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• I have inserted the answers of Stefan (mail of April 28, 2020) to Q1 and Q2 in the sections 3.1 and 3.2.

Abstract

A recent theory has been developed (Heinz 2018, 2019) for three canonical turbulent wall flows: channel flow, pipe

flow and zero-pressure gradient boundary layer, that offers exact analytical formulas for the RANS eddy-viscosity. By

calculating the eddy-viscosity turbulent diffusion term for these flows where the turbulence is stationary, one identifies

a RANS eddy-viscosity equation with one production and two dissipation terms. One dissipation term is universal

and peaks in the near-wall region. The second one is flow-dependent and peaks in the wake region. The production

term is flow-dependent and peaks in between. The universal dissipation term implies a damping function and a length

scale analogous to the von Karman length scale used in the Scale-Adaptative Simulation models.

...To be expanded ?..

1 Introduction

To be written !..

1
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2 State of the art

2.1 Models with an eddy-viscosity equation

To be written, by citing at least Nee & Kovasznay (1969); Spalart & Allmaras (1994); Baldwin & Barth (1990); Menter

(1997); Yoshizawa et al. (2012) !..

Maybe, already at the level where we speak of Nee & Kovasznay (1969), introduce notations for 2D xy flows and

boundary layer coordinates, e.g. the definitions of ν, uτ , y
+, U+, the dimensionless mean strain rate

S+ = dU+/dy+ , (1)

and the eddy viscosity

νt = −〈uxuy〉 /(dU/dy) ?.. (2)

...These definitions may be placed somewhere else ?..

2.2 The Scale - Adaptive Simulation models

To be written, by citing at least Menter & Egorov (2006, 2010); Egorov et al. (2010); Abdol-Hamid (2015) !..

Introduce in particular the von Karman length-scale

LvK = κ
∣∣∣ dU/dy
d2U/dy2

∣∣∣ (3)

and κ the von Karman constant !..

2.3 Analytic eddy viscosity model of turbulent wall flows

Heinz (2018, 2019) proposed analytic models for the mean flow, main Reynolds stress and eddy viscosity of three

canonical wall-bounded turbulent flows: channel flow, pipe flow and the zero-pressure gradient turbulent boundary

layer. These flows present a certain richness, and are denoted here ‘turbulent wall flows’. In the equation (11) of

Heinz (2019), an analytic expression is proposed for the reduced eddy viscosity ν+ = νt/ν, which is valid at high

Reynolds number, Reτ & 500,

ν+ = (1/S+
12 − 1) N . (4)

There S+
12 = S+

1 + S+
2 is a very good approximation of the dimensionless mean strain rate S+ (1) in the inner region

of the flows, i.e., disregarding wake effects, see the equation (7) of Heinz (2018) and the corresponding discussion.

Precisely

S+
12 = S+

12(y+) = 1 −

[
(y+/a)b/c

1 + (y+/a)b/c

]c
+

1

κy+
1 + h2/(1 + y+/h1)

1 + yk/(y+H)
, (5)

with

a = 9, b = 3.04, c = 1.4, H = H(y+) = (1 + h1/y
+)−h2 , h1 = 12.36, h2 = 6.47, yk = 75.8 , (6)

and the von Karman constant

κ = 0.40 . (7)

The universal function S+
12 , plotted on the figure 1a, approaches naturally 1 as y+ → 0 in the viscous sublayer. On

the contrary, as y+ → ∞, S+
12 ∼ 1/(κy+), in agreement with the log law. Therefore the function 1/S+

12 − 1, plotted

on the figure 1b, which appears in the eddy viscosity (4), vanishes in the limit y+ → 0, and then increases smoothly

to approach the function κy+ as y+ →∞.

The second ingredient of the theory is the function N , which is flow-dependent and written in outer scaling, because

it describes wake effects. Indeed, with the notations of Heinz (2018, 2019), N = 1/GCP for channel and pipe flows,

MBL/GBL for boundary layers, where GCP and GBL characterize the wake contribution S+
3 to the dimensionless

mean strain rate S+ (see the equations 7 and A.22 of Heinz 2018), MBL characterizes the total stress in boundary

layers (see the equation 4 of Heinz 2019). Thus, for channel and pipe flows

N = NX(y/δ) with NX(y) =
KXy + (1− y)2(0.6y2 + 1.1y + 1)

1 + y + y2(1.6 + 1.8y)
, (8)

X = C, KC = 0.933 for channel, X = P, KP = 0.687 for pipe; for boundary layers

N = NBL(y/δ) with NBL(y) =
1 + 0.285 y ey(0.9+y+1.09y2)

1 + (0.9 + 2y + 3.27y2)y
e−y

6−1.57y2 . (9)
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Fig. 1 : (a) Continuous line: S+
12 , dashed line: 1/(κy+). (b) Continuous line: 1/S+

12 − 1, dashed line: κy+.
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Fig. 2 : (a) N (b) N ′ (c) N ′′ for channel (black), pipe (green), boundary layer (red).

The length scale δ is the half-channel height, pipe radius, or 99% boundary layer thickness with respect to channel flow,

pipe flow, and boundary layer, respectively. The functionN is plotted for these three flows on the figure 2a. In the near-

wall region, when y/δ → 0, N → 1, hence the eddy viscosity (4), ν+ = (1/S+
12(y+)−1) N(y+/δ+) ∼ (1/S+

12(y+)−1)

where δ+ = Reτ . Hence the log-law eddy viscosity κy+ is approximately recovered if 1 � y+ � δ+; for a more

precise study, see the section 4.1 of Heinz (2019). When y becomes of the order of δ, wake effects come in, that

saturate the growth of the eddy viscosity (4), since N decreases. Whereas the maximum value of y is δ in channel

and pipe flows (in channel flow if y ∈ [δ, 2δ] the mean fields can be obtained by suitable symmetries from the mean

fields for y ∈ [0, δ]), it may be much larger in boundary layers. Naturally, NBL → 0 as y →∞; precisely NBL < 10−3

as soon as y > 1.36δ.

The theory of Heinz (2018, 2019) has been validated by a thorough study of DNS data, including those of Lee & Moser

(2015), and experimental results. For instance, the figures S.6abc of the supplementary material to Heinz (2019) show

the eddy-viscosity of various DNS, one for each canonical flow, compared with two variants of the eddy-viscosity

model (4). In particular, the magenta curves show κy+ N with our notations, i.e. (1/S+
12−1) in (4) has been replaced

by κy+. The agreement with the DNS is good, except in the outer region, where in (2) both the numerator 〈uxuy〉
and the denominator dU/dy tend to zero, hence the DNS noise is amplified.

Since the derivatives N ′ and N ′′ will be needed hereafer, they are plotted on the figures 2bc. Whereas the functions

N for the three flow cases are quite similar (figure 2a), their first and second derivatives show larger differences

(figures 2bc).
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3 Analysis: exact eddy-viscosity equation

3.1 Q1 regarding near-wall effects / the kinematic viscosity

• Q1 : We agreed that our model should work as soon as y+ & 1, which is still in the viscous sublayer.

We know that y+ has to reach values of the order of 33 to have ν+ > 10 i.e. ‘ν+ � 1’. Thus, in the range

y+ ∈ [1, 33] where our model should operate, the kinematic fluid viscosity is not negligible in front of the eddy

viscosity.

Taking this effect into account means that the dimensionless νt turbulent diffusion term should not be

D+
ν =

∂

∂y+

(
ν+

∂ν+

∂y+

)
(10)

but

D+
ν =

∂

∂y+

(
(1 + ν+)

∂ν+

∂y+

)
, (11)

and there may even be the question of adding a factor σ of order 1 in front of ν+ in (1 + ν+).

I suggest to disregard this and not mention this, i.e. to work (though y+ may be ‘small’) with the ‘high-

Reynolds number’ expression (10).

Do you agree ?

• R1 : I agree.

We should argue that we focus on 500 < Reτ up to infinity. No-one else was able to tackle the extreme Re

regime before. Later, we may consider to look at this effect in an appendix, it should not be too bad.

3.2 Q2 regarding pipe flow

• Q2 : I am concerned with the form of the (high-Reynolds number !) νt turbulent diffusion term in pipe flow.

From a theoretical point of view, we want a νt - equation that is intrinsic and independent of the system of

coordinates chosen. Therefore, to me, the diffusion term should be, intrinsically,

Dν = div(νt grad(νt)) . (12)

In cartesian coordinates, if νt depends only on y, this gives the classical

Dν =
∂

∂y

(
νt
∂νt
∂y

)
. (13)

However, in cylindrical coordinates (r, θ, z), this gives, if νt depends only on r,

Dν =
1

r

∂

∂r

(
rνt

∂νt
∂r

)
. (14)

Since y = δ − r with δ the pipe radius,

Dν =
1

δ − y
∂

∂y

(
(δ − y)νt

∂νt
∂y

)
(15)

which is the same as (13) only if y � δ .

I suggest to disregard this and not mention this, i.e. to work with the ‘cartesian’ expressions (10) or (13).

Do you agree ?

• R2 : I totally agree.
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4 Discussion

To be written !..
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