
Stability of open shear flows Linear stability of viscous plane Poiseuille flow Weakly nonlinear analysis Openings

Transition to turbulence in thermoconvection & aerodynamics
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Session Date Content

1 - 29/09 Thermoconvection: phenomena, equations, differentially heated cavity,

cavity heated from below = RB cavity, linear stability analysis

2 - 06/10 RB Thermoconvection: linear stability analysis

3 - 13/10 RB Thermoconvection: (weakly) nonlinear phenomena

4 - 20/10 Aerodynamics of OSF: linear stability analysis

5 - 27/10 Aerodynamics of OSF: linear & weakly nonlinear stability analyses

→ 6 - 10/11 Aerodynamics of OSF: nonlinear phenomena

24/11 Examination

RB = Rayleigh-Bénard OSF = Open Shear Flows

Today: session 6: transition in open shear flows:

• End of the linear analysis of TS waves in plane Poiseuille flow (PPF)

• Weakly nonlinear analysis of TS waves in PPF

• Openings: strongly nonlinear phenomena - transition in boundary layers
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When and how 2D xz laminar open shear flows get unstable ?
General example: plane parallel flows

v = v0 = U(z) ex , p = pstatic + ρgZ = 0 in an inviscid fluid,

p = pstatic + ρgZ = −Gx in a viscous fluid,

is solution of the Euler (η = 0) of Navier-Stokes (η 6= 0) equation

ρ
[
∂tv + (v ·∇)v

]
= −∇p + η∆v

⇐⇒ 0 = Gex + ηU ′′(z)ex

whatever U(z) in an inviscid fluid,

provided U(z) = α + βz + γz2 in a viscous fluid.

Mixing layer Poiseuille flow Couette flow Couette-Poiseuille flow
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inviscid fl. viscous fl. viscous fl. viscous fl.
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Stability analysis of plane parallel flows

Basic flow:

v0 = U(z) ex , p0 = −Gx with G = 0 in an inviscid fluid,

G > 0 in a viscous fluid.

Basic flow with perturbations:

v = v0 + u , p = p0 + p̃

∂tv + (v ·∇)v = − (1/ρ)∇p + ν∆v (NS)

∂tu + U ′uzex + U∂xu + (u ·∇)u = − (1/ρ)∇p̃ + ν∆u (NS)

divv = divu = 0 (MC)

� Unit of length = h half-width of the channel, thickness of the mixing layer...

� Unit of velocity = U0 = maxz U(z) scale of U

� Unit of time = h/U0 advection time

∂tu + U ′uzex + U∂xu + (u ·∇)u = −∇p̃ + R−1 ∆u (NS)

with the Reynolds number R = U0h/ν , R = ∞ in an inviscid fluid.
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2D xz stability analysis of plane parallel flows

Dimensionless equations for the perturbations u of velocity and p̃ of pressure:

∂tu + U ′uzex + U∂xu + (u ·∇)u = −∇p̃ + R−1 ∆u , (NS)

divu = 0 . (MC)

2D xz perturbations can be defined by their streamfunction ψ(x ,z) :

u = curl(ψ ey ) = (∇ψ)× ey = − (∂zψ) ex + (∂xψ) ez .

We can eliminate p̃ in (NS) by considering curl(NS) · ey i.e. the vorticity equation:

∂t(−∆ψ) +
[
∂z
(
u ·∇ux

)
−∂x

(
u ·∇uz

)]
= R−1∆(−∆ψ) + U∂x(∆ψ)−U ′′(∂xψ) (Vort)

⇐⇒ D · ∂tψ = LR · ψ + N2(ψ,ψ) . (Vort)

Boundary conditions:

viscous fluid : u = 0 ⇐⇒ ∂xψ = ∂zψ = 0 if z = z± ,

inviscid fluid : uz = 0 ⇐⇒ ∂xψ = 0 if z = z± .
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2D xz linear stability analysis of plane parallel flows

D · ∂tψ = LR · ψ (Vort)

D · ∂tψ = −∆∂tψ , LR · ψ = R−1∆(−∆ψ) + U∂x(∆ψ)− U ′′(∂xψ) ,

viscous fluid : u = 0 ⇐⇒ ∂xψ = ∂zψ = 0 if z = z± ,

inviscid fluid : uz = 0 ⇐⇒ ∂xψ = 0 if z = z± .

Normal mode analysis:

ψ = Ψn(z) exp(ikx + σt) = Ψn(z) exp[ik(x − cr t)] exp(kci t)

with k = horizontal wavenumber, k 6= 0, n another label to mark normal modes,

σ = temporal eigenvalue.

Most often the bulk velocity of the basic flow 〈U〉z > 0 ⇒ by advection

σ = − iω = − ikc with c the complex phase velocity,

cr > 0 the real phase velocity,

kci > 0 (resp. < 0) the growth rate (resp. the opposite of the damping rate).
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Stability of inviscid plane Poiseuille flow

According to the Rayleigh’s criterion (ex 2.1),

plane Poiseuille flow of an inviscid fluid has no inflection point ⇒ it is stable.

v0 = U0(1− (z/h)2) ex x

z
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Stability of viscous plane Poiseuille flow

Pb 2.1:

plane Poiseuille flow of a viscous fluid may be unstable !

v0 = (1− z2) ex x

z

Must calculate normal modes

ψ = Ψ(z) exp(ikx + σt) = Ψ(z) exp[ik(x − cr t)] exp(kci t)

by solving the vorticity equation

σDψ = − σ∆ψ = LRψ = − R−1∆∆ψ + ik(U∆ψ − U ′′ψ)

with the BC at z = ±1 : Ψ = ∂zΨ = 0.

Eigenvalue σ = −ikc ; cr = −σi/k phase velocity ; σr > 0 ↔ amplified mode

σr = 0 ↔ neutral mode

σr < 0 ↔ damped mode
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Stability of viscous plane Poiseuille flow: pb 2.1

σDΨ = − σ∆Ψ = LRΨ = − R−1∆∆Ψ + ik(U∆Ψ− U ′′Ψ) (Vort)

with ∆ = − k2 +
d2

dz2

and the boundary conditions Ψ = Ψ′ = 0 if z = ±1 .

Spectral expansion taking into account the BC and even symmetry under z 7→ −z :

Ψ(z) =
N∑

n=1

ΨnFn(z)

with Fn(z) = (z − 1)2 (z + 1)2 T2n−2(z) = (z2 − 1)2 T2n−2(z) ,

Tn(z) = nth Chebyshev polynomial of the first kind.

Evaluate (Vort) at the Gauss-Lobatto collocation points

zm = cos[mπ/(2N + 1)] for m ∈ {1,2, · · · ,N}

⇐⇒ σ
∑
n

ΨnDFn(zm) =
∑
n

ΨnLFn(zm) ⇐⇒ σMD · V = ML · V

with V = (Ψ1, ...,ΨN)T , [MD]mn = DFn(zm) , [ML]mn = LFn(zm) .
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Stability of viscous plane Poiseuille flow: pb 2.1

Neutral curve:

1

6000

k

R

converged, near the critical k corresponding to the minimal R, within 0.1% provided that

Nz ≥ 17?, 18?, 19?
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Stability of viscous plane Poiseuille flow: pb 2.1

Neutral curve:

stable

unstable

0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
5000

5500

6000

6500

7000

k

R

converged, near the critical k corresponding to the minimal R, within 0.1% provided that

Nz ≥ 18

which is rather ‘low’: here the spectral method is quite efficient !
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Stability of viscous plane Poiseuille flow: pb 2.1

Neutral curve:

stable

unstable

0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
5000

5500

6000

6500

7000

k

R

Patterning bifurcation to traveling ‘Tollmienn - Schlichting’ waves

• critical wavenumber kc =

1.02

• critical Reynolds number Rc =

5772

• critical angular frequency ωc =

0.269

↔ critical phase velocity cc =

0.264
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Stability of viscous plane Poiseuille flow

The bifurcation corresponds to the fact that one eigenvalue σ passes the real axis

as R increases, cf. this (part of the) spectrum of the even modes for

k = 1.02 , R = 5000

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

σr

σ
i

computed with Nz = 40 spectral modes and high precision numerics, see ex 2.2

(collocation points defined with z[m_]= N[Cos[m Pi/(2 Nz+1)],Nz]).
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Stability of viscous plane Poiseuille flow

The bifurcation corresponds to the fact that one eigenvalue σ passes the real axis

as R increases, cf. this (part of the) spectrum of the even modes for

k = 1.02 , R = 5500
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Stability of viscous plane Poiseuille flow

The bifurcation corresponds to the fact that one eigenvalue σ passes the real axis

as R increases, cf. this (part of the) spectrum of the even modes for

k = 1.02 , R = 6000
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Stability of viscous plane Poiseuille flow
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Stability of viscous plane Poiseuille flow: pb 2.1

7.a Find the eigenvector of the spectral coefficients

V = (Ψ1, ...,ΨN)T

that represents the critical mode → calculate the critical streamfunction

Ψ(z) =
N∑

n=1

ΨnFn(z)

→ normalize it s.t. Ψ(z = 0) = 1 → plot its modulus vs z :

-1 -0.5 0 0.5 1

0

0.25

0.5

0.75

1

z

|Ψ|
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Stability of viscous plane Poiseuille flow: pb 2.1

7.a Find the eigenvector of the spectral coefficients

V = (Ψ1, ...,ΨN)T

that represents the critical mode → calculate the (normalized) critical streamfunction

Ψ(z) =
N∑

n=1

ΨnFn(z)

→ plot real & imaginary parts:

Ψi 6= 0 creates interesting nonlinear effects, see ex 2.4,5 !
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Stability of viscous plane Poiseuille flow: pb 2.1

7.b Save the normalized vector of the spectral coefficients V = (Ψ1, ...,ΨN)T to a file V1.

8 In the xz plane, streamlines i.e. contour plots of the full streamfunction
Ψ0 + [A Ψ(z) exp(ikcx) + c.c.] with Ψ0 the one of the basic flow,

for A = 0 :

x

z see Reynolds (1895) :

motion is ‘direct’

A = 0.1 :

x

z

motion is ‘sinuous’ !

A = 0.2 :

x

z

motion is ‘sinuous’ !
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Towards the weakly nonlinear analysis...

Like in 2D RBT, we use the basis of the linear modes.

Work in a box with periodic BC under x 7→ x + λc ⇒ the wavenumber k ∈ K = kcZ.

A general streamfunction

ψ =
∑
k∈K

∑
n∈N∗

A(k,n) ψ1(k,n) =
∑

q

A(q) ψ1(q) with q = (k,n) ∈ K× N∗ .

To calculate the amplitudes A(q)...

use the adjoint eigenmodes, the solutions of the

adjoint eigenproblem

σ∗D† · φ = L†R · φ
where the adjoint operators are defined by

〈D · ψ, φ〉 =
〈
ψ, D† · φ

〉
and 〈L · ψ, φ〉 =

〈
ψ, L† · φ

〉
where the inner product 〈ψ, φ〉 =

∫ λc

x=0

∫ 1

z=−1

ψ(x ,z) φ∗(x ,z)
dx

λc

dz

2
,

and one should care with the normalization of φ... 〈D · ψ1c , φ1c〉 = 1

=⇒ the amplitude of the critical mode A(qc) = 〈D · ψ, φ1c〉 .
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Weakly nonlinear analysis... requires the adjoint problem: ex 2.3

1 With the inner product 〈ψ, φ〉 =

∫ λc

x=0

∫ 1

z=−1

ψ(x ,z) φ∗(x ,z)
dx

λc

dz

2
,

one can define adjoint operators s.t.

〈D · ψ, φ〉 =
〈
ψ, D† · φ

〉
and 〈L · ψ, φ〉 =

〈
ψ, L† · φ

〉
.

For Fourier modes in x , of wavenumber k = mkc with m ∈ Z∗,

D = −∆ = D† , L†R · φ = − R−1∆∆φ − 2ikU ′∂zφ − ikU∆φ .

2 Code the adjoint problem

σ∗D · φ = L†R · φ

with the same spectral method as the one for the direct problem.

3.a Check: k = kc , R = Rc ⇒ ∃ adjoint critical mode φ1c = Φ(z) exp(ikcx)

corresponding to σ = −iωc .

3.b Calculate Φ(z), plot |Φ(z)| and comment.

4 Normalize Φ(z) with the condition 〈D · ψ1c , φ1c〉 = 1 , ψ1c = Ψ(z) exp(ikcx) being

the critical mode. Finally, replot |Φ(z)|, and save the spectral coeff. of Φ to a file U1.
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Weakly nonlinear analysis... requires the adjoint problem: ex 2.3

Plot of the modulus of the critical adjoint streamfunction |Φ(z)| vs z :
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which describes the receptivity of the critical mode to perturbations !..
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Weakly nonlinear analysis ?

• Near the bifurcation point, i.e., with the bifurcation parameter

ε = R/Rc − 1� 1 .

• Uses the linear mode basis:

modes ψ1(q) indexed with q = (k,n) = (x-wavenumber,z-number)

• Dominant modes are the critical ones q = qc = (kc ,1) or q∗c = (−kc ,1),

with eigenvalues

σ(qc ,R) = − iωc + (1 + is)ε/τ0 + O(ε2) , σ(q∗c ,R) = σ∗(qc ,R) ,

with τ0 > 0 the characteristic time, s the linear frequency-shift coefficient.
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What do we know at the linear level ?

• With the bifurcation parameter ε = R/Rc − 1� 1 .

• Dominant modes are the critical ones q = qc = (kc ,1) or q∗c = (−kc ,1),

with eigenvalues

σ(qc ,R) = − iωc + (1 + is)ε/τ0 + O(ε2) , σ(q∗c ,R) = σ∗(qc ,R) ,

with τ0 > 0 the characteristic time, s the linear frequency-shift coefficient.

ψ = A exp(−iωct) ψ1c + c.c. injected in

D · ∂tψ = LR · ψ =⇒

(dA
dt
− iωcA

)
exp(−iωct) D · ψ1c + c.c. = A exp(−iωct) LR · ψ1c + c.c.

= σ(qc ,R) A exp(−iωct) D · ψ1c + c.c.

Projection onto the adjoint critical mode φ1c =⇒
dA

dt
− iωcA = σ(qc ,R) A ⇐⇒ dA

dt
= [σ(qc ,R) + iωc ] A ∼ (1 + is)

ε

τ0
A ,

A is exploding slowly ! Must take into account nonlinear effects !
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Weakly nonlinear analysis ?

• Near the bifurcation point, i.e., with the bifurcation parameter

ε = R/Rc − 1� 1 .

• Correct the leading-order critical modes with passive modes,

with the idea that ‘long-living systems slave short-living systems’ (Haken),

see the spectrum of the even modes of the linear problem at k = kc , ε = 0.04 :
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Weakly nonlinear analysis uses the linear mode basis

Modes ψ1(q) indexed with q = (k,n) = (x-wavenumber,z-number); ε = R/Rc − 1� 1

• Active modes correspond to q = qc = (kc ,1) or q∗c = (−kc ,1) and have eigenvalues

σ(qc ,R) = − iωc + (1 + is)ε/τ0 + O(ε2) , σ(q∗c ,R) = σ∗(qc ,R) .

• Passive modes correspond to q 6= qc ,q
∗
c and are short-living (rapidly damped),

σ(q,R) = σr (q,R) + iσi (q,R) with σr (q,R) < σ1 < 0 .

We seek an approximate solution of the nonlinear problem

D · ∂tψ = LR · ψ + N2(ψ,ψ) (∗)

of the form

ψ = ψa + ψ⊥ with ψa = A exp(−iωct) ψ1c + c.c. the active modes, ψa � 1 ,

dA

dt
= O(εA)

and ψ⊥ � ψa the passive modes.
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Weakly nonlinear analysis: passive modes

are created by

N2(ψa,ψa) = |A|2 [ N2(ψ1c ,ψ
∗
1c) + c.c.︸ ︷︷ ︸

mode 0

] + [A2 exp(−2iωct) N2(ψ1c ,ψ1c)︸ ︷︷ ︸
mode 2kc

+ c.c.︸︷︷︸
mode −2kc

] .

The ‘harmonic’ modes of x-wavenumber ±2kc indicate the creation of small scales:

modes of wavelength λc → modes of wavelength λc/2 .

Hereafter, these modes are neglected !

The x-homogeneous mode (‘mode 0’) corresponds to a mean-flow correction:

ψ⊥(z ,t) ' A0(t) ψ20(z)

with
dA0

dt
D · ψ20 = A0 LR · ψ20 + |A|2 [N2(ψ1c ,ψ

∗
1c) + c.c.]

=⇒ with quasistatic elimination,

A0 = |A|2 , i.e. ψ⊥ ' |A|2 ψ20 and 0 = LR · ψ20 + [N2(ψ1c ,ψ
∗
1c) + c.c.] .
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Weakly nonlinear analysis: homogeneous passive mode: ex 2.4

ψ⊥ ' |A|2 ψ20 with 0 = LR · ψ20 + [N2(ψ1c ,ψ
∗
1c) + c.c.]

To keep the mean pressure gradient fixed i.e. fixed head losses,

solve directly the x-component of the Navier-Stokes equation for U2 = −ψ′20 ,

R−1
c U ′′2 (z) = [(u1 ·∇)u∗1 + c.c.]x (�)

with

u1 = − ∂z [Ψ(z) exp(ikcx)] ex + ∂x [Ψ(z) exp(ikcx)] ez .

Ex 2.4 : With Mathematica, writing formally

Ψ(z) = Ψr (z) + iΨi (z) ,

simplify the nonlinear term,

[(u1 ·∇)u∗1 + c.c.]x =

2kc [Ψ′′r (z)Ψi (z)−Ψr (z)Ψ′′i (z)]

.

To have U2 6= 0, it must be that both Ψr and Ψi (z) do not vanish, see q 7.a of pb 2.1 !
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Weakly nonlinear analysis: homogeneous passive mode: ex 2.5

ψ⊥ ' |A|2 ψ20 with 0 = LR · ψ20 + [N2(ψ1c ,ψ
∗
1c) + c.c.]

To keep the mean pressure gradient fixed i.e. fixed head losses,

solve directly the x-component of the Navier-Stokes equation

−D · U2 = ∆U2 = U ′′2 (z) = 2Rckc [Ψ′′r (z)Ψi (z)−Ψr (z)Ψ′′i (z)] (�)

for U2(z) which satisfies the same BC as Ψ(z):

U2 = U ′2 = 0 if z = ±1 .

1 Extract a part of the code of pb 2.1 to compute the matrix MD that represents D for

k =

0

, with the spectral method.

2 Get the files written at pb 2.1 to define the critical parameters Rc , kc , then the real and

imaginary parts of the critical streamfunction Ψ(z). Evaluate the source term,

the r.h.s. of (�), at the collocation points, to compute the source vector S0 such that

−MD · V0 = S0 with V0 the vector of the spectral coefficients of U2(z) .

3 Solve this with the command LinearSolve, to compute V0, then U2(z).

Plot U2(z) and explain the physics behind.

4 Save the vector V0 to a file U2.
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Weakly nonlinear analysis of PPF: homogeneous passive mode

ψ⊥ ' |A|2 ψ20 with 0 = LR · ψ20 + [N2(ψ1c ,ψ
∗
1c) + c.c.]

Plot of the correction to the basic flow U2(z) = −ψ′20(z) vs z :

-1 -0.5 0 0.5 1

-100

-80

-60

-40

-20

0

z

U

←→ reduction of the flow rate due to the transition !
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Weakly nonlinear analysis of PPF: feedback at order A3

ψ = ψa + ψ⊥ , ψa = A exp(−iωct) ψ1c + c.c. , ψ⊥ ' |A|2 ψ20

Projection of

D · ∂tψ = LR · ψ + N2(ψ,ψ) (∗)

onto the adjoint critical mode φ1c

=⇒ dA

dt
= (1 + is)

ε

τ0
A + 〈N2(ψ,ψ), φ1c〉

Resonant terms:

〈N2(ψ,ψ), φ1c〉 = g |A|2A

with the feedback coefficient

g = 〈N2(ψ1c ,ψ20) + N2(ψ20,ψ1c), φ1c〉

that can be computed !
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Weakly nonlinear analysis of PPF: feedback at order A3 : ex 2.6

If one rewrites the nonlinear term in the vorticity equation as

Ñ2(ua, ub) = ∂x
(
ua ·∇uzb

)
− ∂z

(
ua ·∇uxb

)
,

then the nonlinear resonant term

S2(x ,z) = Ñ2(u1, U2ex) + Ñ2(U2ex , u1) ,

with

u1 = − ∂z [Ψ(z) exp(ikcx)] ex + ∂x [Ψ(z) exp(ikcx)] ez ,

and the feedback coefficient

g = 〈S2(x ,z), φ1c(x ,z)〉 =

∫ 1

z=−1

S2(0,z) Φ∗(z)
dz

2
.

Compute it with Mathematica, using the NIntegrate command;

show that

g = gr + igi with gr of a definite sign,

gr > 0

.
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Weakly nonlinear analysis of PPF: feedback at order A3

dA

dt
= (1 + is)

ε

τ0
A + (gr + igi )|A|2A

With a polar representation of the amplitude, A = |A| exp(iφ) ,

the modulus a = |A| satisfies the amplitude equation

da

dt
=

ε

τ0
a + g3a

3 with g3 = gr > 0 .

The fixed points and their stability properties may be determined...
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Weakly nonlinear analysis of PPF: feedback at order A3

dA

dt
= (1 + is)

ε

τ0
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With a polar representation of the amplitude, A = |A| exp(iφ) ,

the modulus a = |A| satisfies the amplitude equation

da

dt
=

ε

τ0
a + g3a

3 with g3 = gr > 0 .

Subcritical pitchfork bifurcation:

a

ϵ-0.2 -0.1 0.1 0.2 0.3

-0.3

-0.2

-0.1

0.1

0.2

0.3

Mines Nancy 2022 Plaut - T2TS6 - 33/45



Stability of open shear flows Linear stability of viscous plane Poiseuille flow Weakly nonlinear analysis Openings

Weakly nonlinear analysis of RBT: feedback at order A3

dA

dt
=

ε

τ0
A − g |A|2A

With a polar representation of the amplitude, A = |A| exp(iφ) ,

the modulus a = |A| satisfies the amplitude equation

da

dt
=

ε

τ0
a − g a3 with g > 0 .

Supercritical pitchfork bifurcation: bifurcated solutions above onset, a→ 0 as ε→ 0:
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Weakly nonlinear analysis of PPF: feedback at order A3

dA

dt
= (1 + is)

ε

τ0
A + (gr + igi )|A|2A

With a polar representation of the amplitude, A = |A| exp(iφ) ,

the modulus a = |A| satisfies the amplitude equation

da

dt
=

ε

τ0
a + g3a

3 with g3 = gr > 0 .

Subcritical pitchfork bifurcation: bifurcated solutions under onset, explosion above !?
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Weakly nonlinear analysis of PPF: subcritical bifurcation

More relevant model: add a saturation term at order A5 or a5 :

da

dt
=

ε

τ0
a + g3a

3 − g5a
5 with g3, g5 > 0 ,

=⇒ bistability & saddle-node bifurcations - quite ‘abrupt’ transitions...
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• : turning points
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Nonlinear analysis of PPF: subcritical bifurcation

confirmed by strongly nonlinear computations:

[ Ehrenstein in Huerre & Rossi 1998 Hydrodynamics and NL instabilities. CUP ]

Saddle-node bifurcation at the turning point • : waves appear from nowhere !
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Nonlinear analysis of PPF: subcritical bifurcation

confirmed by strongly nonlinear computations:

[ Ehrenstein & Koch 1991 J. Fluid Mech.; Bayly et al. 1988 Ann. Rev. Fluid Mech. ]

Transition can occur as soon as R ≥ 2900 � Rc = 5772 !

Globally subcritical scenarios of transition...
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In the case of a boundary layer, e.g., the Blasius boundary layer,
the flow is non-parallel and the transition develops in space

[ Homsy et al. 2004 Multimedia Fluid Mechanics ]

This may be studied with a local spatial linear stability analysis: compute modes in

Ψ(z) exp[i(kx − ωt)] with ω ∈ R the angular frequency,

k = k(ω,R,n) ∈ C the spatial eigenvalues.

Since exp(ikx) = exp(ikrx − kix) , modes with ki < 0 are amplified downstream...

↪→ Phenomenological criterion to estimate the location where the flow becomes

turbulent considering spatial amplification factors: ‘eN method’...
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eN method to predict transition in boundary layers

Between x and x + dx , the amplitude of the TS wave of angular frequency ω increases by

A + dA

A
= e−ki (x,ω) dx ⇐⇒ d lnA = −ki (x ,ω) dx =⇒ A(x) = A(x = 0) en(x,ω)

with the ‘amplification factor’ of the TS wave n(x ,ω) =

∫ x

x0(ω)

−ki (x ′,ω) dx ′ .

Compute with local spatial linear stability analyses n(x ,ω) for a range of frequencies

→ set of n-curves

→ envelope = maximum amplification factor N(x) = maxω n(x ,ω)

[ Van Ingen 2008 ]
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eN method to predict transition in boundary layers

Ideas: ‘linear’ perturbations grow with an amplitude

A(x) ' A0 eN(x) .

The ‘inlet’ or ‘leading edge’ value of A scales with a power law of the freestream

turbulence level Tu,

A0 ' A′0 Tua .

Transition to turbulence occurs when

A(x) & Ac ⇐⇒ eN(x) &
Ac

A0
⇐⇒ N(x) & lnAc − lnA0 = lnAc − lnA′0 − a lnTu

N(x) & − 8.43 − 2.4 lnTu

[ Mack 1977 Transition and laminar instability. NASA - CR - 153203 ]

Relevant for airfoils at high Re number, cf.

[ Sørensen & Zahle 2014 Airfoil prediction at high Reynolds numbers using CFD. EFMC10 ] !..
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eN method to predict transition in boundary layers

N(x) & − 8.43 − 2.4 lnTu

Relevant for airfoils at high Re number, cf. this curve of the minimum drag coeff. vs Re :

[ Sørensen & Zahle 2014 Airfoil prediction at high Reynolds numbers using CFD. EFMC10 ]

see also [ Bouville et al. 2018 Implementing the eN method into OpenFOAM. SOpenFOAM WE ]
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The local spatial stability analysis of a Blasius boundary layer
does confirm the possible amplification of TS waves

According to Schlatter et al. 2010, region of amplification in the (Rex ,ω
∗) plane,

with Rex =
Ux

ν
and ω∗ a dimensionless frequency:

ω∗

◦ : inlet of the computational domain

× : position where the volume forcing is applied
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Nonlinear simulations of a forced Blasius boundary layer,

with ‘large-eddy simulations’,

show a TS wave that goes to turbulence...

Case where the forcing consists

in an harmonic 2D force of temporal frequency ω∗

+ a small 3D noise, corresponding to a ‘turbulence intensity’ . 0.1% :

Forcing Wave amplifies Secondary instability Turbulence

↓ ↓ ↓ ↓

[ Schlatter et al. 2010 Int. J. Flow Control ]
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Nonlinear simulations of a forced Blasius boundary layer,

with ‘large-eddy simulations’,

show a ‘bypass’ transition if the inflow is ‘noisy’,
i.e., has a ‘large’ turbulence level

Case with the same forcing

but now the inflow or ‘free-stream’ has a ‘turbulence intensity’ ' 5% :

Forcing Streamwise streaks Turbulence

↓ ↓ ↓

Abrupt transition typical of globally subcritical transition scenarios !
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