Transition to turbulence in thermoconvection & aerodynamics

Emmanuel Plaut

Session	Date	Content
1 -	29/09	Thermoconvection: phenomena, equations, differentially heated cavity,
		cavity heated from below $= \mathbf{RB}$ cavity, linear stability analysis
2 -	06/10	RB Thermoconvection: linear stability analysis
3 -	13/10	RB Thermoconvection: (weakly) nonlinear phenomena
4 -	20/10	Aerodynamics of OSF : linear stability analysis
5 -	27/10	Aerodynamics of OSF : linear & weakly nonlinear stability analyses
$\rightarrow 6$ -	10/11	Aerodynamics of OSF : nonlinear phenomena
	24/11	Examination

RB = Rayleigh-Bénard **OSF** = Open Shear Flows

Today: session 6: transition in open shear flows:

- End of the linear analysis of TS waves in plane Poiseuille flow (PPF)
- Weakly nonlinear analysis of TS waves in PPF
- Openings: strongly nonlinear phenomena transition in boundary layers

When and how 2D xz laminar open shear flows get unstable ? General example: plane parallel flows

$$\mathbf{v} = \mathbf{v}_0 = U(z) \mathbf{e}_x$$
, $p = p_{\text{static}} + \rho g Z = 0$ in an inviscid fluid,
 $p = p_{\text{static}} + \rho g Z = -Gx$ in a viscous fluid,

is solution of the Euler ($\eta = 0$) of Navier-Stokes ($\eta \neq 0$) equation

Linear stability of viscous plane Poiseuille flow 00000000000

Weakly nonlinear analysis

Openings 000000000

Stability analysis of plane parallel flows

Basic flow:

$$\mathbf{v}_0 = U(z) \mathbf{e}_x$$
, $p_0 = -Gx$ with $G = 0$ in an inviscid fluid,
 $G > 0$ in a viscous fluid.

Basic flow with perturbations:

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{u}, \quad p = p_0 + \widetilde{p}$$

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -(1/\rho) \nabla p + \nu \Delta \mathbf{v} \qquad (NS)$$

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -(1/\rho) \nabla \widetilde{p} + \nu \Delta \mathbf{u} \qquad (NS)$$

$$\operatorname{div} \mathbf{v} = \operatorname{div} \mathbf{u} = \mathbf{0} \tag{MC}$$

 \triangleright Unit of length = h half-width of the channel, thickness of the mixing layer...

R =

- \triangleright Unit of velocity = $U_0 = \max_z U(z)$ scale of U
- \triangleright Unit of time = h/U_0 advection time

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \widetilde{\rho} + \mathbf{R}^{-1} \Delta \mathbf{u}$$
 (NS)

with the **Reynolds number** Mines Nancy 2022 Plaut - T2TS6 - **3**/45

$$U_0 h/\nu$$
 , $R = \infty$ in an inviscid fluid.

Openings 000000000

2D xz stability analysis of plane parallel flows

Dimensionless equations for the **perturbations u** of velocity and \tilde{p} of pressure:

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \widetilde{p} + R^{-1} \Delta \mathbf{u} , \qquad (\text{NS})$$

div $\mathbf{u} = \mathbf{0} . \qquad (\text{MC})$

2D *xz* **perturbations** can be defined by their **streamfunction** $\psi(x,z)$:

$$\mathbf{u} = \operatorname{curl}(\psi \ \mathbf{e}_y) = (\nabla \psi) \times \mathbf{e}_y = -(\partial_z \psi) \ \mathbf{e}_x + (\partial_x \psi) \ \mathbf{e}_z \ .$$

We can eliminate \tilde{p} in (NS) by considering curl(NS) $\cdot \mathbf{e}_y$ i.e. the vorticity equation:

$$\partial_t (-\Delta \psi) + \left[\partial_z (\mathbf{u} \cdot \boldsymbol{\nabla} u_x) - \partial_x (\mathbf{u} \cdot \boldsymbol{\nabla} u_z) \right] = \mathbf{R}^{-1} \Delta (-\Delta \psi) + U \partial_x (\Delta \psi) - U'' (\partial_x \psi)$$
 (Vort)

$$\iff D \cdot \partial_t \psi = L_{\mathbf{R}} \cdot \psi + N_2(\psi, \psi) \quad . \tag{Vort}$$

Boundary conditions:

Openings

2D xz linear stability analysis of plane parallel flows

$$D \cdot \partial_t \psi = L_R \cdot \psi \tag{Vort}$$

 $D \cdot \partial_t \psi = -\Delta \partial_t \psi$, $L_{\mathbf{R}} \cdot \psi = \mathbf{R}^{-1} \Delta (-\Delta \psi) + U \partial_x (\Delta \psi) - U'' (\partial_x \psi)$,

viscous fluid : $\mathbf{u} = \mathbf{0} \iff \partial_x \psi = \partial_z \psi = \mathbf{0}$ if $z = z_{\pm}$, inviscid fluid : $u_z = 0 \iff \partial_x \psi = 0$ if $z = z_+$.

Normal mode analysis:

$$\psi = \Psi_n(z) \exp(ikx + \sigma t) = \Psi_n(z) \exp[ik(x - c_r t)] \exp(kc_i t)$$

with k = horizontal wavenumber, $k \neq 0$, n another label to mark normal modes, σ = temporal eigenvalue.

Most often the bulk velocity of the basic flow $\langle U \rangle_{\tau} > 0 \implies$ by advection

 $\sigma = -i\omega = -ikc$ with *c* the complex phase velocity, $c_r > 0$ the real phase velocity,

 $kc_i > 0$ (resp. < 0) the growth rate (resp. the opposite of the damping rate). Mines Nancy 2022 Plaut - T2TS6 - 5/45

Weakly nonlinear analysis

Openings 000000000

Stability of inviscid plane Poiseuille flow

According to the Rayleigh's criterion (ex 2.1),

plane Poiseuille flow of an inviscid fluid has no inflection point \Rightarrow it is stable.

 $\mathbf{v}_0 = U_0(1-(z/h)^2) \mathbf{e}_x$

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow

Pb 2.1:

plane Poiseuille flow of a viscous fluid may be unstable !

Must calculate normal modes

$$\psi = \Psi(z) \exp(ikx + \sigma t) = \Psi(z) \exp[ik(x - c_r t)] \exp(kc_i t)$$

by solving the vorticity equation

$$\sigma D\psi = -\sigma \Delta \psi = L_{R}\psi = -R^{-1}\Delta \Delta \psi + ik(U\Delta \psi - U''\psi)$$

with the BC at $z = \pm 1$: $\Psi = \partial_z \Psi = 0$.

Eigenvalue $\sigma = -ikc$; $c_r = -\sigma_i/k$ phase velocity; $\sigma_r > 0 \iff$ amplified mode $\sigma_r = 0 \iff$ neutral mode $\sigma_r < 0 \iff$ damped mode

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

$$\sigma D\Psi = -\sigma \Delta \Psi = L_{R}\Psi = -R^{-1}\Delta \Delta \Psi + ik(U\Delta \Psi - U''\Psi)$$

with
$$\Delta = -k^2 + \frac{d^2}{dz^2}$$

and the boundary conditions $\ \ \Psi \ = \ \Psi' \ = \ 0 \quad \mbox{if} \quad z = \pm 1 \; .$

Spectral expansion taking into account the BC and even symmetry under $z \mapsto -z$:

$$\Psi(z) = \sum_{n=1}^{N} \Psi_n F_n(z)$$

with
$$F_n(z) = (z-1)^2 (z+1)^2 T_{2n-2}(z) = (z^2-1)^2 T_{2n-2}(z)$$
,

 $T_n(z) = n^{th}$ Chebyshev polynomial of the first kind.

Evaluate (Vort) at the Gauss-Lobatto collocation points

$$z_m = \cos[m\pi/(2N+1)] \quad \text{for} \quad m \in \{1, 2, \cdots, N\}$$

$$\iff \sigma \sum_n \Psi_n DF_n(z_m) = \sum_n \Psi_n LF_n(z_m) \iff \sigma MD \cdot V = ML \cdot V$$
with $V = (\Psi_1, \dots, \Psi_N)^T$, $[MD]_{mn} = DF_n(z_m)$, $[ML]_{mn} = LF_n(z_m)$.
Mines Nancy 2022 Plaut - T2TS6 - 8/45

Linear stability of viscous plane Poiseuille flow ooooooooooo

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

Neutral curve:

converged, near the critical k corresponding to the minimal R, within 0.1% provided that

$$Nz \geq 17?, 18?, 19?$$

Linear stability of viscous plane Poiseuille flow $\texttt{ooo} \bullet \texttt{ooo} \texttt{ooo} \texttt{ooo} \texttt{ooo}$

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

converged, near the critical k corresponding to the minimal R, within 0.1% provided that

$$Nz \geq 18$$

which is rather 'low': here the spectral method is quite efficient !

Linear stability of viscous plane Poiseuille flow oooooooooo

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

Patterning bifurcation to traveling 'Tollmienn - Schlichting' waves

- critical wavenumber $k_c =$
- critical Reynolds number $R_c =$
- critical angular frequency $\omega_c = \longrightarrow$ critical phase velocity $c_c =$

Linear stability of viscous plane Poiseuille flow oooooooooo

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

Patterning bifurcation to traveling 'Tollmienn - Schlichting' waves

- critical wavenumber $k_c = 1.02$
- critical Reynolds number $R_c =$
- critical angular frequency $\omega_c = \longrightarrow$ critical phase velocity $c_c =$

Linear stability of viscous plane Poiseuille flow oooooooooo

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

Patterning bifurcation to traveling 'Tollmienn - Schlichting' waves

- critical wavenumber $k_c = 1.02$
- critical Reynolds number $R_c = 5772$
- critical angular frequency $\omega_c = \longrightarrow$ critical phase velocity $c_c =$

Linear stability of viscous plane Poiseuille flow oooooooooo

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

Patterning bifurcation to traveling 'Tollmienn - Schlichting' waves

- critical wavenumber $k_c = 1.02$
- critical Reynolds number $R_c = 5772$
- critical angular frequency $\omega_c = 0.269 \leftrightarrow$ critical phase velocity $c_c =$

Linear stability of viscous plane Poiseuille flow oooooooooo

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

Patterning bifurcation to traveling 'Tollmienn - Schlichting' waves

- critical wavenumber $k_c = 1.02$
- critical Reynolds number $R_c = 5772$
- critical angular frequency $\omega_c = 0.269 \leftrightarrow$ critical phase velocity $c_c = 0.264$

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow

The **bifurcation** corresponds to the fact that one eigenvalue σ passes the real axis as *R* increases, cf. this (part of the) **spectrum of the even modes** for

k = 1.02, R = 5000

computed with Nz = 40 spectral modes and high precision numerics, see ex 2.2 (collocation points defined with $z[m_] = N[Cos[m Pi/(2 Nz+1)], Nz]$).

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow

The **bifurcation** corresponds to the fact that one eigenvalue σ passes the real axis as *R* increases, cf. this (part of the) **spectrum of the even modes** for

k = 1.02, R = 5500

computed with Nz = 40 spectral modes and high precision numerics, see ex 2.2 (collocation points defined with $z[m_] = N[Cos[m Pi/(2 Nz+1)], Nz]$).

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow

The **bifurcation** corresponds to the fact that one eigenvalue σ passes the real axis as *R* increases, cf. this (part of the) **spectrum of the even modes** for

k = 1.02, R = 6000

computed with Nz = 40 spectral modes and high precision numerics, see ex 2.2 (collocation points defined with $z[m_] = N[Cos[m Pi/(2 Nz+1)], Nz]$).

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow

The **bifurcation** corresponds to the fact that one eigenvalue σ passes the real axis as *R* increases, cf. this (part of the) **spectrum of the even modes** for

k = 1.02, R = 6500

computed with Nz = 40 spectral modes and high precision numerics, see ex 2.2 (collocation points defined with $z[m_] = N[Cos[m Pi/(2 Nz+1)], Nz]$).

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

7.a Find the eigenvector of the spectral coefficients

$$V = (\Psi_1, ..., \Psi_N)^7$$

that represents the critical mode \rightarrow calculate the critical streamfunction

$$\Psi(z) = \sum_{n=1}^{N} \Psi_n F_n(z)$$

ightarrow normalize it s.t. $\Psi(z=0) = 1
ightarrow$ plot its modulus vs z :

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

7.a Find the eigenvector of the spectral coefficients

$$V = (\Psi_1, ..., \Psi_N)^7$$

that represents the critical mode \rightarrow calculate the critical streamfunction

$$\Psi(z) = \sum_{n=1}^{N} \Psi_n F_n(z)$$

ightarrow normalize it s.t. $\Psi(z=0)~=~1~
ightarrow$ plot its modulus vs z :

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

7.a Find the eigenvector of the spectral coefficients

$$V = (\Psi_1, ..., \Psi_N)^7$$

that represents the critical mode \rightarrow calculate the (normalized) critical streamfunction

$$\Psi(z) = \sum_{n=1}^{N} \Psi_n F_n(z)$$

 \rightarrow plot real & imaginary parts:

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

7.a Find the eigenvector of the spectral coefficients

$$V = (\Psi_1, ..., \Psi_N)^7$$

that represents the critical mode \rightarrow calculate the (normalized) critical streamfunction

$$\Psi(z) = \sum_{n=1}^{N} \Psi_n F_n(z)$$

 \rightarrow plot real & imaginary parts: $\Psi_i \neq 0$ creates interesting nonlinear effects, see ex 2.4,5 !

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

7.b Save the normalized vector of the spectral coefficients $V = (\Psi_1, ..., \Psi_N)^T$ to a file V1.

8 In the *xz* plane, **streamlines** i.e. contour plots of the full streamfunction $\Psi_0 + [A \Psi(z) \exp(ik_c x) + c.c.]$ with Ψ_0 the one of the basic flow,

for A = 0:

A = 0.1 :

A = 0.2 :

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

7.b Save the normalized vector of the spectral coefficients $V = (\Psi_1, ..., \Psi_N)^T$ to a file V1.

8 In the xz plane, streamlines i.e. contour plots of the full streamfunction $\Psi_0 + [A \Psi(z) \exp(ik_c x) + c.c.]$ with Ψ_0 the one of the basic flow,

see Reynolds (1895) : motion is 'direct'

for A = 0:

A = 0.1 :

A = 0.2 :

Weakly nonlinear analysis

Openings 000000000

Stability of viscous plane Poiseuille flow: pb 2.1

7.b Save the normalized vector of the spectral coefficients $V = (\Psi_1, ..., \Psi_N)^T$ to a file V1.

8 In the xz plane, streamlines i.e. contour plots of the full streamfunction $\Psi_0 + [A \Psi(z) \exp(ik_c x) + c.c.]$ with Ψ_0 the one of the basic flow,

Openings 000000000

Towards the weakly nonlinear analysis...

Like in 2D RBT, we use the basis of the linear modes.

Work in a box with periodic BC under $x \mapsto x + \lambda_c \Rightarrow$ the wavenumber $k \in \mathbb{K} = k_c \mathbb{Z}$.

A general streamfunction

$$\psi = \sum_{k \in \mathbb{K}} \sum_{n \in \mathbb{N}^*} A(k,n) \ \psi_1(k,n) = \sum_{\mathbf{q}} A(\mathbf{q}) \ \psi_1(\mathbf{q}) \quad \text{with} \quad \mathbf{q} = (k,n) \in \mathbb{K} \times \mathbb{N}^*$$

To calculate the amplitudes $A(\mathbf{q})$...

the amplitude of the critical mode

$$\mathsf{ode} \quad \mathsf{A}(\mathbf{q}_c) = \langle D \cdot \psi, \phi_{1c} \rangle$$

→ the amplitu Mines Nancy 2022 Plaut - T2TS6 - **19**/45

Towards the weakly nonlinear analysis...

Like in 2D RBT, we use the basis of the linear modes.

Work in a box with periodic BC under $x \mapsto x + \lambda_c \Rightarrow$ the wavenumber $k \in \mathbb{K} = k_c \mathbb{Z}$.

A general streamfunction

$$\psi = \sum_{k \in \mathbb{K}} \sum_{n \in \mathbb{N}^*} A(k,n) \ \psi_1(k,n) = \sum_{\mathbf{q}} A(\mathbf{q}) \ \psi_1(\mathbf{q}) \quad \text{with} \quad \mathbf{q} = (k,n) \in \mathbb{K} \times \mathbb{N}^*$$

To calculate the amplitudes $A(\mathbf{q})$... use the **adjoint eigenmodes**, the solutions of the **adjoint eigenproblem**

$$\sigma^* D^\dagger \cdot \phi = L_R^\dagger \cdot \phi$$

where the adjoint operators are defined by

$$\langle D \cdot \psi, \phi \rangle = \langle \psi, D^{\dagger} \cdot \phi \rangle$$
 and $\langle L \cdot \psi, \phi \rangle = \langle \psi, L^{\dagger} \cdot \phi \rangle$

where the inner product $\langle \psi, \phi \rangle = \int_{x=0}^{\lambda_c} \int_{z=-1}^1 \psi(x,z) \phi^*(x,z) \frac{dx}{\lambda_c} \frac{dz}{2}$,

and one should care with the normalization of $\phi_{\cdots}~\langle D\cdot\psi_{1c},~\phi_{1c}\rangle~=~1$

 \implies the amplitude of the critical mode $A(\mathbf{q}_c) = \langle D \cdot \psi, \phi_{1c} \rangle$. Mines Nancy 2022 Plaut - T2TS6 - **19**/45

Weakly nonlinear analysis... requires the adjoint problem: ex 2.3

1 With the inner product $\langle \psi, \phi \rangle = \int_{x=0}^{\lambda_c} \int_{z=-1}^{1} \psi(x,z) \phi^*(x,z) \frac{dx}{\lambda_c} \frac{dz}{2}$, one can define adjoint operators s.t.

$$\langle D \cdot \psi, \phi \rangle = \langle \psi, D^{\dagger} \cdot \phi \rangle$$
 and $\langle L \cdot \psi, \phi \rangle = \langle \psi, L^{\dagger} \cdot \phi \rangle$.

For Fourier modes in x, of wavenumber $k = mk_c$ with $m \in \mathbb{Z}^*$,

 $D = -\Delta = D^{\dagger} , \qquad L_R^{\dagger} \cdot \phi = -R^{-1} \Delta \Delta \phi - 2ikU' \partial_z \phi - ikU \Delta \phi .$

2 Code the adjoint problem

$$\sigma^* D \cdot \phi = L_R^{\dagger} \cdot \phi$$

with the same spectral method as the one for the direct problem.

3.a Check: $k = k_c$, $R = R_c \Rightarrow \exists$ adjoint critical mode $\phi_{1c} = \Phi(z) \exp(ik_c x)$ corresponding to $\sigma = -i\omega_c$.

3.b Calculate $\Phi(z)$, plot $|\Phi(z)|$ and comment.

4 Normalize $\Phi(z)$ with the condition $\langle D \cdot \psi_{1c}, \phi_{1c} \rangle = 1$, $\psi_{1c} = \Psi(z) \exp(ik_c x)$ being the critical mode. Finally, replot $|\Phi(z)|$, and save the spectral coeff. of Φ to a file U1. Mines Nancy 2022 Plaut - T2TS6 - **20**/45

Weakly nonlinear analysis... requires the adjoint problem: ex 2.3

Plot of the modulus of the critical adjoint streamfunction $|\Phi(z)|$ vs z :

Weakly nonlinear analysis... requires the adjoint problem: ex 2.3

Plot of the modulus of the critical adjoint streamfunction $|\Phi(z)|$ vs z :

which describes the receptivity of the critical mode to perturbations !..

Weakly nonlinear analysis ?

• Near the bifurcation point, i.e., with the bifurcation parameter

$$\epsilon = R/R_c - 1 \ll 1 \quad .$$

- Uses the linear mode basis:
 modes ψ₁(**q**) indexed with **q** = (k,n) = (x-wavenumber,z-number)
- Dominant modes are the critical ones $\mathbf{q} = \mathbf{q}_c = (k_c, 1)$ or $\mathbf{q}_c^* = (-k_c, 1)$, with eigenvalues

$$\sigma(\mathbf{q}_c, R) = -i\omega_c + (1+is)\epsilon/\tau_0 + O(\epsilon^2) , \quad \sigma(\mathbf{q}_c^*, R) = \sigma^*(\mathbf{q}_c, R) ,$$

with $au_0 > 0$ the characteristic time, s the linear frequency-shift coefficient.

Weakly nonlinear analysis

Openings 000000000

What do we know at the linear level ?

- With the bifurcation parameter $\epsilon = R/R_c 1 \ll 1$.
- Dominant modes are the critical ones $\mathbf{q} = \mathbf{q}_c = (k_c, 1)$ or $\mathbf{q}_c^* = (-k_c, 1)$, with eigenvalues

$$\sigma(\mathbf{q}_c, R) = -i\omega_c + (1+is)\epsilon/\tau_0 + O(\epsilon^2) , \quad \sigma(\mathbf{q}_c^*, R) = \sigma^*(\mathbf{q}_c, R) ,$$

with $\tau_0 > 0$ the characteristic time, s the linear frequency-shift coefficient.

 $\psi = A \exp(-i\omega_c t) \psi_{1c} + c.c.$ injected in

$$D \cdot \partial_t \psi = L_R \cdot \psi \implies$$

$$\left(\frac{dA}{dt}-i\omega_c A\right) \exp(-i\omega_c t) D \cdot \psi_{1c} + c.c. = A \exp(-i\omega_c t) L_R \cdot \psi_{1c} + c.c.$$

Weakly nonlinear analysis

Openings 000000000

What do we know at the linear level ?

- With the bifurcation parameter $\epsilon = R/R_c 1 \ll 1$.
- Dominant modes are the critical ones $\mathbf{q} = \mathbf{q}_c = (k_c, 1)$ or $\mathbf{q}_c^* = (-k_c, 1)$, with eigenvalues

$$\sigma(\mathbf{q}_c, R) = -i\omega_c + (1+is)\epsilon/\tau_0 + O(\epsilon^2) , \quad \sigma(\mathbf{q}_c^*, R) = \sigma^*(\mathbf{q}_c, R) ,$$

with $\tau_0 > 0$ the characteristic time, s the linear frequency-shift coefficient.

$$\psi = A \exp(-i\omega_c t) \psi_{1c} + c.c.$$
 injected in

$$D \cdot \partial_t \psi = L_R \cdot \psi \implies$$

$$\left(\frac{dA}{dt} - i\omega_c A\right) \exp(-i\omega_c t) D \cdot \psi_{\mathbf{l}c} + c.c. = A \exp(-i\omega_c t) L_R \cdot \psi_{\mathbf{l}c} + c.c. = \sigma(\mathbf{q}_c, R) A \exp(-i\omega_c t) D \cdot \psi_{\mathbf{l}c} + c.c.$$

Weakly nonlinear analysis

Openings 000000000

What do we know at the linear level ?

- With the bifurcation parameter $\epsilon = R/R_c 1 \ll 1$.
- Dominant modes are the critical ones $\mathbf{q} = \mathbf{q}_c = (k_c, 1)$ or $\mathbf{q}_c^* = (-k_c, 1)$, with eigenvalues

$$\sigma(\mathbf{q}_c, R) = -i\omega_c + (1+is)\epsilon/\tau_0 + O(\epsilon^2) , \quad \sigma(\mathbf{q}_c^*, R) = \sigma^*(\mathbf{q}_c, R) ,$$

with $\tau_0 > 0$ the characteristic time, s the linear frequency-shift coefficient.

$$\psi = A \exp(-i\omega_c t) \psi_{1c} + c.c.$$
 injected in

$$D \cdot \partial_t \psi = L_R \cdot \psi \implies$$

$$\left(\frac{dA}{dt} - i\omega_c A\right) \exp(-i\omega_c t) D \cdot \psi_{1c} + c.c. = A \exp(-i\omega_c t) L_R \cdot \psi_{1c} + c.c.$$
$$= \sigma(\mathbf{q}_c, R) A \exp(-i\omega_c t) D \cdot \psi_{1c} + c.c.$$

Projection onto the adjoint critical mode ϕ_{1c}

$$\frac{dA}{dt} - i\omega_c A = \sigma(\mathbf{q}_c, R) A \iff \frac{dA}{dt} = [\sigma(\mathbf{q}_c, R) + i\omega_c] A \sim (1 + is) \frac{\epsilon}{\tau_0} A,$$

A is exploding slowly !

Weakly nonlinear analysis

Openings 000000000

What do we know at the linear level ?

- With the bifurcation parameter $\epsilon = R/R_c 1 \ll 1$.
- Dominant modes are the critical ones q = q_c = (k_c,1) or q_c^{*} = (-k_c,1), with eigenvalues

$$\sigma(\mathbf{q}_c, R) = -i\omega_c + (1+is)\epsilon/\tau_0 + O(\epsilon^2) , \quad \sigma(\mathbf{q}_c^*, R) = \sigma^*(\mathbf{q}_c, R) ,$$

with $\tau_0 > 0$ the characteristic time, s the linear frequency-shift coefficient.

$$\psi = A \exp(-i\omega_c t) \psi_{1c} + c.c.$$
 injected in

$$D \cdot \partial_t \psi = L_R \cdot \psi \implies$$

$$\left(\frac{dA}{dt} - i\omega_c A\right) \exp(-i\omega_c t) D \cdot \psi_{1c} + c.c. = A \exp(-i\omega_c t) L_R \cdot \psi_{1c} + c.c.$$
$$= \sigma(\mathbf{q}_c, R) A \exp(-i\omega_c t) D \cdot \psi_{1c} + c.c.$$

Projection onto the adjoint critical mode ϕ_{1c} =

$$\frac{dA}{dt} - i\omega_c A = \sigma(\mathbf{q}_c, R) A \iff \frac{dA}{dt} = [\sigma(\mathbf{q}_c, R) + i\omega_c] A \sim (1 + is) \frac{\epsilon}{\tau_0} A,$$

A is exploding slowly ! Must take into account nonlinear effects ! Mines Nancy 2022 Plaut - T2TS6 - 23/45

Openings 000000000

Weakly nonlinear analysis ?

• Near the bifurcation point, i.e., with the bifurcation parameter

$$\epsilon = R/R_c - 1 \ll 1 \quad .$$

 Correct the leading-order critical modes with passive modes, with the idea that '*long-living systems slave short-living systems*' (Haken), see the spectrum of the even modes of the linear problem at k = k_c, ε = 0.04 :

Weakly nonlinear analysis uses the linear mode basis

Modes $\psi_1(\mathbf{q})$ indexed with $\mathbf{q} = (k,n) = (x$ -wavenumber,z-number); $\epsilon = R/R_c - 1 \ll 1$

• Active modes correspond to $\mathbf{q} = \mathbf{q}_c = (k_c, 1)$ or $\mathbf{q}_c^* = (-k_c, 1)$ and have eigenvalues

$$\sigma(\mathbf{q}_c, R) = -i\omega_c + (1+is)\epsilon/\tau_0 + O(\epsilon^2) , \quad \sigma(\mathbf{q}_c^*, R) = \sigma^*(\mathbf{q}_c, R) .$$

• Passive modes correspond to $\mathbf{q} \neq \mathbf{q}_c, \mathbf{q}_c^*$ and are short-living (rapidly damped),

$$\sigma(\mathbf{q},R) = \sigma_r(\mathbf{q},R) + i\sigma_i(\mathbf{q},R)$$
 with $\sigma_r(\mathbf{q},R) < \sigma_1 < 0$.

We seek an approximate solution of the nonlinear problem

$$D \cdot \partial_t \psi = L_R \cdot \psi + N_2(\psi, \psi) \qquad (*)$$

of the form

$$\psi = \psi_a + \psi_\perp$$
 with $\psi_a = A \exp(-i\omega_c t) \psi_{1c} + c.c.$ the active modes, $\psi_a \ll 1$,
 $\frac{dA}{dt} = O(\epsilon A)$
and $\psi_\perp \ll \psi_a$ the passive modes.

Weakly nonlinear analysis

Openings 000000000

Weakly nonlinear analysis: passive modes

are created by

$$N_{2}(\psi_{a},\psi_{a}) = |A|^{2} \left[\underbrace{N_{2}(\psi_{1c},\psi_{1c}^{*}) + c.c.}_{\text{mode 0}} \right] + \left[A^{2} \underbrace{\exp(-2i\omega_{c}t) N_{2}(\psi_{1c},\psi_{1c})}_{\text{mode } 2k_{c}} + \underbrace{c.c.}_{\text{mode } -2k_{c}} \right].$$

Openings 000000000

.

Weakly nonlinear analysis: passive modes

are created by

$$N_{2}(\psi_{a},\psi_{a}) = |A|^{2} \left[\underbrace{N_{2}(\psi_{1c},\psi_{1c}^{*}) + c.c.}_{\text{mode 0}} \right] + \left[A^{2} \underbrace{\exp(-2i\omega_{c}t) N_{2}(\psi_{1c},\psi_{1c})}_{\text{mode } 2k_{c}} + \underbrace{c.c.}_{\text{mode } -2k_{c}} \right]$$

The 'harmonic' modes of x-wavenumber $\pm 2k_c$ indicate the creation of small scales:

modes of wavelength $\lambda_c \quad o \quad$ modes of wavelength $\lambda_c/2$.

Openings 000000000

.

Weakly nonlinear analysis: passive modes

are created by

$$N_{2}(\psi_{a},\psi_{a}) = |A|^{2} \left[\underbrace{N_{2}(\psi_{1c},\psi_{1c}^{*}) + c.c.}_{\text{mode 0}} \right] + \left[A^{2} \underbrace{\exp(-2i\omega_{c}t) N_{2}(\psi_{1c},\psi_{1c})}_{\text{mode } 2k_{c}} + \underbrace{c.c.}_{\text{mode } -2k_{c}} \right]$$

The 'harmonic' modes of x-wavenumber $\pm 2k_c$ indicate the creation of small scales:

modes of wavelength $\lambda_c \quad o \quad$ modes of wavelength $\lambda_c/2$.

Hereafter, these modes are neglected !

Openings 000000000

.

Weakly nonlinear analysis: passive modes

are created by

$$N_{2}(\psi_{a},\psi_{a}) = |A|^{2} \left[\underbrace{N_{2}(\psi_{1c},\psi_{1c}^{*}) + c.c.}_{\text{mode 0}} \right] + \left[A^{2} \underbrace{\exp(-2i\omega_{c}t) N_{2}(\psi_{1c},\psi_{1c})}_{\text{mode } 2k_{c}} + \underbrace{c.c.}_{\text{mode } -2k_{c}} \right]$$

The 'harmonic' modes of x-wavenumber $\pm 2k_c$ indicate the creation of small scales:

modes of wavelength $\lambda_c \quad o \quad$ modes of wavelength $\lambda_c/2$.

Hereafter, these modes are neglected !

The x-homogeneous mode ('mode 0') corresponds to a mean-flow correction:

 $\psi_{\perp}(z,t) \simeq A_0(t) \psi_{20}(z)$

with

$$\frac{dA_0}{dt} D \cdot \psi_{20} = A_0 L_R \cdot \psi_{20} + |A|^2 [N_2(\psi_{1c}, \psi_{1c}^*) + c.c.]$$

Openings 000000000

.

Weakly nonlinear analysis: passive modes

are created by

$$N_2(\psi_a,\psi_a) = |A|^2 \left[\underbrace{N_2(\psi_{1c},\psi_{1c}^*) + c.c.}_{\text{mode 0}} \right] + \left[A^2 \underbrace{\exp(-2i\omega_c t) N_2(\psi_{1c},\psi_{1c})}_{\text{mode } 2k_c} + \underbrace{c.c.}_{\text{mode } -2k_c} \right]$$

The 'harmonic' modes of x-wavenumber $\pm 2k_c$ indicate the creation of small scales:

modes of wavelength $\lambda_c \quad o \quad$ modes of wavelength $\lambda_c/2$.

Hereafter, these modes are **neglected** !

The x-homogeneous mode ('mode 0') corresponds to a mean-flow correction:

 $\psi_{\perp}(z,t) \simeq A_0(t) \psi_{20}(z)$

with

$$\frac{dA_0}{dt} D \cdot \psi_{20} = A_0 L_R \cdot \psi_{20} + |A|^2 [N_2(\psi_{1c}, \psi_{1c}^*) + c.c.]$$

\implies with quasistatic elimination,

 $A_0 = |A|^2$, i.e. $\psi_{\perp} \simeq |A|^2 \psi_{20}$ and $0 = L_R \cdot \psi_{20} + [N_2(\psi_{1c}, \psi_{1c}^*) + c.c.]$.

٠

Weakly nonlinear analysis: homogeneous passive mode: ex 2.4

 $\psi_{\perp} \simeq |A|^2 \psi_{20}$ with $0 = L_R \cdot \psi_{20} + [N_2(\psi_{1c}, \psi_{1c}^*) + c.c.]$

To keep the mean pressure gradient fixed i.e. fixed head losses, solve directly the x-component of the Navier-Stokes equation for $U_2 = -\psi'_{20}$,

$$R_c^{-1}U_2''(z) = [(\mathbf{u}_1 \cdot \nabla)\mathbf{u}_1^* + c.c.]_x \qquad (\diamond)$$

with

$$\mathbf{u}_1 = -\partial_z [\Psi(z) \exp(ik_c x)] \mathbf{e}_x + \partial_x [\Psi(z) \exp(ik_c x)] \mathbf{e}_z .$$

Ex 2.4 : With Mathematica, writing formally

$$\Psi(z) = \Psi_r(z) + i\Psi_i(z) ,$$

simplify the nonlinear term,

 $[(\mathbf{u}_1 \cdot \boldsymbol{\nabla})\mathbf{u}_1^* + c.c.]_x =$

Weakly nonlinear analysis: homogeneous passive mode: ex 2.4

$$\psi_{\perp} \simeq |A|^2 \psi_{20}$$
 with $0 = L_R \cdot \psi_{20} + [N_2(\psi_{1c}, \psi_{1c}^*) + c.c.]$

To keep the mean pressure gradient fixed i.e. fixed head losses, solve directly the x-component of the Navier-Stokes equation for $U_2 = -\psi'_{20}$,

$$R_{c}^{-1}U_{2}''(z) = [(\mathbf{u}_{1} \cdot \nabla)\mathbf{u}_{1}^{*} + c.c.]_{x} \qquad (\diamond)$$

with

$$\mathbf{u}_1 = -\partial_z [\Psi(z) \exp(ik_c x)] \mathbf{e}_x + \partial_x [\Psi(z) \exp(ik_c x)] \mathbf{e}_z .$$

Ex 2.4 : With Mathematica, writing formally

$$\Psi(z) = \Psi_r(z) + i\Psi_i(z) ,$$

simplify the nonlinear term,

$$[(\mathbf{u}_1 \cdot \nabla)\mathbf{u}_1^* + c.c.]_x = 2k_c[\Psi_r''(z)\Psi_i(z) - \Psi_r(z)\Psi_i''(z)].$$

To have $U_2 \neq 0$, it must be that both Ψ_r and $\Psi_i(z)$ do not vanish, see q 7.a of pb 2.1 !

Weakly nonlinear analysis: homogeneous passive mode: ex 2.5

 $\psi_{\perp} \simeq |A|^2 \psi_{20}$ with $0 = L_R \cdot \psi_{20} + [N_2(\psi_{1c}, \psi_{1c}^*) + c.c.]$

To keep the **mean pressure gradient fixed** i.e. **fixed head losses**, solve directly the *x*-component of the Navier-Stokes equation

 $-D \cdot U_2 = \Delta U_2 = U_2''(z) = 2R_c k_c [\Psi_r''(z)\Psi_i(z) - \Psi_r(z)\Psi_i''(z)] \quad (\diamond)$

for $U_2(z)$ which satisfies the same BC as $\Psi(z)$:

 $U_2 = U_2' = 0$ if $z = \pm 1$.

1 Extract a part of the code of **pb 2.1** to compute the matrix MD that represents D for k = -, with the spectral method.

2 Get the files written at **pb 2.1** to define the critical parameters R_c , k_c , then the real and imaginary parts of the critical streamfunction $\Psi(z)$. Evaluate the source term, the r.h.s. of (\diamond), at the collocation points, to compute the source vector S_0 such that

 $-MD \cdot V_0 = S_0$ with V_0 the vector of the spectral coefficients of $U_2(z)$.

3 Solve this with the command LinearSolve, to compute V_0 , then $U_2(z)$. Plot $U_2(z)$ and explain the physics behind.

Mines Nancy 2022 Plaut - T2TS6 - 28/45

4 Save the vector V_0 to a file U2.

Weakly nonlinear analysis: homogeneous passive mode: ex 2.5

 $\psi_{\perp} \simeq |A|^2 \psi_{20}$ with $0 = L_R \cdot \psi_{20} + [N_2(\psi_{1c}, \psi_{1c}^*) + c.c.]$

To keep the **mean pressure gradient fixed** i.e. **fixed head losses**, solve directly the *x*-component of the Navier-Stokes equation

 $-D \cdot U_2 = \Delta U_2 = U_2''(z) = 2R_c k_c [\Psi_r''(z)\Psi_i(z) - \Psi_r(z)\Psi_i''(z)] \quad (\diamond)$

for $U_2(z)$ which satisfies the same BC as $\Psi(z)$:

 $U_2 = U_2' = 0$ if $z = \pm 1$.

1 Extract a part of the code of **pb 2.1** to compute the matrix *MD* that represents *D* for k = 0, with the spectral method.

2 Get the files written at **pb 2.1** to define the critical parameters R_c , k_c , then the real and imaginary parts of the critical streamfunction $\Psi(z)$. Evaluate the source term, the r.h.s. of (\diamond), at the collocation points, to compute the source vector S_0 such that

 $-MD \cdot V_0 = S_0$ with V_0 the vector of the spectral coefficients of $U_2(z)$.

3 Solve this with the command LinearSolve, to compute V_0 , then $U_2(z)$. Plot $U_2(z)$ and explain the physics behind.

Mines Nancy 2022 Plaut - T2TS6 - 28/45

4 Save the vector V_0 to a file U2.

Weakly nonlinear analysis of PPF: homogeneous passive mode

$$\psi_{\perp} \simeq |A|^2 \psi_{20}$$
 with $0 = L_R \cdot \psi_{20} + [N_2(\psi_{1c}, \psi_{1c}^*) + c.c.]$

Plot of the correction to the basic flow $U_2(z) = -\psi_{20}'(z)$ vs z :

Weakly nonlinear analysis of PPF: homogeneous passive mode

$$\psi_{\perp} \simeq |A|^2 \psi_{20}$$
 with $0 = L_R \cdot \psi_{20} + [N_2(\psi_{1c}, \psi_{1c}^*) + c.c.]$

Plot of the correction to the basic flow $U_2(z) = -\psi_{20}'(z)$ vs z :

\longleftrightarrow reduction of the flow rate due to the transition !

Linear stability of viscous plane Poiseuille flow ${\tt oooooooooooooo}$

Weakly nonlinear analysis

Openings 000000000

(*)

Weakly nonlinear analysis of PPF: feedback at order A^3

 $\psi = \psi_a + \psi_{\perp} , \ \psi_a = A \exp(-i\omega_c t) \psi_{1c} + c.c. , \ \psi_{\perp} \simeq |A|^2 \psi_{20}$

$$D \cdot \partial_t \psi = L_R \cdot \psi + N_2(\psi, \psi)$$

Weakly nonlinear analysis

Openings 000000000

(*)

Weakly nonlinear analysis of PPF: feedback at order A^3

$$\psi = \psi_a + \psi_{\perp} , \ \psi_a = A \exp(-i\omega_c t) \psi_{1c} + c.c. , \ \psi_{\perp} \simeq |A|^2 \psi_{20}$$

Projection of

$$D \cdot \partial_t \psi = L_R \cdot \psi + N_2(\psi, \psi)$$

onto the adjoint critical mode ϕ_{1c}

$$\implies \quad \frac{dA}{dt} = (1+is)\frac{\epsilon}{\tau_0} A + \langle N_2(\psi,\psi), \phi_{1c} \rangle$$

Openings 000000000

(*)

Weakly nonlinear analysis of PPF: feedback at order A^3

$$\psi = \psi_a + \psi_{\perp} , \quad \psi_a = A \exp(-i\omega_c t) \psi_{1c} + c.c. , \quad \psi_{\perp} \simeq |A|^2 \psi_{20}$$

Projection of

$$D \cdot \partial_t \psi = L_R \cdot \psi + N_2(\psi, \psi)$$

onto the adjoint critical mode ϕ_{1c}

$$\implies \quad \frac{dA}{dt} = (1+is)\frac{\epsilon}{\tau_0} A + \langle N_2(\psi,\psi), \phi_{1c} \rangle$$

Resonant terms:

$$\langle N_2(\psi,\psi), \phi_{1c} \rangle = g |A|^2 A$$

with the feedback coefficient

$$g = \langle N_2(\psi_{1c},\psi_{20}) + N_2(\psi_{20},\psi_{1c}), \phi_{1c} \rangle$$

that can be computed !

Weakly nonlinear analysis

•

Openings 000000000

Weakly nonlinear analysis of PPF: feedback at order A^3 : ex 2.6

If one rewrites the nonlinear term in the vorticity equation as

$$\widetilde{N}_2(\mathbf{u}_a, \mathbf{u}_b) = \partial_x \big(\mathbf{u}_a \cdot \boldsymbol{\nabla} u_{zb} \big) - \partial_z \big(\mathbf{u}_a \cdot \boldsymbol{\nabla} u_{xb} \big) ,$$

then the nonlinear resonant term

$$S_2(x,z) = \widetilde{N}_2(\mathbf{u}_1, U_2\mathbf{e}_x) + \widetilde{N}_2(U_2\mathbf{e}_x, \mathbf{u}_1),$$

with

$$\mathbf{u}_1 = -\partial_z [\Psi(z) \exp(ik_c x)] \mathbf{e}_x + \partial_x [\Psi(z) \exp(ik_c x)] \mathbf{e}_z ,$$

and the feedback coefficient

$$g = \langle S_2(x,z), \phi_{1c}(x,z) \rangle = \int_{z=-1}^1 S_2(0,z) \Phi^*(z) \frac{dz}{2}$$

Compute it with Mathematica, using the NIntegrate command; show that

$$g = g_r + i g_i$$
 with g_r of a definite sign,

Openings 000000000

Weakly nonlinear analysis of PPF: feedback at order A^3 : ex 2.6

If one rewrites the nonlinear term in the vorticity equation as

$$\widetilde{N}_2(\mathbf{u}_a, \mathbf{u}_b) = \partial_x \big(\mathbf{u}_a \cdot \boldsymbol{\nabla} u_{zb} \big) - \partial_z \big(\mathbf{u}_a \cdot \boldsymbol{\nabla} u_{xb} \big) ,$$

then the nonlinear resonant term

$$S_2(x,z) = \widetilde{N}_2(\mathbf{u}_1, U_2\mathbf{e}_x) + \widetilde{N}_2(U_2\mathbf{e}_x, \mathbf{u}_1) ,$$

with

$$\mathbf{u}_1 = -\partial_z [\Psi(z) \exp(ik_c x)] \mathbf{e}_x + \partial_x [\Psi(z) \exp(ik_c x)] \mathbf{e}_z ,$$

and the feedback coefficient

$$g = \langle S_2(x,z), \phi_{1c}(x,z) \rangle = \int_{z=-1}^1 S_2(0,z) \Phi^*(z) \frac{dz}{2}$$

Compute it with Mathematica, using the NIntegrate command; show that

$$g = g_r + i g_i$$
 with g_r of a definite sign, $g_r > 0$.

Openings 000000000

Weakly nonlinear analysis of PPF: feedback at order A³

$$\frac{dA}{dt} = (1+is)\frac{\epsilon}{\tau_0} A + (g_r + ig_i)|A|^2 A$$

With a polar representation of the amplitude, $A = |A| \exp(i\phi)$, the modulus a = |A| satisfies the **amplitude equation**

$$rac{da}{dt} = rac{\epsilon}{ au_0} a + g_3 a^3$$
 with $g_3 = g_r > 0$.

The fixed points and their stability properties may be determined...

Openings 000000000

Weakly nonlinear analysis of PPF: feedback at order A³

$$\frac{dA}{dt} = (1+is)\frac{\epsilon}{\tau_0} A + (g_r + ig_i)|A|^2 A$$

With a polar representation of the amplitude, $A = |A| \exp(i\phi)$, the modulus a = |A| satisfies the **amplitude equation**

$$\frac{da}{dt} = \frac{\epsilon}{\tau_0} a + g_3 a^3 \quad \text{with} \quad g_3 = g_r > 0 .$$

Subcritical pitchfork bifurcation:

g > 0.

Openings 000000000

Weakly nonlinear analysis of RBT: feedback at order A³

$$rac{dA}{dt} = rac{\epsilon}{ au_0} A - g|A|^2 A$$

With a polar representation of the amplitude, $A = |A| \exp(i\phi)$, the modulus a = |A| satisfies the **amplitude equation**

$$\frac{da}{dt} = \frac{\epsilon}{\tau_0} a - g a^3$$
 with

Supercritical pitchfork bifurcation: bifurcated solutions above onset, $a \rightarrow 0$ as $\epsilon \rightarrow 0$:

Weakly nonlinear analysis

Openings 000000000

Weakly nonlinear analysis of PPF: feedback at order A^3

$$\frac{dA}{dt} = (1+is)\frac{\epsilon}{\tau_0} A + (g_r + ig_i)|A|^2 A$$

With a polar representation of the amplitude, $A = |A| \exp(i\phi)$, the modulus a = |A| satisfies the **amplitude equation**

$$\frac{da}{dt} = \frac{\epsilon}{\tau_0} a + g_3 a^3 \quad \text{with} \quad g_3 = g_r > 0 .$$

Subcritical pitchfork bifurcation: bifurcated solutions under onset, explosion above !?

Weakly nonlinear analysis

Openings 000000000

Weakly nonlinear analysis of PPF: subcritical bifurcation

More relevant model: add a saturation term at order A^5 or a^5 :

$$\frac{da}{dt} = \frac{\epsilon}{\tau_0} a + g_3 a^3 - g_5 a^5 \quad \text{with} \quad g_3, g_5 > 0 ,$$

⇒ bistability & saddle-node bifurcations - quite 'abrupt' transitions...

• : turning points

Openings •00000000

Nonlinear analysis of PPF: subcritical bifurcation

confirmed by strongly nonlinear computations:

[Ehrenstein in Huerre & Rossi 1998 Hydrodynamics and NL instabilities. CUP]

Saddle-node bifurcation at the turning point • : waves appear from nowhere !

Weakly nonlinear analysis

Openings 00000000

Nonlinear analysis of PPF: subcritical bifurcation

confirmed by strongly nonlinear computations:

[Ehrenstein & Koch 1991 J. Fluid Mech.; Bayly et al. 1988 Ann. Rev. Fluid Mech.]

Transition can occur as soon as $R \ge 2900 \ll R_c = 5772$!

Globally subcritical scenarios of transition...

In the case of a boundary layer, e.g., the Blasius boundary layer, the flow is non-parallel and the transition develops in space

[Homsy et al. 2004 Multimedia Fluid Mechanics]

This may be studied with a local spatial linear stability analysis: compute modes in

$$\begin{split} \Psi(z) \; \exp[i(kx - \omega t)] & \text{ with } & \omega \in \mathbb{R} \; \text{ the angular frequency}, \\ & k = k(\omega, R, n) \in \mathbb{C} \; \text{ the spatial eigenvalues}. \end{split}$$

Since $\exp(ikx) = \exp(ik_rx - k_ix)$, modes with $k_i < 0$ are amplified downstream...

 \hookrightarrow Phenomenological criterion to estimate the location where the flow becomes turbulent considering spatial amplification factors: ' e^N method'...

e^N method to predict transition in boundary layers

Between x and x + dx, the amplitude of the TS wave of angular frequency ω increases by $\frac{A + dA}{A} = e^{-k_i(x,\omega) dx} \iff d \ln A = -k_i(x,\omega) dx \implies A(x) = A(x = 0) e^{n(x,\omega)}$

with the 'amplification factor' of the TS wave $n(x,\omega) = \int_{x_0(\omega)}^x -k_i(x',\omega) dx'$.

Compute with **local spatial linear stability analyses** $n(x,\omega)$ for a range of frequencies \rightarrow set of *n*-curves

 \rightarrow envelope = maximum amplification factor $N(x) = \max_{\omega} n(x,\omega)$

[Van Ingen 2008]

Mines Nancy 2022 Plaut - T2TS6 - 40/45

Openings 000000000

e^N method to predict transition in boundary layers

Ideas: 'linear' perturbations grow with an amplitude

$$A(x) \simeq A_0 e^{N(x)}$$
.

The 'inlet' or 'leading edge' value of A scales with a power law of the **freestream turbulence level** Tu,

 $A_0 \simeq A_0' T u^a$.

Openings 000000000

e^N method to predict transition in boundary layers

Ideas: 'linear' perturbations grow with an amplitude

$$A(x) \simeq A_0 e^{N(x)}$$

The 'inlet' or 'leading edge' value of A scales with a power law of the **freestream turbulence level** Tu,

$$A_0~\simeq~A_0^\prime~Tu^a$$
 .

Transition to turbulence occurs when

$$A(x) \gtrsim A_c \iff e^{N(x)} \gtrsim \frac{A_c}{A_0} \iff N(x) \gtrsim \ln A_c - \ln A_0 = \ln A_c - \ln A_0' - a \ln T u$$
$$N(x) \gtrsim -8.43 - 2.4 \ln T u$$

[Mack 1977 Transition and laminar instability. NASA - CR - 153203]

Relevant for airfoils at high Re number, cf.

[Sørensen & Zahle 2014 Airfoil prediction at high Reynolds numbers using CFD. EFMC10] !..

Linear stability of viscous plane Poiseuille flow ${\tt oooooooooooooo}$

Weakly nonlinear analysis

Openings 0000000000

e^{N} method to predict transition in boundary layers

 $N(x) \gtrsim -8.43 - 2.4 \ln Tu$

Relevant for airfoils at high Re number, cf. this curve of the minimum drag coeff. vs Re :

[Sørensen & Zahle 2014 Airfoil prediction at high Reynolds numbers using CFD. *EFMC10*] see also [Bouville et al. 2018 Implementing the eN method into OpenFOAM. *SOpenFOAM WE*] Mines Nancy 2022 Plaut - T2TS6 - **42**/45

The local spatial stability analysis of a Blasius boundary layer does confirm the possible amplification of TS waves

According to Schlatter *et al.* 2010, region of amplification in the (Re_x, ω^*) plane, with $Re_x = \frac{Ux}{\nu}$ and ω^* a dimensionless frequency:

o : inlet of the computational domain

 \times : position where the volume forcing is applied

Openings 000000000

Nonlinear simulations of a forced Blasius boundary layer, with 'large-eddy simulations', show a TS wave that goes to turbulence...

Case where the forcing consists

in an harmonic 2D force of temporal frequency ω^{\ast}

+ a small 3D noise, corresponding to a 'turbulence intensity' $\lesssim 0.1\%$:

[Schlatter et al. 2010 Int. J. Flow Control]

Openings 00000000

Nonlinear simulations of a forced Blasius boundary layer, with 'large-eddy simulations', show a <u>'bypass' transition</u> if the inflow is 'noisy', i.e., has a 'large' turbulence level

Case with the same forcing but now the inflow or 'free-stream' has a 'turbulence intensity' $\simeq 5\%$:

Abrupt transition typical of globally subcritical transition scenarios !