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Abstract

A recent theory has been developed (Heinz 2018, 2019) for three canonical turbulent wall flows: channel flow, pipe

flow and zero-pressure gradient boundary layer, that offers exact analytical formulas for the RANS eddy-viscosity.

By calculating the eddy-viscosity turbulent diffusion term for these flows where the turbulence is stationary, one

identifies a high-Reynolds number RANS eddy-viscosity equation with one production and two dissipation terms.

One dissipation term is universal and peaks in the near-wall region. The second one is flow-dependent and peaks

in the wake region. The production term is flow-dependent and peaks in between. The universal dissipation term

implies a damping function and a length scale analogous to the von Karman length scale used in the Scale-Adaptative

Simulation models. This length scale also appears in the production term. This confirms on very firm theoretical

bases the relevance of von Karman length scales. This is also an occasion to analyze these length scales in more details

and propose a new version of the eddy-viscosity equation of the Scale-Adaptative Simulation models.

1 Introduction

To be written !..

2 Flow cases and state of the art

2.1 Turbulent wall flows

A part of the text below, especially of the first sentences, will probably move to the introduction...

Wall-bounded turbulent flows are ubiquitous in human-made fluid systems, and are also encountered in the nature:

the atmospheric boundary layer for instance is the place where we live and where we like to set up buildings, wind

turbines, etc. In the infinite family of these flows, one may distinguish three canonical cases: channel flow, pipe flow

and the zero-pressure gradient turbulent boundary layer, or ‘boundary layer’, for the sake of concision. These flows,

denoted here ‘turbulent wall flows’, are somewhat simpler, because the geometry of the fluid domain is simple and

highly symmetric, but they still present a good richness of behaviour. We will build an exact eddy-viscosity equation

for these three cases, and discuss the possible consequences on other classical models. Before presenting those, let us

fix the hypotheses and notations. We consider an incompressible fluid of mass density ρ and kinematic viscosity ν.

In wall-bounded turbulent flows in general, locally a cartesian system of coordinates Oxyz is used, such that x points

in the streamwise direction, and y measures the distance to the closest wall. To lowest order, the mean flow

U = U(y, t) ex (1)

where ex is the unit vector in the x-direction, t time. A relevant quantity is the mean strain rate

S = ∂U/∂y , (2)

which may be evaluated in more general three-dimensional flows from the full strain-rate tensor, see e.g. the equa-

tion (20) of Menter (1997). Focusing now onto the canonical turbulent wall flows, the length scale δ is the half-channel

height, pipe radius, or 99% boundary layer thickness with respect to channel flow, pipe flow, and boundary layer,

respectively. Denoting uxex + uyey + uzez the fluctuating velocity, the RANS eddy viscosity

νt = −〈uxuy〉 /S (3)

where the angular brackets denote the Reynolds average. The mean wall shear stress τw is used to define the friction

velocity uτ =
√
τw/ρ. From this are defined wall or inner units, i.e. y+ = uτy/ν, U

+ = U/uτ and

S+ = ∂U+/∂y+ . (4)

Finally, the friction-velocity Reynolds number Reτ = δ+ = uτδ/ν.

2.2 RANS models with an eddy-viscosity equation

To be written, by citing at least Nee & Kovasznay (1969); Baldwin & Barth (1990); Spalart & Allmaras (1994); Menter

(1997); Yoshizawa et al. (2012) ...
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2.3 The Scale - Adaptive Simulation models

To be written, by citing at least Menter & Egorov (2006, 2010); Egorov et al. (2010); Abdol-Hamid (2015) !..

Following Menter & Egorov (2010), introduce in particular their turbulent length-scale

`t = C−1/4µ k−1/2 νt , (5)

the von Karman length-scale

`vK = κ
∣∣∣ S

∂S/∂y

∣∣∣ , (6)

with κ the von Karman constant, and their eddy-viscosity equation

∂νt
∂t

=
∂

∂y

(
νt
∂νt
∂y

)
+ PνM − DνM (7)

with

PνM = ζ1
ν2t S

2

k
, (8a)

DνM = ζ2
ν2t S

2

k

( `t
`vK

)2
+ C1/4

µ ζ3 k , (8b)

(ζ1, ζ2, ζ3) = (0.8, 1.47, 0.0288) . (8c)

Somewhere we may also cite Hamba (2013) ?.. This may need another subsection ?
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Fig. 1 : (a) Continuous line: S+
12 , dashed line: 1/(κy+). (b) Continuous line: 1/S+

12 − 1, dashed line: κy+.

2.4 Analytic eddy viscosity model of turbulent wall flows

Heinz (2018, 2019) proposed analytic models for the mean flow U , main Reynolds stress −〈uxuy〉 and eddy viscosity

νt of the turbulent wall flows defined in section 2.1. In the equation (11) of Heinz (2019), an analytic expression is

proposed for the reduced eddy viscosity, which is valid at high Reynolds number, Reτ & 500,

ν+ = νt/ν = (1/S+
12 − 1) W . (9)

There S+
12 = S+

1 + S+
2 is a very good approximation of the dimensionless mean strain rate S+ (4) in the inner region

of the flows, i.e., disregarding wake effects, see the equation (7) of Heinz (2018) and the corresponding discussion.

Precisely

S+
12 = S+

12(y+) = 1 −

[
(y+/a)b/c

1 + (y+/a)b/c

]c
+

1

κy+
1 + h2/(1 + y+/h1)

1 + yk/(y+H)
, (10)

with

a = 9, b = 3.04, c = 1.4, H = H(y+) = (1 + h1/y
+)−h2 , h1 = 12.36, h2 = 6.47, yk = 75.8 , (11)

and the von Karman constant

κ = 0.40 . (12)

The universal function S+
12 , plotted on the figure 1a, approaches naturally 1 as y+ → 0 in the viscous sublayer. On

the contrary, as y+ → ∞, S+
12 ∼ 1/(κy+), in agreement with the log law. Therefore the function 1/S+

12 − 1, plotted

on the figure 1b, which appears in the eddy viscosity (9), vanishes in the limit y+ → 0, and then increases smoothly

to approach the function κy+ as y+ →∞.

The second ingredient of the theory is the function W , which is flow-dependent and in outer scaling, because it

describes wake effects. With the notations of Heinz (2018, 2019), W = 1/GCP for channel and pipe flows, MBL/GBL
for boundary layers, where GCP and GBL characterize the wake contribution S+

3 to the dimensionless mean strain

rate S+ (see the equations 7 and A.22 of Heinz 2018), MBL characterizes the total stress in boundary layers (see the

equation 4 of Heinz 2019). For channel and pipe flows

W = WX(y/δ) with WX(y) =
KXy + (1− y)2(0.6y2 + 1.1y + 1)

1 + y + y2(1.6 + 1.8y)
, (13)

X = C, KC = 0.933 for channel, X = P, KP = 0.687 for pipe; for boundary layers

W = WBL(y/δ) with WBL(y) =
1 + 0.285 y ey(0.9+y+1.09y2)

1 + (0.9 + 2y + 3.27y2)y
e−y

6−1.57y2 . (14)

The wake function W is plotted for these three flows on the figure 2a. In the near-wall region, when y/δ → 0, W → 1,

hence the eddy viscosity (9), ν+ = (1/S+
12(y+)− 1) W (y+/δ+) ∼ (1/S+

12(y+)− 1) where δ+ = Reτ . Therefore the

log-layer eddy viscosity κy+ is approximately recovered if 1� y+ � δ+; for a more precise study, see the section 4.1

of Heinz (2019). When y becomes of the order of δ, wake effects come in, that saturate the growth of the eddy

viscosity (9), since W decreases. Whereas the maximum value of y is δ in channel and pipe flows (in channel flow if

y ∈ [δ, 2δ] the mean fields can be obtained by suitable symmetries from the mean fields for y ∈ [0, δ]), it may be much

larger in boundary layers. Naturally, WBL → 0 as y →∞; precisely WBL < 10−3 as soon as y > 1.36δ.

The theory of Heinz (2018, 2019) has been validated by a thorough study of DNS data, including those of Lee & Moser

(2015); Chin et al. (2014); Sillero et al. (2013), and experimental data, for instance those of Vallikivi et al. (2015). For
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Fig. 2 : (a) W (b) W ′ (c) W ′′ for channel (blue), pipe (green), boundary layer (red).

instance, the figures S.6abc of the supplementary material to Heinz (2019) show the eddy viscosity of various DNS,

one for each canonical flow, compared with two variants of the eddy-viscosity model (9). In particular, the magenta

curves show κy+ W with our notations, i.e. (1/S+
12 − 1) in (9) has been replaced by κy+. The agreement with the

DNS is good, except in the outer region, where in (3) both the numerator 〈uxuy〉 and the denominator dU/dy tend

to zero, hence the DNS noise is amplified.

Since the derivatives W ′ and W ′′ will be needed hereafer, they are plotted on the figures 2bc. Whereas the functions

W for the three flow cases are quite similar (figure 2a), their first and second derivatives show larger differences

(figures 2bc). Naturally, W ′BL and W ′′BL → 0 as y →∞.

3 Analysis: exact eddy-viscosity equation

3.1 Generalities

Since the focus of our study is on high-Reynolds numbers wall-bounded flows, we assume that the form of the eddy-

viscosity equation is
∂νt
∂t

=
∂

∂y

(
νt
∂νt
∂y

)
+ Pν − Dν (15)

with y the wall distance, Pν > 0 the production, Dν > 0 the dissipation term. In the canonical turbulent wall flows,

the mean fields are steady, hence the opposite of the turbulent diffusion term

− Tν = − ∂

∂y

(
νt
∂νt
∂y

)
= Pν − Dν . (16)

A formal computation of Tν starting from (9) leads to Dν = Dνi + Dνo and

Dνi = κ2
ν2t
L2
vK

1

f2
, (17a)

Pν = κ
ν2t

LvK δ

1

1− S+
12

(
− 4W ′

W

)
= κ

ν νt
LvK δ

1

S+
12

(−4W ′) , (17b)

Dνo =
ν2t
δ2

W ′2 +WW ′′

W 2
=

ν2

δ2
(1/S+

12 − 1)2 (W ′2 +WW ′′) . (17c)

The indices i and o refer to ‘inner’ and ‘outer’ terms, respectively, and the notation Dνo is slightly improper since

this term is slightly negative in the near-wall region. However, Dνo is much smaller in this region than in the outer

region where it peaks, as it will be shown in the figure 6b for channel flow, 7b for pipe flow, 8b for boundary layers.

Moreover Dν = Dνi + Dνo > 0 everywhere, as it will be shown in the figures 6cd for channel flow, 7cd for pipe

flow, 8cd for boundary layers, hence the notation Dν is fully justified. In addition to the functions S+
12 and W defined

in the section 2.4, there appears in the equations (17) other functions that are built on these. The first one is the

asymptotic von Karman length scale

LvK = κ
∣∣∣ S12

∂S12/∂y

∣∣∣ or L+
vK = κ

∣∣∣ S+
12

∂S+
12/∂y

+

∣∣∣ , (18)

which is defined as the von Karman length scale `vK (6), but replacing S by S12 , i.e., disregarding ‘wake effects’.

The fact that the length scale LvK appears in (17a) and (17b) confirms on very firm bases the relevance of this length

scale, which was not so clear in the works of Rotta. Only the inner-units L+
vK(y+) is universal, whereas the physical



Confidential draft PlautHeinz20.pdf - Version 0.055 of May 19, 2020 6

(a)

10
0

10
1

10
2

10
3

10
1

10
2

10
3

(b)

0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

0.4

(c)

0 0.25 0.5 0.75 1

10
1

10
2

Fig. 3 : (a,b) The asymptotic von Karman length scale LvK (18) (black continuous); its log law approximation κy (black

dashed); the von Karman length scale `vK (6) for channel (blue), pipe (green), boundary layer (red). The `+vK curves of the

figure (a) and all curves of the figure (b) have been computed at Reτ = 2000. All curves have been computed starting at

y+ = 1. The figure (c) shows the same curves as figure (b) but with the inverse ordinates and linear-log scales.

(a)

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

(b)

0 200 400 600

0

0.5

1

1.5

(c)

0 0.25 0.5 0.75 1 1.25

-5

-4

-3

-2

-1

0

1

2

3

Fig. 4 : (a,b) The damping function f . (c) The function W ′2 +WW ′′ for channel (blue), pipe (green), boundary layer (red).

LvK(y/δ) has to be calculated as δ(L+
vK/δ

+), i.e. LvK/δ depends on δ+ = Reτ . Since, as y+ →∞, in agreement with

the log law, S+
12 ∼ 1/(κy+), L+

vK ∼ κy+, as confirmed by the figure 3a. The functions `+vK(y+) (figure 3a) or `vK(y/δ)

(figure 3b), that depend on the flow case and Reynolds-number, have been computed using the accurate expressions

of S+ of the equation (7) of Heinz (2018). In channel or pipe flow, U presents a maximum at the centerplane or pipe

axis y = δ, hence S and `vK vanish there. On the contrary, in boundary layer flow, S and `vK vanish only in the

limit y → ∞. The figure 3c suggests that, because the dimensional factor in Dνi (17a), Pν (first expression in 17b)

and Dνo (first expression in 17c) are respectively ν2t /L
2
vK , ν2t /(LvKδ) and ν2t /δ

2, in the ratii δ2/L2
vK , δ/LvK , 1,

those will peak in the inner, intermediate and outer regions; this will be confirmed in the figures 6 for channel flow,

7 for pipe flow, 8 for boundary layers.

Another ingredient in Dνi (17a), is the universal damping function

f = f(y+) = (1− S+
12)
( (S+

12 − 1) S+
12 d

2S+
12/dy

+2

(dS+
12/dy

+)2
+ 3− 2S+

12

)−1/2
. (19)

It is plotted on the figures 4ab. It does tend to zero as y+ → 0 and 1 as y+ →∞.

Finally, in Pν (17b) and Dνo (17c) the rightmost functions depend only on W and its derivatives. In Pν there appears

−4W ′ which is positive according to the figure 2b, hence Pν > 0 as required. In Dνo there appears W ′2 + WW ′′

which is plotted on the figure 4c. As already suggested at the level of (16,17), the function W ′2 +WW ′′ > 0 except

in a more or less narrow near-wall region, depending on the flow case.
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Fig. 5 : The continuous line shows the opposite of the dimensionless turbulent diffusion term −T+
ν (20) computed with the

channel flow DNS of Lee & Moser (2015) at Reτ = 543 (a), 5186 (b). The dashed line shows the same term computed with

our model (21).

3.2 Application to channel flows

In typical channel flow cases, a comparison of the opposite of the dimensionless turbulent diffusion term

− T+
ν = − ∂

∂y+

(
ν+

∂ν+

∂y+

)
(20)

computed with finite differences from two DNS of Lee & Moser (2015) and its model (16,17),

− T+
ν = P+

ν − D+
ν = − D+

νi + P+
ν − D+

νo (21)

is shown on the figures 5. Except in the outer region, where the DNS noise is amplified, there is a good agreement

between the model and the DNS, especially, for the highest Reynolds number case.

The separation of −T+
ν into the three terms of the model, −D+

νi , P
+
ν and −D+

νo , is illustrated on the figures 6. The

comparison of the figures 6a, c and g shows that the dissipation term D+
νi dominates in the near-wall region. In this

region, and in inner scalings, D+
νi(y

+), D+
ν (y+) and T+

ν (y+) approach as Reτ →∞ a limit profile, with a maximum

around y+ = 31 and a minimum around y+ = 72. A plateau around y+ ' 300 and

D+
νi ' D+

ν ' T+
ν ' κ2

builds up as Reτ → ∞, in agreement with the formula for the log-layer reduced eddy viscosity, ν+ = κy+. For

larger values of y/δ, after this plateau, the figures 6bdfh show that all terms, considered in inner-outer scalings,

D+
νi(y/δ), D

+
νo(y/δ), D

+
ν (y/δ), P+

ν (y/δ) and T+
ν (y/δ), approach limit profiles as Reτ →∞.

The first 4 values of Reτ in the figures 6 correspond to DNS of Lee & Moser (2015), to allow possible comparisons

afterwards: in section 4 I plan a comparison with the SAS models...

3.3 Application to pipe flows

In the eddy-viscosity model (9), the only difference between channel and pipe flows is described by the change of the

coefficient KX in the function WX (13) that contains the wake effects. This change from KC = 0.933 to KP = 0.687

is moderate, therefore the turbulent diffusion term and its contributions are close to the ones of channel flow, as shows

the comparison between the figures 6 and figures 7. All the comments made on the figures 6 at the end of section 3.2

also apply to the figures 7.

3.4 Application to boundary layers

The boundary layer case differs from the channel and pipe flow cases in that the maximum value of y (resp. y+) is

not δ (resp. δ+ = Reτ ) but, in principle, infinity. Moreover, the wake function W of boundary layers (14) differs

significantly from the one of channel and pipe flows (13). The comparison of the figures 8 with the figures 6 and 7

shows similar behaviours in the ranges y ∈ [0, δ[ i.e. y+ ∈ [0, δ+[, whereas there are differences in the outer region.

At y = δ, i.e. the centerplane in channels or the pipe axis in pipes, the function Tν should present a vanishing slope

for symmetry reasons, as confirmed by the figures 6h and 7h; note that the outer term −D+
νo plays an important role

there. In boundary layers, one does not expect a similar property, but that Tν should approach 0 as y → ∞. This

is what suggests the figure 8h, and what would confirm a figure drawn with a larger interval of the abscissas (not

shown): for all the Reynolds numbers implied, that range from 543 to 30000, |T+
ν | < 10−3 as soon as y > 1.32δ.
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Fig. 6 : For channel flows at Reτ = 543 (blue), 1001 (red), 1995 (black), 5186 (magenta), 80000 (green), the various

contributions to −T+
ν (21) and their sum. (a,b) −D+

νi with the continuous, −D+
νo with the dashed lines. (c,d) −D+

ν . (e,f)

P+
ν . (g,h) −T+

ν . On (a,c,g) the vertical lines are at y+ = 31 and 72; on (f,h) they are at y = 0.33δ. On (a,b,c,d,g,h) the

horizontal lines are at −T+
ν = 0 and −κ2.
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Fig. 7 : Same as figure 6, but for pipe flows. On (f,h) the vertical lines are at y = 0.3δ.
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Fig. 8 : Same as figure 6, but for boundary layers; in all graphs 1 ≤ y+ ≤ 1.4δ+. On (f) the vertical line is at y = 0.32δ, on

(h) it is at y = 0.3δ.
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Fig. 9 : For channel flows at Reτ = 543 (blue) and 5186 (magenta), the continuous lines show the production term P+
ν (17b),

the dashed lines σH P+
νH with σH = 0.12 and PνH , defined in (22), computed with the DNS of Lee & Moser (2015). In (b)

the vertical line shows y = 0.33δ.

4 Discussion

From now on the text is less finalized / the following subsection is exploratory !

4.1 Comparison with Hamba (2013) ?

Interestingly, Hamba (2013) proposed on the basis of a theoretical approach that we should briefly describe (somewhere

in section 2 ?) an eddy-viscosity equation (his equation 37) with an explicit and simple production term

PνH = 〈uyuy〉 . (22)

The diffusion term of Hamba’s equation is not written as our Tν (first expression in 16) but it is reasonable (? ) to

assume that it may be approximated by a term of the form

1

σH

∂

∂y

(
νt
∂νt
∂y

)
=

1

σH
Tν (23)

with σH a dimensionless coefficient. Therefore our production term should be

Pν ' σHPνH . (24)

The figure 9 shows a comparison of both models constructed with the DNS data of Lee & Moser (2015). The coefficient

σH has been estimated by enforcing the relation maxPν = σH (maxPνH) for the highest Reynolds number case i.e.

Reτ = 5186. The fact that maxPν and maxPνH increase as Reτ increases is a common point of both models. On the

contrary, whereas PνH peaks very close to the wall, around y+ ' 100 (see also the figure 5a of Lee & Moser 2015),

Pν peaks farther away, and at a fixed position in outer scaling, around y ' 0.33δ. Moreover, the minimum values of

the production terms reached at the centerplane region are, compared to the maximum values, higher for PνH than

for Pν . We have no explanation for these discrepancies.

• Q5 : What do you think of this comparison ?

Are you aware of recent papers that also contradict Hamba (2013) ?

• R5 : I like Fig. 9, but I’m not in favor of this approach. We’ll not get a paper by only showing

such differences without explanation.
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