which stands for the σν of Yoshizawa et al. (2012), and

fν =
(

1− exp
(
− y∗

14

))2
(

1 +
5

R
3/4
t

exp

(
−
( Rt

200

)2
))

, τ =
k

ε Λ
, Λ =

√
1 + 2(CS + CΩ)

(kS
ε

)2

, (30)

σY = 3, CνP = 4/15, Cνε = 3.5, CS = 0.015, CΩ = 0.02CS , y∗ = (νε)1/4 y/ν, Rt = k2/(νε). Their model for

−T+
ν reads therefore

− T+
νY = σY CνP fν k

+ − σY Cνε
ε+

k+
Λ ν+ (31)

with, in particular,

k+ =
k

u2
τ

, ε+ =
νε

u4
τ

, y∗ = (ε+)1/4 y+ , Rt =
k+2

ε+
,

kS

ε
=

k+S+

ε+
. (32)
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Fig. 12 : Evaluation of the model of Yoshizawa et al. (2012) in channel flow, using the DNS of Lee & Moser (2015). In (a),

the black curve shows −D+
νia , see (19), the colored curves show −T+

νY , see (31), for Reτ = 1995 (blue) and 5186 (magenta).

In (b), for Reτ = 5186, the curves show σY CνP fν k
+ (continuous), −σY Cνε ε+

k+
Λ ν+ (dotted). In (a,b) the vertical lines are

at y+ = 31, 72 and 400. In (c), the black curve shows −T+
νa , see (24), the colored curves show −T+

νY for Reτ = 1995 (blue)

and 5186 (magenta), the vertical line is at y = 0.33δ. In (a,b,c) the horizontal lines are at −T+
ν = 0 and −κ2.

Since the fields k and ε are needed in this model, we use the DNS data of Lee & Moser (2015) to test it. The reduced

eddy viscosity ν+ is also extracted from the DNS. Plots with y+ as the abscissa are displayed on the figures 12ab.

A good property of the model of Yoshizawa et al. (2012) is that it presents a dissipation peak in the near-wall

region, that has the correct magnitude, and seems to scale with y+. Thus the properties (D0,D1) of the theory are

qualitatively fulfilled. However, quantitatively, the dissipation peak of −T+
νY comes in too early in terms of y+ values:

for Reτ = 5186, −T+
νY shows a minimum around y+ = 10 instead of y+ = 31 for the minimum of −D+

νia . For larger

values of y+, the model of Yoshizawa et al. (2012) appears to be too productive, and there is no log-layer plateau.

Plots with y/δ as the abscissa are displayed on the figure 12c. These plots confirm that the model of Yoshizawa et al.

(2012) is too productive, moreover the scaling with y/δ does not show up, i.e., the properties (T,P) of the theory are

not fulfilled.

In summary, the model of Yoshizawa et al. (2012) appears to be of rather good relevance in the near-wall region, but

of poor quality in the outer region. Moreover, this model shows a too-strong Reynolds-number dependence.

3.3 About the SAS model of Menter et al.

The high-Reynolds number k −
√
k` SAS model of Menter et al. has been introduced in Menter et al. (2006) and

discussed in more details in Menter & Egorov (2010). The two turbulent fields are k and
√
k` with ` the turbulent

length scale. The product
√
k` is up to a constant factor the eddy viscosity νt , hence this model may be presented

as a k − νt model. After multiplication by ρ−1 c
1/4
µ σM , with the notations of Menter et al. (2006), except for σM

which stands for the σΦ of Menter et al. (2006), their equation (7) reads, for channel flow,

σM
∂νt
∂t

= 0 =
∂

∂y

(
νt
∂νt
∂y

)
+ σM

ν2
t S

2

k

(
ζ1 − ζ2

( `

`vK

)2
)
− σMc

1/4
µ ζ3 k − 6σM fΦ

ννt
y2

, (33)

with

` = c−1/4
µ

νt√
k
, `vK = κM

∣∣∣ S

∂S/∂y

∣∣∣ , fΦ =
1 + cd1ξ

1 + ξ4
, ξ =

√
0.3 k y

20ν
, (34)

σM = 2/3, cµ = 0.09, κM = 0.41, ζ1 = 0.8, ζ2 = 1.47, ζ3 = 0.0288, cd1 = 4.7. The definition of the von

Karman length scale in (34) agrees perfectly with our definition (15), except for the different value of the von Karman

constant; for the sake of brevity we use the same notation `vK , whereas in this section κM is used instead of κ for

the computation of the SAS term, proportional to (`/`vK)2, in (33). Importantly, we include as the last term of (33)

the ‘viscous sublayer model’ term of Menter et al. (2006), defined in their equation (10), since we want a νt - equation

as accurate as possible in the near-wall region. The dimensional factor in this term, ννt/y
2, has similarities with the

one of the last term of the νt - equation (25) of Spalart & Allmaras (1994), ν2
t /y

2, with, however, one eddy viscosity

replaced by the fluid viscosity. Menter’s SAS model for −T+
ν reads therefore

− T+
νM = P+

νM

(
ζ1 − ζ2

( `+
`+vK

)2
)
− σMc

1/4
µ ζ3 k

+ − 6σM fΦ
ν+

y+2
(35)

with

P+
νM = σM

ν+2S+2

k+
, `+ = c−1/4

µ

ν+

√
k+

, ξ =

√
0.3 k+ y+

20
. (36)
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Fig. 13 : Evaluation of the SAS model of Menter et al. (2006) in channel flow, using the DNS of Lee & Moser (2015).

In (a), the black curve shows −D+
νia , see (19), the colored curves show −T+

νM , see (35), for Reτ = 1995 (blue) and 5186

(magenta). In (b), for Reτ = 5186, the curves show ζ1 P
+
νM (continuous), −ζ2 P+

νM (`/`vK)2 (dashed), −σMc1/4µ ζ3 k
+ (dash-

dot), −6σM fΦ ν+/y+2 (dotted). In (a,b) the vertical lines are at y+ = 31, 72 and 400. In (c), the black curve shows −T+
νa ,

see (24), the colored curves show −T+
νM for Reτ = 1995 (blue) and 5186 (magenta), the vertical line is at y = 0.33δ. In (a,b,c)

the horizontal lines are at −T+
ν = 0 and −κ2.

Importantly, we focus first on the SAS model without limiters, since channel flows do not present adverse pressure

gradients or stagnation regions. The DNS data of Lee & Moser (2015) are used to test this model. Finite differences

are used to compute ∂S+/∂y+ to estimate `+vK . Plots with y+ as the abscissa are displayed on the figures 13ab. The

figure 13a shows that there is a near-wall dissipation peak in the SAS model, that scales in y+, i.e. the properties

(D0,D1) of the theory are qualtitatively fulfilled. However, the minimum value of −T+
νM corresponding to this

dissipation peak is too small, and this peak comes in too early in terms of y+ values: for Reτ = 5186, − T+
νY shows

a minimum around y+ = 12 instead of y+ = 31 for the minimum of −D+
νia . For slightly larger values of y+, the

SAS model displays for the two cases shown the good behaviour with a maximum and then a decrease. However, no

log-layer plateau shows up in the SAS profiles, at least for Reτ . 5200, whereas the classical ‘log-layer equilibrium’ has

been used in the derivation of the model of Menter et al. (2006) to relate ζ2 to the other coefficients. The figure 13b

showing the different contributions to −T+
νM proves that the SAS term in (35) plays a quite important role, both

around y+ = 41 where −T+
νM has its second minimum, and near the centerplane, at y+ = δ+, where it imposes a

rather large negative value.

Plots with y/δ as the abscissa are displayed on the figure 13c. They show that −T+
νM scales with y/δ in the outer

region, with a production peak around y = 0.42δ, and then a decrease towards a negative value at the centerplane.

Thus the properties (T,P) of the theory are qualitatively fulfilled.

In summary, of the three models tested up to now, the SAS model without limiters shows the best qualitative

agreement with the theory. It also agrees semi-quantitatively with the theory, as shows the comparison between the

figures 11c, 12c and 13c: only the latest shows model curves (the coloured curves) that live in the interval of values

of the ordinate swept by the exact asymptotic profile (the black curve).

In order to better analyze the SAS models, the figures 14abc display the two length scales implied, and their ratio.

The figures 14ab suggest that both length scales, scaled by δ, scale with y/δ, except in a narrow near-wall region for

`vK . Since `vK/δ is computed from the DNS as

`+vK
δ+

=
κM
δ+

∣∣∣ S+

∂S/∂y+

∣∣∣ , (37)

because both S+ and ∂S/∂y+ become quite small in the outer region for large Reτ , the DNS noise is amplified there.

This explains the oscillations in the figures 14bc, that also blur the profiles of the figures 13. Smoother profiles of `vK
may be obtained from the exact model of Heinz (2018, 2019), and have been shown on the figure 3. The laws that

result from the classical log-layer theory,

` = `vK = κMy , (38)

are relevant in a narrow near-wall region for ` and in a larger region for `vK , which otherwise vanishes at the

centerplane (as already discussed after equation 15). The ratio `/`vK displayed on the figure 14c shows consequently

a near-wall peak of maximum value of order 1, which locates somehow the log-layer region. It then decays, since `vK
increases first faster than `, and finally increases again and diverges as y → δ. Obviously, the large values of `/`vK
near the centerplane play a role in the too large value of −T+

νM in this region, see the figure 13c.

From these observations, it seems relevant to test also the SAS model with length-scale limiters, since these limiters

have been defined ‘in order of avoiding overly large or small values of the length scale ratio’ `/`vK , as explained by
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Fig. 14 : For channel flow, using the DNS of Lee & Moser (2015) at Reτ = 1995 (blue) and 5186 (magenta), the turbulent

length scale ` (a), the von Karman length scale `vK (b), their ratio (c). In (a,b) the dashed line shows the log-layer length

scale κMy
+. The effects of the length scale limiters (39) is shown on (d) for Reτ = 5186, with the limiters shown by the dashed

curves, and on (e) for both Reynolds numbers.

Menter et al. (2006) at the level of their equation (12). These length-scale limiters are defined by

`/c`1 < `vK < c`2 κM y (39)

with c`1 = 10, c`2 = 1.3. The minimum and maximum limiters are displayed on the figure 14d for the highest Reynolds

number available in the DNS database of Lee & Moser (2015). Obviously the maximum limiter stays inactive, whereas

the minimum limiter is active only in a narrow region near the centerplane. Consequently the length scale ratio is

only limited in the same region, as displayed on the figure 14e. This will saturate the minimum of −T+
νM at the

centerplane only marginaly, with reference to the figure 13c. From this point of view, a lower value of c`1 would help.
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Fig. 15 : Same as figure 13, but without the ‘viscous sublayer model’ term.

3.4 Q7 Test of the SAS model without the VSM relevant ?

• Q7 (Emmanuel, July 17) : It is easy to remove the ‘viscous sublayer model’ (VSM) term from −T+
νM (35) and

to redraw the figures 13 without this term. This yields the figures 15. This model is naturally equivalent to

the one with VSM in the outer region. In the inner region, it is somehow poorer since the first dissipation peak

seems to be too much Reynolds-dependent... but one could imagine other comments !..

Should we also show this test and figure ?

• R7 (Stefan, August 21) : yes, ‘to be on the safe side’ !

3.5 Q8 Test of the SAS model with the νt limiters relevant ?

• Q8 (Emmanuel, July 17) : In the equations (11) of Menter et al. (2006) they define rather complex νt limiters.

Should we also test the SAS model with these νt limiters ?

• R8 (Stefan, August 21) : yes, ‘to be on the safe side’ !
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Fig. A.1 : The continuous line shows the opposite of the normalized turbulent diffusion term −T ′
k (A.2) vs the production-

to-dissipation ratio Pk/ε for the channel flow DNS of Lee & Moser (2015) at Reτ = 543 (a), 5186 (b). The thin (resp. thick)

part corresponds to the inner region y+ < 15 (resp. outer region y+ > 15). The dashed (resp. dotted) line shows the model

(A.3) with σk = 2/3 (resp. 1).

Appendices

A Validation of the standard k - equation with channel flow DNS

In the standard, high-Reynolds number k− ε (Launder & Spalding 1974) and k−ω (Wilcox 1988) models, for channel

flows, the closed k - equation reads

σk
∂k

∂t
= 0 =

∂

∂y

(
νt
∂k

∂y

)
+ σk (Pk − ε) (A.1)

with σk a model coefficient, and the production term

Pk = νt S
2

according to the eddy-viscosity hypothesis, with the notations of section 2.1. The equation (A.1) is also used in the

SAS model of Menter et al. (2006); Menter & Egorov (2010). Various values of σk are recommended: σk = 1 in

Launder & Spalding (1974), 2 in Wilcox (1988), 2/3 in Menter et al. (2006). To discriminate between those, and

confirm the relevance of the k - equation, we analyze the equation (A.1) with the approach of Heinz (2006). After

division by ε, equation (A.1) states that the opposite of the dimensionless normalized turbulent diffusion term

− T ′k = − 1

ε

∂

∂y

(
νt
∂k

∂y

)
(A.2)

should be a linear function of the production-to-dissipation ratio Pk/ε,

− T ′k = σk (Pk/ε − 1) . (A.3)

This prediction is tested on the channel flow DNS data of Lee & Moser (2015) on the figures A.1. Note that Lee &

Moser (2015) offer in their figure 7 plots of Pk/ε vs y+. The eddy viscosity νt is computed according to its definition

(3), and the derivatives by y are computed by finite differences. The figures A.1 show that, in the outer region

y+ > 15, the DNS curves remain close to the line (A.3): this confirms the relevance of the high-Reynolds number

k - equation (A.1), and supports Menter et al. (2006) in their choice σk = 2/3. The value of Launder & Spalding

(1974), σk = 1, seems a bit too large, whereas the value of Wilcox (1988), σk = 2, seems clearly too large.

B Study of the standard ε and ω - equations with channel flow DNS

By analogy with (A.1), Launder & Spalding (1974) postulated in the k − ε model the ε - equation, for channel flows,

σε
∂ε

∂t
= 0 =

∂

∂y

(
νt

∂ε

∂y

)
+ σε

ε

k
(C1Pk − C2ε) (B.1)

with σε = 1.3, C1 = 1.44, C2 = 1.92 . After division by ε2/k, equation (B.1) states that the opposite of the normalized

turbulent diffusion term

− T ′ε = − k

ε2
∂

∂y

(
νt

∂ε

∂y

)
(B.2)
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Fig. B.1 : The continuous line shows the opposite of the normalized turbulent diffusion term −T ′
ε (B.2) for the channel flow

DNS of Lee & Moser (2015) at Reτ = 543 (a), 5186 (b). The thin (resp. thick) part corresponds to the inner region y+ < 15

(resp. outer region y+ > 15). The dashed line shows the standard model (B.3).
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Fig. B.2 : The continuous line shows the opposite of the normalized turbulent diffusion term −T ′
ω (B.5) for the channel flow

DNS of Lee & Moser (2015) at Reτ = 543 (a), 5186 (b). The thin (resp. thick) part corresponds to the inner region y+ < 15

(resp. outer region y+ > 15). The dashed line shows the standard model (B.6).

should be a linear function of Pk/ε,

− T ′ε = σε (C1Pk/ε − C2) . (B.3)

This prediction is tested on the channel flow DNS of Lee & Moser (2015) on the figures B.1. Since ε becomes

quite small near the centerplane (see e.g. the figure 9 of Heinz 2019), there the DNS noise is amplified: this region

corresponds to the lower intersection of the curves of the figures B.1 with the axis Pk/ε = 0 i.e. Pk = 0 (see the

figure 7 of Lee & Moser 2015). The figures B.1, to be compared with the figures A.1, show DNS curves that do not

align with the linear model (B.3), even if one considers only their outer-region part. The structure of the curves is

highly nonlinear, therefore a change of the model constants σε , C1 and C2 cannot solve this problem.

A similar flaw exists with the ω - equation of the standard k−ω model of Wilcox (1988). With a slight change of

notation, to introduce a coefficient σω that plays a role similar to the coefficients σk in (A.1) and σε in (B.1), Wilcox’

equation for

ω = ε/(β∗k)

reads, for channel flows,

σω
∂ω

∂t
= 0 =

∂

∂y

(
νt
∂ω

∂y

)
+ σω

ω

k

(
γPk −

β

β∗
ε
)

(B.4)

where σω = 2, γ = 5/9, β = 3/40, β∗ = 9/100. After division by ω2, equation (B.4) states that

− T ′ω = − 1

ω2

∂

∂y

(
νt
∂ω

∂y

)
(B.5)

should be a linear function of Pk/ε,

− T ′ω = σω (β∗γPk/ε − β) . (B.6)

The figures B.2 show again a highly nonlinear structure of the channel flow DNS curves, that cannot fit a linear model

such as (B.6), even in the outer region y+ > 15.
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