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Abstract

A recent theory has been developed (Heinz 2018, 2019) for three canonical turbulent wall flows: channel flow, pipe

flow and zero-pressure gradient boundary layer, that offers exact analytical formulas for the RANS eddy-viscosity.

By calculating the eddy-viscosity turbulent diffusion term for these flows where the turbulence is stationary, one

identifies a high-Reynolds number RANS eddy-viscosity equation with one production and two dissipation terms.

One dissipation term is universal and peaks in the near-wall region. The second one, smaller in magnitude, is flow-

dependent and peaks in the wake region. The production term is flow-dependent and peaks in between. The universal

dissipation term implies a damping function and a length scale analogous to the von Karman length scale used in

the Scale-Adaptative Simulation models. This length scale also appears in the production term. This confirms on

firm theoretical bases the relevance of von Karman length scales. This is an occasion to analyze these length scales

in more details. An asymptotic analysis of the eddy-viscosity budget in the limit of infinite Reynolds numbers is also

proposed. This allows a review and tests of existing RANS models that imply an eddy-viscosity equation. Finally,

we propose a new version of the eddy-viscosity equation of the Scale-Adaptative Simulation models.

1 Introduction

To be written !..

2 Flow cases and state of the art

2.1 Turbulent wall flows

A part of the text below, especially of the first sentences, will probably move to the introduction...

Wall-bounded turbulent flows are ubiquitous in human-made fluid systems, and are also encountered in the nature:

the atmospheric boundary layer for instance is the place where we live and where we like to set up buildings, wind

turbines, etc. In the infinite family of these flows, one may distinguish three canonical cases: channel flow, pipe flow

and the zero-pressure gradient turbulent boundary layer, or ‘boundary layer’, for the sake of concision. These flows,

denoted here ‘turbulent wall flows’, are somewhat simpler, because the geometry of the fluid domain is simple and

highly symmetric, but they still present a good richness of behaviour. We will build an exact eddy-viscosity equation

for these three cases, and discuss the possible consequences on other classical models. Before presenting those, let us

fix the hypotheses and notations. We consider an incompressible fluid of mass density ρ and kinematic viscosity ν.

In wall-bounded turbulent flows in general, locally a cartesian system of coordinates Oxyz is used, such that x points

in the streamwise direction, and y measures the distance to the closest wall. To lowest order, the mean flow

U = U(y, t) ex (1)

where ex is the unit vector in the x-direction, t time. A relevant quantity is the mean strain rate

S = ∂U/∂y , (2)

which may be evaluated in more general three-dimensional flows from the full strain-rate tensor, see e.g. the equa-

tion (20) of Menter (1997). Focusing now onto the canonical turbulent wall flows, the length scale δ is the half-channel

height, pipe radius, or 99% boundary layer thickness with respect to channel flow, pipe flow, and boundary layer,

respectively. Denoting uxex + uyey + uzez the fluctuating velocity, the RANS eddy viscosity

νt = −〈uxuy〉 /S (3)

where the angular brackets denote the Reynolds average. The mean wall shear stress τw is used to define the friction

velocity uτ =
√
τw/ρ. From this are defined wall or inner units, i.e. y+ = uτy/ν, U

+ = U/uτ and

S+ = ∂U+/∂y+ . (4)

Finally, the friction-velocity Reynolds number Reτ = δ+ = uτδ/ν.

2.2 RANS models with an eddy-viscosity equation

To be written, by citing at least Nee & Kovasznay (1969); Baldwin & Barth (1990); Spalart & Allmaras (1994); Menter

(1997); Yoshizawa et al. (2012) ...
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2.3 The Scale - Adaptive Simulation models

To be written, by citing at least Menter & Egorov (2006, 2010); Egorov et al. (2010); Abdol-Hamid (2015) !..

Following Menter & Egorov (2010), introduce in particular their turbulent length-scale

`t = C−1/4µ k−1/2 νt , (5)

the von Karman length-scale

`vK = κ
∣∣∣ S

∂S/∂y

∣∣∣ , (6)

with κ the von Karman constant, and their eddy-viscosity equation

∂νt
∂t

=
1

σM

∂

∂y

(
νt
∂νt
∂y

)
+ PνM − DνM (7)

with

PνM = ζ1
ν2t S

2

k
, (8a)

DνM = ζ2
ν2t S

2

k

( `t
`vK

)2
+ C1/4

µ ζ3 k , (8b)

(σM , ζ1, ζ2, ζ3) = (2/3, 0.8, 1.47, 0.0288) . (8c)
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Fig. 1 : (a) Continuous line: S+
12 , dashed line: 1/(κy+). (b) Continuous line: 1/S+

12 − 1, dashed line: κy+.

2.4 Analytic eddy viscosity model of turbulent wall flows

Heinz (2018, 2019) proposed analytic models for the mean flow U , main Reynolds stress −〈uxuy〉 and eddy viscosity

νt of the turbulent wall flows defined in section 2.1. In the equation (11) of Heinz (2019), an analytic expression is

proposed for the reduced eddy viscosity, which is valid at high Reynolds number, Reτ & 500,

ν+ = νt/ν = (1/S+
12 − 1) W . (9)

There S+
12 = S+

1 + S+
2 is a very good approximation of the dimensionless mean strain rate S+ (4) in the inner region

of the flows, i.e., disregarding wake effects, see the equation (7) of Heinz (2018) and the corresponding discussion.

Precisely, the universal function

S+
12 = S+

12(y+) = 1 −

[
(y+/a)b/c

1 + (y+/a)b/c

]c
+

1

κy+
1 + h2/(1 + y+/h1)

1 + yk/(y+H)
, (10)

with

a = 9, b = 3.04, c = 1.4, H = H(y+) = (1 + h1/y
+)−h2 , h1 = 12.36, h2 = 6.47, yk = 75.8 , (11)

and the von Karman constant

κ = 0.40 . (12)

The function S+
12 , plotted on the figure 1a, approaches naturally 1 as y+ → 0 in the viscous sublayer. On the contrary,

as y+ →∞, S+
12 ∼ 1/(κy+), in agreement with the log law. Therefore the function 1/S+

12−1, plotted on the figure 1b,

which appears in the eddy viscosity (9), vanishes in the limit y+ → 0, and then increases smoothly to approach the

function κy+ as y+ →∞.

The second ingredient of the theory is the function W , which is flow-dependent and in outer scaling, because it

describes wake effects. With the notations of Heinz (2018, 2019), W = 1/GCP for channel and pipe flows, MBL/GBL
for boundary layers, where GCP and GBL characterize the wake contribution S+

3 to the dimensionless mean strain

rate S+ (see the equations 7 and A.22 of Heinz 2018), MBL characterizes the total stress in boundary layers (see the

equation 4 of Heinz 2019). For channel and pipe flows

W = WX(y/δ) with WX(y) =
KXy + (1− y)2(0.6y2 + 1.1y + 1)

1 + y + y2(1.6 + 1.8y)
, (13)

X = C, KC = 0.933 for channel, X = P, KP = 0.687 for pipe; for boundary layers

W = WBL(y/δ) with WBL(y) =
1 + 0.285 y ey(0.9+y+1.09y2)

1 + (0.9 + 2y + 3.27y2)y
e−y

6−1.57y2 . (14)

The wake function W is plotted for these three flows on the figure 2a. In the near-wall region, when y/δ → 0, W → 1,

hence the eddy viscosity (9), ν+ = (1/S+
12(y+)− 1) W (y+/δ+) ∼ (1/S+

12(y+)− 1) where δ+ = Reτ . Therefore the

log-layer eddy viscosity κy+ is approximately recovered if 1� y+ � δ+; for a more precise study, see the section 4.1

of Heinz (2019). When y becomes of the order of δ, wake effects come in, that saturate the growth of the eddy

viscosity (9), since W decreases. Whereas the maximum value of y is δ in channel and pipe flows (in channel flow if

y ∈ [δ, 2δ] the mean fields can be obtained by suitable symmetries from the mean fields for y ∈ [0, δ]), it may be much

larger in boundary layers. Naturally, WBL → 0 as y →∞; precisely WBL < 10−3 as soon as y > 1.36δ.
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Fig. 2 : (a) W (b) W ′ (c) W ′′ for channel (blue), pipe (green), boundary layer (red).

The theory of Heinz (2018, 2019) has been validated by a thorough study of DNS data, including those of Lee & Moser

(2015); Chin et al. (2014); Sillero et al. (2013), and experimental data, for instance those of Vallikivi et al. (2015). For

instance, the figures S.6abc of the supplementary material to Heinz (2019) show the eddy viscosity of various DNS,

one for each canonical flow, compared with two variants of the eddy-viscosity model (9). In particular, the magenta

curves show κy+ W with our notations, i.e. (1/S+
12 − 1) in (9) has been replaced by κy+. The agreement with the

DNS is good, except in the outer region, where in (3) both the numerator 〈uxuy〉 and the denominator dU/dy tend

to zero, hence the DNS noise is amplified.

Since the derivatives W ′ and W ′′ will be needed hereafer, they are plotted on the figures 2bc. Whereas the functions

W for the three flow cases are quite similar (figure 2a), their first and second derivatives show larger differences

(figures 2bc). Naturally, W ′BL and W ′′BL → 0 as y →∞.

3 Analysis: exact eddy-viscosity equation

3.1 Generalities

Since the focus of our study is on high-Reynolds numbers wall-bounded flows, we assume that the form of the eddy-

viscosity equation is

σ
∂νt
∂t

=
∂

∂y

(
νt
∂νt
∂y

)
+ Pν − Dν (15)

with y the wall distance, Pν > 0 the production, Dν > 0 the dissipation term. The dimensionless coefficient σ, of

order 1, which is a kind of Prandtl number, plays no role in the canonical turbulent wall flows, where the mean fields

are steady, but is kept in (15) for the sake of comparison with other turbulence models. In turbulent wall flows,

according to (15), the opposite of the turbulent diffusion term

− Tν = − ∂

∂y

(
νt
∂νt
∂y

)
= Pν − Dν . (16)

A formal computation of Tν starting from (9) leads to Dν = Dνi + Dνo and

Dνi = κ2
ν2t
L2
vK

1

f2
, (17a)

Pν = κ
ν2t

LvK δ

1

1− S+
12

(
− 4W ′

W

)
= κ

ν νt
LvK δ

1

S+
12

(−4W ′) , (17b)

Dνo =
ν2t
δ2

W ′2 +WW ′′

W 2
=

ν2

δ2
(1/S+

12 − 1)2 (W ′2 +WW ′′) . (17c)

The indices i and o refer to ‘inner’ and ‘outer’ terms, respectively, and the notation Dνo is slightly improper since

this term is slightly negative in the near-wall region. However, Dνo is much smaller in this region than in the outer

region where it peaks, as it will be shown in the figure 6b for channel flow, 7b for pipe flow, 8b for boundary layers.

Moreover Dν = Dνi + Dνo > 0 everywhere, as it will be shown in the figures 6cd for channel flow, 7cd for pipe

flow, 8cd for boundary layers, hence the notation Dν is fully justified.
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Fig. 3 : (a,b) The asymptotic von Karman length scale LvK (18) (black continuous); its log law approximation κy (black

dashed); the von Karman length scale `vK (6) for channel (blue), pipe (green), boundary layer (red). The `+vK curves of the

figure (a) and all curves of the figure (b) have been computed at Reτ = 2000. All curves have been computed starting at

y+ = 1. The figure (c) shows the same curves as figure (b) but with the inverse ordinates and linear-log scales.
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Fig. 4 : (a,b) The damping function f . (c) The function W ′2 +WW ′′ for channel (blue), pipe (green), boundary layer (red).

In addition to the functions S+
12 and W defined in the section 2.4, there appears in the equations (17) other functions

that are built on these. The first one is the asymptotic von Karman length scale

LvK = κ
∣∣∣ S12

∂S12/∂y

∣∣∣ or L+
vK = κ

∣∣∣ S+
12

∂S+
12/∂y

+

∣∣∣ , (18)

which is defined as the von Karman length scale `vK (6), but replacing S by S12 , i.e., disregarding ‘wake effects’.

The fact that the length scale LvK appears in (17a) and (17b) confirms on very firm bases the relevance of this length

scale, which was not so clear in the works of Rotta. Only the inner-units L+
vK(y+) is universal, whereas the physical

LvK(y/δ) has to be calculated as δ(L+
vK/δ

+), i.e. LvK/δ depends on δ+ = Reτ . Since, as y+ →∞, in agreement with

the log law, S+
12 ∼ 1/(κy+), L+

vK ∼ κy+, as confirmed by the figure 3a. The functions `+vK(y+) (figure 3a) or `vK(y/δ)

(figure 3b), that depend on the flow case and Reynolds-number, have been computed using the accurate expressions

of S+ of the equation (7) of Heinz (2018). In channel or pipe flow, U presents a maximum at the centerplane or pipe

axis y = δ, hence S and `vK vanish there. On the contrary, in boundary layer flow, S and `vK vanish only in the

limit y → ∞. The figure 3c suggests that, because the dimensional factor in Dνi (17a), Pν (first expression in 17b)

and Dνo (first expression in 17c) are respectively ν2t /L
2
vK , ν2t /(LvKδ) and ν2t /δ

2, in the ratii δ2/L2
vK , δ/LvK , 1,

those will peak in the inner, intermediate and outer regions; this will be confirmed in the figures 6 for channel flow,

7 for pipe flow, 8 for boundary layers.

Another ingredient in Dνi (17a), is the universal damping function

f = f(y+) = (1− S+
12)
( (S+

12 − 1) S+
12 d

2S+
12/dy

+2

(dS+
12/dy

+)2
+ 3− 2S+

12

)−1/2
. (19)

It is plotted on the figures 4ab. It does tend to zero as y+ → 0 and 1 as y+ →∞.

Finally, in Pν (17b) and Dνo (17c) the rightmost functions depend only on W and its derivatives. In Pν there appears

−4W ′ which is positive according to the figure 2b, hence Pν > 0 as required. In Dνo there appears W ′2 + WW ′′

which is plotted on the figure 4c. As already suggested at the level of (16,17), the function W ′2 +WW ′′ > 0 except

in a more or less narrow near-wall region, depending on the flow case.
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Fig. 5 : The continuous line shows the opposite of the dimensionless turbulent diffusion term −T+
ν (20) computed with the

channel flow DNS of Lee & Moser (2015) at Reτ = 543 (a), 5186 (b). The dashed line shows the same term computed with

our model (21).

3.2 Application to channel flows

In typical channel flow cases, a comparison of the opposite of the dimensionless turbulent diffusion term

− T+
ν = − ∂

∂y+

(
ν+

∂ν+

∂y+

)
(20)

computed with finite differences from two DNS of Lee & Moser (2015) and its model (16,17),

− T+
ν = P+

ν − D+
ν = − D+

νi + P+
ν − D+

νo (21)

is shown on the figures 5. Except in the outer region, where the DNS noise is amplified, there is a good agreement

between the model and the DNS, especially, for the highest Reynolds number case.

The separation of −T+
ν into the three terms of the model, −D+

νi , P
+
ν and −D+

νo , is illustrated on the figures 6. The

comparison of the figures 6a, c and g shows that the dissipation term D+
νi dominates in the near-wall region. In this

region, and in inner scalings, D+
νi(y

+), D+
ν (y+) and T+

ν (y+) approach as Reτ →∞ a limit profile, with a maximum

around y+ = 31 and a minimum around y+ = 72. A plateau around y+ ' 300 and

D+
νi ' D+

ν ' T+
ν ' κ2

builds up as Reτ → ∞, in agreement with the formula for the log-layer reduced eddy viscosity, ν+ = κy+. For

larger values of y/δ, after this plateau, the figures 6bdfh show that all terms, considered in inner-outer scalings,

D+
νi(y/δ), D

+
νo(y/δ), D

+
ν (y/δ), P+

ν (y/δ) and T+
ν (y/δ), approach limit profiles as Reτ →∞.

3.3 Application to pipe flows

In the eddy-viscosity model (9), the only difference between channel and pipe flows is described by the change of the

coefficient KX in the function WX (13) that contains the wake effects. This change from KC = 0.933 to KP = 0.687

is moderate, therefore the turbulent diffusion term and its contributions are close to the ones of channel flow, as shows

the comparison between the figures 6 and figures 7. All the comments made on the figures 6 at the end of section 3.2

also apply to the figures 7.

3.4 Application to boundary layers

The boundary layer case differs from the channel and pipe flow cases in that the maximum value of y (resp. y+) is

not δ (resp. δ+ = Reτ ) but, in principle, infinity. Moreover, the wake function W of boundary layers (14) differs

significantly from the one of channel and pipe flows (13). The comparison of the figures 8 with the figures 6 and 7

shows similar behaviours in the ranges y ∈ [0, δ[ i.e. y+ ∈ [0, δ+[, whereas there are differences in the outer region.

At y = δ, i.e. the centerplane in channels or the pipe axis in pipes, the function Tν should present a vanishing slope

for symmetry reasons, as confirmed by the figures 6h and 7h; note that the outer term −D+
νo plays an important role

there. In boundary layers, one does not expect a similar property, but that Tν should approach 0 as y → ∞. This

is what suggests the figure 8h, and what would confirm a figure drawn with a larger interval of the abscissas (not

shown): for all the Reynolds numbers implied, that range from 543 to 30000, |T+
ν | < 10−3 as soon as y > 1.32δ.
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Fig. 6 : For channel flows at Reτ = 543 (blue), 1001 (red), 1995 (black), 5186 (magenta), 80000 (green), the various

contributions to −T+
ν (21) and their sum. (a,b) −D+

νi with the continuous, −D+
νo with the dashed lines. (c,d) −D+

ν . (e,f)

P+
ν . (g,h) −T+

ν . On (a,c,g) the vertical lines are at y+ = 31 and 72; on (f,h) they are at y = 0.33δ. On (a,b,c,d,g,h) the

horizontal lines are at −T+
ν = 0 and −κ2.
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Fig. 7 : Same as figure 6, but for pipe flows. On (f,h) the vertical lines are at y = 0.3δ.



Confidential draft PlautHeinz20.pdf - Version 0.085 of June 4, 2020 10

(a)

10
0

10
1

10
2

10
3

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

(b)

0 0.25 0.5 0.75 1 1.25

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

(c)

10
0

10
1

10
2

10
3

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

(d)

0 0.25 0.5 0.75 1 1.25

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

(e)

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

(f)

0 0.25 0.5 0.75 1 1.25

0

0.05

0.1

0.15

(g)

10
0

10
1

10
2

10
3

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

(h)

0 0.25 0.5 0.75 1 1.25

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Fig. 8 : Same as figure 6, but for boundary layers; in all graphs 1 ≤ y+ ≤ 1.4δ+. On (f) the vertical line is at y = 0.32δ, on

(h) it is at y = 0.3δ.
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Fig. 9 : The black curves show −D+
νia , see (22), calculated with Reτ = 80000 in (b,d,f). The blue curves for channel flow,

green curves for pipe flow, red curves for boundary layer show, with Reτ = 80000, in (a,b) −D+
νi , (c,d) −D+

ν , (e,f) −T+
ν . On

(a,c,e) the curves of −D+
νi , −D+

ν and −T+
ν for Reτ = 800000 have been added with dashed lines, and the same color codes;

the vertical lines are at y+ = 31, 72 and 400, the horizontal lines are at −T+
ν = 0 and −κ2.

3.5 Asymptotic structure of the near-wall dissipation

The figures 6acg, 7acg and 8acg show that, as Reτ → ∞, the dissipation dominates the eddy-viscosity budget in

the near-wall region, the near-wall dissipation scales with y+, and it approaches a universal asymptotic profile. This

profile is obtained by replacing, in the expression (9) of the eddy-viscosity, which appears at the power 2 in Dνi (17a),

the wake function W by 1, since then the wake region goes to infinity in inner scaling. This yields, as a relevant

approximation of Dνi , the asymptotic dissipation function

Dνia = κ2
ν2

L2
vK

(1/S+
12 − 1)2

f2
or D+

νia = κ2
(1/S+

12 − 1)2

L+2
vK

1

f2
. (22)

It is universal in that it does not depend on the flow case, but only on S+
12 , see the equations (10), (18) and (19).

Moreover D+
νia considered as a function of y+ also does not depend on Reτ . As y+ → ∞, since 1/S+

12 − 1 and L+
vK

approach κy+, whereas f → 1, one has D+
νia → κ2, in agreement with the expression of the log-layer eddy viscosity.

This is visible on the figures 9ace; more precisely, |D+
νia − κ2| < 10−3 as soon as y+ ≥ 400. The colored curves in

figures 9ace confirm that, at fixed y+, Dνi , Dν and Tν approach, as Reτ → ∞, Dνia , whatever the flow case. We

have not plotted the curves for Reτ = 800000 on figures 9bdf, since they are indistinguishable, in outer scaling, from

the curves for Reτ = 80000. From a physical point of view, these results suggest that near-wall dissipation is due to

universal near-wall motions.

The differences between Tν and −Dνia in the outer region, visible on the figure 9f, are due to the contribution of the

production Pν and outer dissipation −Dνo , which are now studied in the limit Reτ →∞.
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Fig. 10 : For channel flow (a,d), pipe flow (b,e), boundary layer (c,f). The black curves show P+
νa , see (24), the magenta

curves P+
ν for Reτ = 5186 in (a,b,c). The black curves show −D+

νoa , see (26), the magenta curves −D+
νo for Reτ = 5186 in

(d,e,f). The vertical lines are at y/δ = 0.33 (a), 0.3 (b), 0.32 (c), 0.56 (d), 0.52 (e), 0.5 (f).

3.6 Asymptotic structure of the production

The figures 6ef, 7ef and 8ef show that, as Reτ → ∞, the production of the eddy viscosity vanishes in the near-wall

region, scales with y/δ, and approaches asymptotic profiles that depend only on the flow case. These profiles are

obtained by replacing, in the second expression of Pν (17b), transformed in inner units,

P+
ν = κ

ν+

S+
12 L

+
vK δ+

(−4W ′) , (23)

the eddy viscosity ν+, the strain rate S+
12 and the von Karman length-scale L+

vK by their approximations valid as

y+ → ∞, i.e. κy+ W, 1/κy+ and κy+ respectively, see the discussions after equations (9-12) for ν+ and S+
12 ,

equation (18) for L+
vK . This yields the asymptotic profiles

P+
νa = κ2

y

δ
(−4WW ′) or Pνa = κ2 u2τ

y

δ
(−4WW ′) . (24)

The first equation shows that P+
νa is, for a fixed flow case, a function of y/δ only, because the wake function W

depends only on y/δ, see equations (13) and (14). The figures 10abc confirm that, at fixed y/δ, P+
ν approaches P+

νa as

Reτ →∞. For Reτ = 80000, the profiles of P+
ν for the three flow cases are indistinguishable from the corresponding

functions P+
νa at the scale of the figures 10abc. From a physical point of view, these results suggest that production

is due to large-scale outer motions. The comparison between the vertical scales of the figures 10abc also suggest that

these motions contribute more efficiently to the production of νt in the boundary layer than in the other flows. This

might be related to the fact that the boundary layer is in principle unbounded in the wall-normal direction, contrarily

to channel and pipe flows.

3.7 Asymptotic structure of the outer dissipation

The figures 6ab, 7ab and 8ab show that, as Reτ → ∞, the outer dissipation of the eddy viscosity vanishes in the

near-wall region, scales with y/δ, and approaches asymptotic profiles that depend only on the flow case. These profiles

are obtained by starting from the second expression of Dνo (17c), transformed in inner units,

D+
νo =

1

δ+2
(1/S+

12 − 1)2 (W ′2 +WW ′′) , (25)
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and applying one of the approximations that led from (23) to (24), i.e. replacing 1/S+
12 − 1 by κy+. This yields the

asymptotic profiles

D+
νoa = κ2

(y
δ

)2
(W ′2 +WW ′′) or Dνoa = κ2 u2τ

(y
δ

)2
(W ′2 +WW ′′) . (26)

Similar to P+
νa (24), D+

νoa is, for a fixed flow case, a function of y/δ only. The figures 10def confirm that, at fixed y/δ,

D+
νo approaches D+

νoa as Reτ →∞. For Reτ = 80000, the profiles of D+
νo for the three flow cases are indistinguishable

from the corresponding functions P+
νa at the scale of the figures 10def. From a physical point of view, this contribution

to the dissipation is probably due to large-scale outer motions.

3.8 QR6 on the BL case inspired from Spalart & Allmaras (1994)

• Q6 (Emmanuel, May 22) : Spalart & Allmaras (1994) study in their section II.3 Near-wall region, high Re

number the ZPGTBL case. In their figure 6 they show the ‘budget of νt’, and they claim that

‘The sum (i.e. Dνt/Dt) is positive throughout’.

Indeed if one states that the general νt eq. has on its lhs

Dνt
Dt

=
∂νt
∂t

+ Ui
∂νt
∂xi

' U
∂νt
∂x

+ V
∂νt
∂y

, (27)

this may be positive throughout the BL because of the advection - the expansion of the BL or, as they write it

on P12, because of the ‘advance of the turbulent front’...

Does this mean that in the BL case the lhs of our νt eq (15) is not 0 but a positive function of y,

that we might deduce, for instance, from the DNS of Sillero et al. (2013) ?

The bad news then would be that the ‘Prandtl number’ σ would not scale out !..

What do you think ?

• R6 (Stefan, May 28) : We calculate νt from stationary Reynolds shear stress and shear rate. My understanding

of Fig. 6 is that this is a consequence of model parameter settings: production, dissipation, ... are crudely

represented in the Spalart model, see e.g. Pope last page before Chapter 11.

• R6 (Emmanuel, June 2) : In BL advection may come into play, i.e. the lhs of the νt equation, given by (27),

could be nonzero though the mean fields are stationary.

Should we study this, for instance, on the DNS of Sillero et al. (2013) ?

Or, could we ‘prove’, by estimating order of magnitudes, that Dνt/Dt is in principle ‘small’ ?

• R6 (Stefan, June 4) : you want to submit in July, just forget about it! I don’t think it’s worth the

time.
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ν et al. in BL with an
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