

plane parallel flows... 0000000000

Transition to (spatio-temporal complexity and) turbulence in thermoconvection & aerodynamics

http://emmanuelplaut.perso.univ-lorraine.fr/t2t

Session	Date	Content
1 -	29/09	Thermoconvection: phenomena, equations, differentially heated cavity,
		cavity heated from below $= \mathbf{RB}$ cavity, linear stability analysis
2 -	06/10	RB Thermoconvection: linear stability analysis
3 -	13/10	RB Thermoconvection: (weakly) nonlinear phenomena
\rightarrow 4 -	20/10	Aerodynamics of OSF : linear stability analysis
5 -	27/10	Aerodynamics of \mathbf{OSF} : linear & weakly nonlinear stability analyses
6 -	10/11	Aerodynamics of OSF : nonlinear phenomena
	24/11	Examination

 $\mathbf{RB}^* = \mathsf{Rayleigh}\mathsf{-}\mathsf{B}\acute{e}\mathsf{nard}$ $\mathbf{OSF}^* = \mathsf{Open}$ Shear Flows

Today: session 4: transition in open shear flows:

- Introduction: OSF, instabilities of OSF, Rayleigh criterion
- $\bullet\,$ Numerical linear stability analysis of plane Poiseuille flow: towards TS waves

quite different from Rayleigh-Bénard thermoconvection systems

Open shear flows (OSF)

[Homsy et al.] v T = constant $v \neq 0$ complex T = constant

Navier-Stokes contains $(\mathbf{v} \cdot \nabla)\mathbf{v}$ Heat equation trivially fulfilled

OSF quite interesting but also quite challenging:

easier to understand $\mathbf{v} \cdot \nabla T$ than $(\mathbf{v} \cdot \nabla)\mathbf{v}$!

Open shear flows are often encountered in aerodynamics

Turbulent (?) flow around an obstacle, an airfoil, at an angle of attack $\alpha = 15^{\circ}$, observed with smoke in a wind tunnel at U. Stanford:

 $\left[\begin{array}{c} \text{Homsy et al. 2019 } \textit{Multimedia Fluid Mechanics Online. Cambridge University Press}\\ & \text{Films en bas de cette page web en fonction de } \alpha\end{array}\right]$

Open shear flows are often encountered in aerodynamics

Laminar flow around an obstacle, an airfoil, also exists, and may be computed, for the external flow, with potential flow theory - complex analysis techniques:

Plaut 2018 Mécanique des fluides : des bases à la turbulence. Cours Mines Nancy 2A. Film sur la page web de ce module

Open shear flows are often encountered in aerodynamics

Laminar flow around an obstacle, an airfoil, also exists, and may be computed, for the external flow, with potential flow theory - complex analysis techniques:

Film sur la page web de ce module

When and how laminar open shear flows get unstable and go to turbulence ?

plane parallel flows... 0000000000 Linear stability of viscous plane Poiseuille flow ∞

When and how laminar open shear flows get unstable ?

In the case of **open shear flows** around an airfoil, the **transition to turbulence develops into space**, and it **changes the lift and drag** !

Hybrid Delayed Detached Eddy Simulations,

with the Spalart-Allmaras model, of flow around an airfoil at $Re = U_{\infty}c/\nu = 8 \ 10^4$, with a laminar free stream and an angle of attack $\alpha = 4^{\circ}$ that implies separation:

In green: iso-surface of zero streamwise velocity \simeq separated region In colors: Q iso-surfaces, coloured by vorticity magnitude \simeq vortices [Tangermann & Klein 2019 in New Results in Numerical and Experimental Fluid Mechanics XII - Springer www.unibw.de/numerik]

plane parallel flows... Linear

Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

Q criterion to detect numerically vortices

instabilities

00000

Vortices detected by the condition that vorticity dominates strain in the local gradient of velocity

$$\nabla v = \Omega + S$$

with the rate-of-vorticity tensor

Open shear flows...

$$\mathbf{\Omega} = \frac{1}{2} \Big(\mathbf{\nabla} \mathbf{v} - \mathbf{\nabla} \mathbf{v}^T \Big)$$

and the rate-of-strain tensor

$$\mathbf{S} = \frac{1}{2} \left(\mathbf{\nabla} \mathbf{v} + \mathbf{\nabla} \mathbf{v}^T \right)$$

Thus

Plan

$$Q = \frac{1}{2} \left(\boldsymbol{\Omega} : \boldsymbol{\Omega}^{\mathsf{T}} - \mathbf{S} : \mathbf{S}^{\mathsf{T}} \right) = \frac{1}{2} \left(\boldsymbol{\Omega}_{ij} \boldsymbol{\Omega}_{ij} - S_{ij} S_{ij} \right) = -\frac{1}{2} (\partial_{x_i} v_j) (\partial_{x_j} v_i) > 0.$$

[Hunt, Wray & Moin 1988 Eddies, streams, and convergence zones in turbulent flows. NASA report; Jeong & Hussain 1995 On the identification of a vortex. J. Fluid Mech.]

plane parallel flows... 0000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

When and how laminar open shear flows get unstable ?

In the case of **open shear flows** around an airfoil, the **transition to turbulence develops into space**, and it **changes the lift and drag** !

Hybrid Delayed Detached Eddy Simulations,

with the Spalart-Allmaras model, of flow around an airfoil at $Re = U_{\infty}c/\nu = 8 \ 10^4$, with a laminar free stream and an angle of attack $\alpha = 4$ that implies separation:

In green: iso-surface of zero streamwise velocity \simeq separated region In colors: Q iso-surfaces, coloured by vorticity magnitude \simeq vortices

[Tangermann & Klein 2019 - www.unibw.de/numerik]

This is quite complex

 \rightarrow we want to study this question in simpler cases ! Mines Nancy 2022 Plaut - T2TS4 - 7/22

Plan	Open	shear	flows
0	000		

plane parallel flows... 0000000000

instabilities

000000

Linear stability of viscous plane Poiseuille flow ∞

When and how

laminar open shear flows get unstable ?

plane parallel flows... 0000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

When and how 2D xz laminar open shear flows get unstable ?

When and how 2D xz laminar open shear flows get unstable ? Example: Blasius boundary layer over a flat plate

Aerodynamical case: x and z in meters:

When and how 2D xz laminar open shear flows get unstable ? Example: Blasius boundary layer over a flat plate

Aerodynamical case: x and z in meters:

$$\delta = \sqrt{\frac{\nu x}{U}}, \quad \zeta = \frac{z}{\delta}, \quad v_x = Uf'(\zeta), \quad v_z = \frac{1}{2}\sqrt{\frac{\nu U}{x}}[\zeta f'(\zeta) - f(\zeta)]$$

Thickness of the boundary layer where $v_x = 0.99U$:

$$\delta_{99} = 5\sqrt{\frac{
u x}{U}} \iff U = 25 \frac{
u x}{\delta_{99}^2}$$

When and how 2D xz laminar open shear flows get unstable ? Example: Blasius boundary layer over a flat plate

Aerodynamical case: x and z in meters:

$$\delta = \sqrt{\frac{\nu x}{U}}, \quad \zeta = \frac{z}{\delta}, \quad v_x = Uf'(\zeta), \quad v_z = \frac{1}{2}\sqrt{\frac{\nu U}{x}}[\zeta f'(\zeta) - f(\zeta)]$$

Thickness of the boundary layer where $v_x = 0.99U$:

$$\delta_{99} = 5\sqrt{\frac{\nu x}{U}} \iff U = 25 \frac{\nu x}{\delta_{99}^2} \simeq 25 \frac{2 \ 10^{-5} \ m^2/s \ 6 \ m}{(0.2 \ m)^2}$$

When and how 2D xz laminar open shear flows get unstable ? Example: Blasius boundary layer over a flat plate

Aerodynamical case: x and z in meters: U = 0.1 m/s:

$$\delta = \sqrt{\frac{\nu x}{U}}, \quad \zeta = \frac{z}{\delta}, \quad v_x = Uf'(\zeta), \quad v_z = \frac{1}{2}\sqrt{\frac{\nu U}{x}}[\zeta f'(\zeta) - f(\zeta)]$$

Thickness of the boundary layer where $v_x = 0.99U$:

$$\delta_{99} = 5\sqrt{\frac{\nu x}{U}} \iff U = 25 \frac{\nu x}{\delta_{99}^2} \simeq 25 \frac{2 \ 10^{-5} \ m^2/s \ 6 \ m}{(0.2 \ m)^2} \simeq 0.1 \ m/s$$

When and how 2D xz laminar open shear flows get unstable ? Example: Blasius boundary layer over a flat plate

Aerodynamical case: x and z in meters: U = 2 m/s:

$$\delta = \sqrt{\frac{\nu x}{U}}, \quad \zeta = \frac{z}{\delta}, \quad v_x = Uf'(\zeta), \quad v_z = \frac{1}{2}\sqrt{\frac{\nu U}{x}}[\zeta f'(\zeta) - f(\zeta)]$$

Thickness of the boundary layer where $v_x = 0.99U$:

$$\delta_{99} = 5\sqrt{\frac{
u x}{U}}$$

When and how 2D xz laminar open shear flows get unstable ? Example: Blasius boundary layer over a flat plate

Aerodynamical case: x and z in meters: U = 0.1 m/s:

Thickness of the boundary layer where $v_x = 0.99U$:

$$\delta_{99} = 5\sqrt{\frac{
u x}{U}}$$

When and how 2D xz laminar open shear flows get unstable ? Example: plane Poiseuille flow

Viscous flow between two plates at $z = \pm h$: velocity and modified pressure:

$$\mathbf{v} = U(z) \, \mathbf{e}_x = U_0 (1 - (z/h)^2) \, \mathbf{e}_x , \quad p = p_{\text{static}} + \rho g Z =$$

When and how 2D xz laminar open shear flows get unstable ? Example: plane Poiseuille flow

Viscous flow between two plates at $z = \pm h$: velocity and modified pressure:

$$\mathbf{v} = U(z) \, \mathbf{e}_x = U_0 (1 - (z/h)^2) \, \mathbf{e}_x , \ p = p_{\text{static}} + \rho g Z = -G x \quad \text{with} \quad G = 0$$

When and how 2D xz laminar open shear flows get unstable ? Example: plane Poiseuille flow

Viscous flow between two plates at $z = \pm h$: velocity and modified pressure:

$$\mathbf{v} = U(z) \mathbf{e}_x = U_0(1-(z/h)^2) \mathbf{e}_x, \quad p = p_{\text{static}} + \rho g Z = -Gx \quad \text{with} \quad G = 2\eta \frac{U_0}{h^2}$$

When and how 2D xz laminar open shear flows get unstable ? Example: plane Poiseuille flow

Viscous flow between two plates at $z = \pm h$: velocity and modified pressure:

$$\mathbf{v} = U(z) \, \mathbf{e}_x = U_0 (1 - (z/h)^2) \, \mathbf{e}_x , \ p = p_{\text{static}} + \rho g Z = -G x \quad \text{with} \quad G = 2\eta \frac{U_0}{h^2}$$

...

Particular case of plane parallel flow !

When and how 2D xz laminar open shear flows get unstable ? General example: plane parallel flows

 $\mathbf{v} ~=~ \mathbf{v}_0 ~=~ U(z) ~\mathbf{e}_{\mathsf{x}} ~, ~~ p ~=~ p_{\mathsf{static}} + \rho g Z ~=~ 0 ~~ \mathsf{in} ~\mathsf{an} ~\mathsf{inviscid} ~\mathsf{fluid},$

 $p = p_{\text{static}} + \rho g Z = -G x$ in a viscous fluid,

is solution of the Euler ($\eta=$ 0) of Navier-Stokes ($\eta\neq$ 0) equation

$$\rho \big[\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} \big] = -\nabla p + \eta \Delta \mathbf{v}$$

$$\iff \mathbf{0} = G \mathbf{e}_x + \eta U''(z) \mathbf{e}_x$$

When and how 2D xz laminar open shear flows get unstable ? General example: plane parallel flows

$$\mathbf{v} = \mathbf{v}_0 = U(z) \mathbf{e}_x$$
, $p = p_{\text{static}} + \rho g Z = 0$ in an inviscid fluid,
 $p = p_{\text{static}} + \rho g Z = -Gx$ in a viscous fluid,
is solution of the Euler ($\eta = 0$) of Navier-Stokes ($\eta \neq 0$) equation

$$\begin{split} \rho \big[\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} \big] &= -\nabla p + \eta \Delta \mathbf{v} \\ \Longleftrightarrow & \mathbf{0} = G \mathbf{e}_x + \eta U''(z) \mathbf{e}_x \\ & \text{whatever } U(z) \quad \text{in an inviscid fluid,} \\ \text{provided } U(z) &= \alpha + \beta z + \gamma z^2 \quad \text{in a viscous fluid.} \end{split}$$

When and how 2D xz laminar open shear flows get unstable ? General example: plane parallel flows

 $\mathbf{v} = \mathbf{v}_0 = U(z) \mathbf{e}_x$, $p = p_{\text{static}} +
ho g Z = 0$ in an inviscid fluid,

 $p = p_{\text{static}} + \rho g Z = -G x$ in a viscous fluid,

is solution of the Euler ($\eta = 0$) of Navier-Stokes ($\eta \neq 0$) equation

Mixing layer

х

Poiseuille flow Couette flow Couette-Poiseuille flows

inviscid fl. viscous fl. Mines Nancy 2022 Plaut - T2TS4 - 12/22

viscous fl.

viscous fl.

plane parallel flows...

Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

Stability analysis of plane parallel flows

Basic flow:

$$\mathbf{v}_0 = U(z) \mathbf{e}_x$$
, $p_0 = -Gx$ with $G = 0$ in an inviscid fluid,
 $G > 0$ in a viscous fluid.

plane parallel flows... 000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

Stability analysis of plane parallel flows

Basic flow:

$$\mathbf{v}_0 = U(z) \mathbf{e}_x$$
, $p_0 = -Gx$ with $G = 0$ in an inviscid fluid,
 $G > 0$ in a viscous fluid.

Basic flow with perturbations:

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{u}, \quad p = p_0 + \widetilde{p}$$

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -(1/\rho) \nabla \rho + \nu \Delta \mathbf{v}$$
(NS)

plane parallel flows... 000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

Stability analysis of plane parallel flows

Basic flow:

$$\mathbf{v}_0 = U(z) \mathbf{e}_x$$
, $p_0 = -Gx$ with $G = 0$ in an inviscid fluid,
 $G > 0$ in a viscous fluid.

Basic flow with perturbations:

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{u}, \quad \boldsymbol{p} = \boldsymbol{p}_0 + \widetilde{\boldsymbol{p}}$$
$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{v} = -(1/\rho) \boldsymbol{\nabla} \boldsymbol{p} + \nu \Delta \mathbf{v}$$
(NS)

$$\operatorname{div} \mathbf{v} = \mathbf{0} \tag{MC}$$

plane parallel flows... 000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

Stability analysis of plane parallel flows

Basic flow:

$$\mathbf{v}_0 = U(z) \mathbf{e}_x$$
, $p_0 = -Gx$ with $G = 0$ in an inviscid fluid,
 $G > 0$ in a viscous fluid.

Basic flow with perturbations:

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{u}, \quad p = p_0 + \widetilde{p}$$

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -(1/\rho) \nabla p + \nu \Delta \mathbf{v} \qquad (NS)$$

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -(1/\rho) \nabla \widetilde{p} + \nu \Delta \mathbf{u} \qquad (NS)$$

$$\operatorname{div} \mathbf{v} = 0 \qquad (MC)$$

$$\operatorname{div} \mathbf{u} = 0 \qquad (MC)$$

plane parallel flows... 000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

Stability analysis of plane parallel flows

Basic flow:

$$\mathbf{v}_0 = U(z) \mathbf{e}_x$$
, $p_0 = -Gx$ with $G = 0$ in an inviscid fluid,
 $G > 0$ in a viscous fluid.

Basic flow with perturbations:

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{u}, \quad p = p_0 + \widetilde{p}$$

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -(1/\rho) \nabla p + \nu \Delta \mathbf{v} \qquad (NS)$$

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -(1/\rho) \nabla \widetilde{p} + \nu \Delta \mathbf{u} \qquad (NS)$$

$$\operatorname{div} \mathbf{v} = 0 \qquad (MC)$$

$$\operatorname{div} \mathbf{u} = 0 \qquad (MC)$$

 \triangleright Unit of length = h half-width of the channel, thickness of the mixing layer... \triangleright Unit of velocity = $U_0 = \max_z U(z)$ scale of U

PlanOpen shear flows...instabilitiesoooooooooo

plane parallel flows... 000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

Stability analysis of plane parallel flows

Basic flow:

$$\mathbf{v}_0 = U(z) \mathbf{e}_x$$
, $p_0 = -Gx$ with $G = 0$ in an inviscid fluid,
 $G > 0$ in a viscous fluid.

Basic flow with perturbations:

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{u}, \quad p = p_0 + \widetilde{p}$$

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -(1/\rho) \nabla p + \nu \Delta \mathbf{v} \qquad (NS)$$

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -(1/\rho) \nabla \widetilde{p} + \nu \Delta \mathbf{u} \qquad (NS)$$

$$\operatorname{div} \mathbf{v} = 0 \qquad (MC)$$

$$\operatorname{div} \mathbf{u} = 0 \qquad (MC)$$

 \triangleright Unit of length = h half-width of the channel, thickness of the mixing layer...

- \triangleright Unit of velocity = $U_0 = \max_z U(z)$ scale of U
- \triangleright Unit of time = h/U_0 advection time

plane parallel flows... 000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

Stability analysis of plane parallel flows

Basic flow:

$$\mathbf{v}_0 = U(z) \mathbf{e}_x$$
, $p_0 = -Gx$ with $G = 0$ in an inviscid fluid,
 $G > 0$ in a viscous fluid.

Basic flow with perturbations:

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{u}, \quad p = p_0 + \widetilde{p}$$

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -(1/\rho) \nabla p + \nu \Delta \mathbf{v} \qquad (NS)$$

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -(1/\rho) \nabla \widetilde{p} + \nu \Delta \mathbf{u} \qquad (NS)$$

$$\operatorname{div} \mathbf{v} = \mathbf{0} \qquad (MC)$$

$$\operatorname{div} \mathbf{u} = \mathbf{0}$$
 (MC)

▷ Unit of length = h half-width of the channel, thickness of the mixing layer... ▷ Unit of velocity = $U_0 = \max_z U(z)$ scale of U

R

 \triangleright Unit of time = h/U_0 advection time

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \widetilde{p} + \mathbf{R}^{-1} \Delta \mathbf{u}$$
 (NS)

with the **Reynolds number** Mines Nancy 2022 Plaut - T2TS4 - **13**/22

$$= U_0 h/
u$$
, $R = \infty$ in an inviscid fluid.

 Plan
 Open shear flows...
 instabilities

 o
 ooo
 oooooo

plane parallel flows... 000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

stability analysis of plane parallel flows

Dimensionless equations for the **perturbations u** of velocity and \tilde{p} of pressure:

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \widetilde{p} + \mathbf{R}^{-1} \Delta \mathbf{u}$$
, (NS)

 $\operatorname{div} \mathbf{u} = \mathbf{0} . \tag{MC}$

 Plan
 Open shear flows...
 instabilities
 plane parallel flows...

 0
 000
 000000
 00000000

Linear stability of viscous plane Poiseuille flow ∞

2D xz stability analysis of plane parallel flows

Dimensionless equations for the **perturbations u** of velocity and \tilde{p} of pressure:

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \widetilde{p} + R^{-1} \Delta \mathbf{u} , \qquad (NS)$$

div $\mathbf{u} = \mathbf{0} . \qquad (MC)$

2D xz perturbations are most relevant, see Tangermann's movies or Ex. 2.7 !

 Plan
 Open shear flows...
 instabilities
 plane

 o
 ooo
 oooo
 oooo
 oooo

plane parallel flows... 000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

2D xz stability analysis of plane parallel flows

Dimensionless equations for the **perturbations u** of velocity and \tilde{p} of pressure:

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \widetilde{p} + \mathbf{R}^{-1} \Delta \mathbf{u} , \qquad (\text{NS})$$

div $\mathbf{u} = \mathbf{0} . \qquad (\text{MC})$

2D *xz* **perturbations** are most relevant, see **Tangermann's movies** or **Ex. 2.7** ! They can be defined by their **streamfunction** $\psi(x,z)$:

$$\mathbf{u} = \operatorname{curl}(\psi \ \mathbf{e}_y) = (\nabla \psi) \times \mathbf{e}_y = -(\partial_z \psi) \ \mathbf{e}_x + (\partial_x \psi) \ \mathbf{e}_z \ .$$

 Plan
 Open shear flows...
 instabilities
 plane

 o
 ooo
 oooo
 oooo
 oooo

plane parallel flows... 000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

2D xz stability analysis of plane parallel flows

Dimensionless equations for the **perturbations u** of velocity and \tilde{p} of pressure:

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \widetilde{p} + \mathbf{R}^{-1} \Delta \mathbf{u} , \qquad (\text{NS})$$

div $\mathbf{u} = \mathbf{0} . \qquad (\text{MC})$

2D xz perturbations are most relevant, see Tangermann's movies or Ex. 2.7 ! They can be defined by their streamfunction $\psi(x,z)$:

$$\mathbf{u} = \operatorname{curl}(\psi \, \mathbf{e}_y) = (\nabla \psi) \times \mathbf{e}_y = -(\partial_z \psi) \, \mathbf{e}_x + (\partial_x \psi) \, \mathbf{e}_z \; .$$

How can one eliminate \tilde{p} in (NS) ?

plane parallel flows... 000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

2D xz stability analysis of plane parallel flows

Dimensionless equations for the **perturbations u** of velocity and \tilde{p} of pressure:

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \widetilde{p} + R^{-1} \Delta \mathbf{u} , \qquad (\text{NS})$$

div $\mathbf{u} = \mathbf{0} . \qquad (\text{MC})$

2D xz perturbations are most relevant, see Tangermann's movies or Ex. 2.7 ! They can be defined by their streamfunction $\psi(x,z)$:

$$\mathbf{u} = \operatorname{curl}(\psi \ \mathbf{e}_y) = (\nabla \psi) \times \mathbf{e}_y = -(\partial_z \psi) \ \mathbf{e}_x + (\partial_x \psi) \ \mathbf{e}_z \ .$$

How can one eliminate \tilde{p} in (NS) ? Consider curl(NS) $\cdot \mathbf{e}_y$ i.e. the vorticity equation:

$$\partial_t (-\Delta \psi) + \left[\partial_z (\mathbf{u} \cdot \nabla u_x) - \partial_x (\mathbf{u} \cdot \nabla u_z) \right] = \mathbf{R}^{-1} \Delta (-\Delta \psi) + U \partial_x (\Delta \psi) - U'' (\partial_x \psi) .$$
 (Vort)

plane parallel flows... 000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

2D xz stability analysis of plane parallel flows

Dimensionless equations for the **perturbations u** of velocity and \tilde{p} of pressure:

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \widetilde{p} + \mathbf{R}^{-1} \Delta \mathbf{u} , \qquad (NS)$$

div $\mathbf{u} = \mathbf{0} . \qquad (MC)$

2D xz perturbations are most relevant, see Tangermann's movies or Ex. 2.7 ! They can be defined by their streamfunction $\psi(x,z)$:

$$\mathbf{u} = \operatorname{curl}(\psi \ \mathbf{e}_y) = (\nabla \psi) \times \mathbf{e}_y = -(\partial_z \psi) \ \mathbf{e}_x + (\partial_x \psi) \ \mathbf{e}_z \ .$$

How can one eliminate \tilde{p} in (NS) ? Consider curl(NS) $\cdot \mathbf{e}_y$ i.e. the vorticity equation:

$$\partial_t (-\Delta \psi) + \left[\partial_z \left(\mathbf{u} \cdot \boldsymbol{\nabla} u_x \right) - \partial_x \left(\mathbf{u} \cdot \boldsymbol{\nabla} u_z \right) \right] = \mathbf{R}^{-1} \Delta (-\Delta \psi) + U \partial_x (\Delta \psi) - U'' (\partial_x \psi) .$$
 (Vort)

$$D \cdot \partial_t \psi = L_{\mathcal{R}} \cdot \psi + N_2(\psi, \psi)$$
 . (Vort)

plane parallel flows... 000000000 Linear stability of viscous plane Poiseuille flow $_{\rm OO}$

2D xz stability analysis of plane parallel flows

Dimensionless equations for the **perturbations u** of velocity and \tilde{p} of pressure:

$$\partial_t \mathbf{u} + U' u_z \mathbf{e}_x + U \partial_x \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \widetilde{p} + \mathbf{R}^{-1} \Delta \mathbf{u} , \qquad (\text{NS})$$

div $\mathbf{u} = \mathbf{0} . \qquad (\text{MC})$

2D xz perturbations are most relevant, see Tangermann's movies or Ex. 2.7 ! They can be defined by their streamfunction $\psi(x,z)$:

$$\mathbf{u} = \operatorname{curl}(\psi \ \mathbf{e}_y) = (\nabla \psi) \times \mathbf{e}_y = -(\partial_z \psi) \ \mathbf{e}_x + (\partial_x \psi) \ \mathbf{e}_z \ .$$

How can one eliminate \tilde{p} in (NS) ? Consider curl(NS) $\cdot \mathbf{e}_y$ i.e. the vorticity equation:

$$\partial_t (-\Delta \psi) + \left[\partial_z (\mathbf{u} \cdot \nabla u_x) - \partial_x (\mathbf{u} \cdot \nabla u_z) \right] = \mathbf{R}^{-1} \Delta (-\Delta \psi) + U \partial_x (\Delta \psi) - U'' (\partial_x \psi) .$$
 (Vort)

$$D \cdot \partial_t \psi = L_{\mathbf{R}} \cdot \psi + N_2(\psi, \psi)$$
 (Vort)

Boundary conditions:

2D xz linear stability analysis of plane parallel flows

$$D \cdot \partial_t \psi = L_{\mathbf{R}} \cdot \psi \tag{Vort}$$

 $D \cdot \partial_t \psi = -\Delta \partial_t \psi , \quad L_{\mathcal{R}} \cdot \psi = \mathcal{R}^{-1} \Delta (-\Delta \psi) + U \partial_x (\Delta \psi) - U'' (\partial_x \psi) ,$

viscous fluid : $\mathbf{u} = \mathbf{0} \iff \partial_x \psi = \partial_z \psi = \mathbf{0}$ if $z = z_{\pm}$, inviscid fluid : $u_z = \mathbf{0} \iff \partial_x \psi = \mathbf{0}$ if $z = z_{\pm}$. Plan Open shear flows... instabilities plane parallel flows... Linear stability of viscous plane Poiseuille flow oo

2D xz linear stability analysis of plane parallel flows

$$D \cdot \partial_t \psi = L_{\mathbf{R}} \cdot \psi \tag{Vort}$$

 $D \cdot \partial_t \psi = -\Delta \partial_t \psi , \quad L_{\mathcal{R}} \cdot \psi = \mathcal{R}^{-1} \Delta (-\Delta \psi) + U \partial_x (\Delta \psi) - U'' (\partial_x \psi) ,$

Normal mode analysis:

 $\psi = \Psi_n(z) \exp(ikx + \sigma t)$

with k = horizontal wavenumber, $k \neq 0$, *n* another label to mark normal modes,

Plan Open shear flows... instabilities plane parallel flows... Linear stability of viscous plane Poiseuille flow ooooo ooo oo

2D xz linear stability analysis of plane parallel flows

$$D \cdot \partial_t \psi = L_{\mathbf{R}} \cdot \psi \tag{Vort}$$

 $D \cdot \partial_t \psi = -\Delta \partial_t \psi$, $L_R \cdot \psi = R^{-1} \Delta (-\Delta \psi) + U \partial_x (\Delta \psi) - U'' (\partial_x \psi)$,

Normal mode analysis:

 $\psi = \Psi_n(z) \exp(ikx + \sigma t)$

with k = horizontal wavenumber, $k \neq 0$, n another label to mark normal modes, $\sigma =$ temporal eigenvalue.

2D xz linear stability analysis of plane parallel flows

$$D \cdot \partial_t \psi = L_R \cdot \psi \tag{Vort}$$

 $D \cdot \partial_t \psi = -\Delta \partial_t \psi , \quad L_{\mathcal{R}} \cdot \psi = \mathcal{R}^{-1} \Delta (-\Delta \psi) + U \partial_x (\Delta \psi) - U'' (\partial_x \psi) ,$

Normal mode analysis:

$$\psi = \Psi_n(z) \exp(ikx + \sigma t) = \Psi_n(z) \exp[ik(x - c_r t)] \exp(kc_i t)$$

with k = horizontal wavenumber, $k \neq 0$, n another label to mark normal modes, $\sigma =$ temporal eigenvalue.

Most often the bulk velocity of the basic flow $\langle U \rangle_z > 0 \quad \Rightarrow \quad$ by advection

 $\sigma = -i\omega = -ikc$ with *c* the complex phase velocity, $c_r > 0$ the real phase velocity.

 $k_{C_i} > 0$ (resp. < 0) the growth rate (resp. the opposite of the damping rate). Mines Nancy 2022 Plaut - T2TS4 - 15/22

$$-\sigma \Delta \psi = \mathbf{R}^{-1} \Delta (-\Delta \psi) + U \partial_x (\Delta \psi) - U'' (\partial_x \psi)$$
 (Vort)

BC at $z=z_{\pm}$: viscous fluid: $\psi = \partial_z \psi = 0$; inviscid fluid: $\psi = 0$.

Normal mode analysis:

$$\psi = \Psi_n(z) \exp(ikx + \sigma t) = \Psi_n(z) \exp[ik(x - c_r t)] \exp(kc_i t)$$

with k = horizontal wavenumber, $k \neq 0$, n another label to mark normal modes, $\sigma =$ temporal eigenvalue.

Most often the bulk velocity of the basic flow $\langle U \rangle_z > 0 \Rightarrow$ by advection

 $\sigma ~=~ -i\omega ~=~ -ikc ~~ {\rm with} ~~ c ~~ {\rm the ~ complex ~ phase ~ velocity}, \\ c_r > 0 ~~ {\rm the ~ real ~ phase ~ velocity},$

 $kc_i > 0$ (resp. < 0) the growth rate (resp. the opposite of the damping rate). Mines Nancy 2022 Plaut - T2TS4 - 16/22

Plan	Open shear flows	instabilities	plane parallel flows	Linear stability of viscous plane Poiseuille flow
0	000	000000	000000000	00

2D xz linear stability analysis of plane parallel flows

$$-\sigma \Delta \psi = \mathbf{R}^{-1} \Delta (-\Delta \psi) + U \partial_x (\Delta \psi) - U'' (\partial_x \psi)$$
 (Vort)

$$\iff ikc\Delta\psi = \mathbf{R}^{-1}\Delta(-\Delta\psi) + ikU\Delta\psi - ikU''\psi \qquad (Vort)$$

BC at $z=z_{\pm}$: viscous fluid: $\psi ~=~ \partial_z \psi ~=~ 0$; inviscid fluid: $\psi ~=~ 0$.

Normal mode analysis:

$$\psi = \Psi_n(z) \exp(ikx + \sigma t) = \Psi_n(z) \exp[ik(x - c_r t)] \exp(kc_i t)$$

with k = horizontal wavenumber, $k \neq 0$, n another label to mark normal modes, $\sigma =$ temporal eigenvalue.

Most often the bulk velocity of the basic flow $\langle U \rangle_z > 0 \Rightarrow$ by advection

 $\sigma = -i\omega = -ikc$ with c the complex phase velocity, $c_r > 0$ the real phase velocity,

 $kc_i > 0$ (resp. < 0) the growth rate (resp. the opposite of the damping rate). Mines Nancy 2022 Plaut - T2TS4 - 16/22

Plan	Open shear flows	instabilities	plane parallel flows	Linear stability of viscous plane Poiseuille flow
0	000	000000	000000000	00

2D xz linear stability analysis of plane parallel flows

$$-\sigma\Delta\psi = \mathbf{R}^{-1}\Delta(-\Delta\psi) + U\partial_x(\Delta\psi) - U''(\partial_x\psi)$$
 (Vort)

$$\iff ikc\Delta\psi = \mathbf{R}^{-1}\Delta(-\Delta\psi) + ikU\Delta\psi - ikU''\psi \qquad (Vort)$$

$$\iff (U-c)\Delta\psi - U''\psi = (ikR)^{-1}\Delta\Delta\psi$$
 (Vort)

Orr - **Sommerfeld eq.** in a viscous fluid, **Rayleigh eq.** in an inviscid fluid $(R = \infty)$

BC at $z=z_\pm$: viscous fluid: $\psi~=~\partial_z\psi~=~0$; inviscid fluid: $\psi~=~0$.

Normal mode analysis:

$$\psi = \Psi_n(z) \exp(ikx + \sigma t) = \Psi_n(z) \exp[ik(x - c_r t)] \exp(kc_i t)$$

with k = horizontal wavenumber, $k \neq 0$, n another label to mark normal modes, $\sigma =$ temporal eigenvalue.

Most often the bulk velocity of the basic flow $\langle U \rangle_z > 0 \Rightarrow$ by advection

 $\sigma = -i\omega = -ikc$ with c the complex phase velocity, $c_r > 0$ the real phase velocity,

 $kc_i > 0$ (resp. < 0) the growth rate (resp. the opposite of the damping rate). Mines Nancy 2022 Plaut - T2TS4 - 16/22 Plan Open shear flows... instabilities plane parallel flows... 00000000000

Linear stability of viscous plane Poiseuille flow

2D xz linear stability analysis of inviscid plane parallel flows

Normal mode analysis: assume \exists one amplified mode

 $\psi = \Psi(z) \exp(ikx - ikct) = \Psi(z) \exp[ik(x - c_r t)] \exp(kc_i t)$

with c_r the real phase velocity, $kc_i > 0$ the growth rate.

Satisfies Rayleigh equation $(U-c)\Delta\psi - U''\psi = 0$ with BC $\psi = 0$ at $z = z_{\pm}$.

Linear stability of viscous plane Poiseuille flow 00

2D xz linear stability analysis of inviscid plane parallel flows

Normal mode analysis: assume \exists one amplified mode

 $\psi = \Psi(z) \exp(ikx - ikct) = \Psi(z) \exp[ik(x - c_r t)] \exp(kc_i t)$

with c_r the real phase velocity, $kc_i > 0$ the growth rate.

Satisfies Rayleigh equation (1

$$(U-c)\Delta\psi - U''\psi = 0$$
 with BC $\psi = 0$ at $z = z_{\pm}$.

Ex. 2.1

 \rhd Express $\Psi''(z)$ as a function of $\Psi(z)$, U(z), U''(z), k and c.

 Plan
 Open shear flows...
 instabilities
 plane parallel flows...
 Linear stability

 0
 000
 00000000000
 00

Linear stability of viscous plane Poiseuille flow ∞

2D xz linear stability analysis of inviscid plane parallel flows

Normal mode analysis: assume \exists one amplified mode

 $\psi = \Psi(z) \exp(ikx - ikct) = \Psi(z) \exp[ik(x - c_r t)] \exp(kc_i t)$

with c_r the real phase velocity, $kc_i > 0$ the growth rate.

Satisfies Rayleigh equation $(U-c)\Delta\psi - U''\psi = 0$ with BC $\psi = 0$ at $z = z_{\pm}$.

Ex. 2.1

 \rhd Express $\Psi''(z)$ as a function of $\Psi(z)$, U(z), U''(z), k and c.

Dash By multiplication with a suitable function and integration over $z \in [z_-,z_+]$, show that

$$\int_{z_{-}}^{z_{+}} (k^{2} |\Psi(z)|^{2} + |\Psi'(z)|^{2}) dz + \int_{z_{-}}^{z_{+}} \frac{U''(z) |\Psi(z)|^{2}}{U(z) - c} dz = 0$$

then
$$\int_{z_{-}}^{z_{+}} \frac{U''(z) |\Psi(z)|^2}{|U(z) - c|^2} dz = 0$$

 Plan
 Open shear flows...
 instabilities
 plane parallel flows...

 0
 000
 000000
 0000000000

Linear stability of viscous plane Poiseuille flow ∞

2D xz linear stability analysis of inviscid plane parallel flows

Normal mode analysis: assume \exists one amplified mode

$$\psi = \Psi(z) \exp(ikx - ikct) = \Psi(z) \exp[ik(x - c_r t)] \exp(kc_i t)$$

with c_r the real phase velocity, $kc_i > 0$ the growth rate.

Satisfies Rayleigh equation (U

$$(-c)\Delta\psi - U''\psi = 0$$
 with BC $\psi = 0$ at $z = z_{\pm}$.

Ex. 2.1 Rayleigh's inflection point criterion

 \rhd Express $\Psi''(z)$ as a function of $\Psi(z), U(z), U''(z), k$ and c.

Dash By multiplication with a suitable function and integration over $z \in [z_-,z_+]$, show that

$$\int_{z_{-}}^{z_{+}} (k^{2} |\Psi(z)|^{2} + |\Psi'(z)|^{2}) dz + \int_{z_{-}}^{z_{+}} \frac{U''(z) |\Psi(z)|^{2}}{U(z) - c} dz = 0$$

then $\int_{z_{-}}^{z_{+}} \frac{U''(z) |\Psi(z)|^{2}}{|U(z) - c|^{2}} dz = 0 \implies \text{if } U'' \neq 0, U'' \text{ must change sign somewhere,}$ there must exist an **inflection point** in the *U*-profile.

 Plan
 Open shear flows...
 instabilities
 plane parallel flows...

 0
 000
 000000
 000000

Linear stability of viscous plane Poiseuille flow 00

2D xz linear stability analysis of inviscid plane parallel flows

Normal mode analysis: assume \exists one amplified mode

$$\psi = \Psi(z) \exp(ikx - ikct) = \Psi(z) \exp[ik(x - c_r t)] \exp(kc_i t)$$

with c_r the real phase velocity, $kc_i > 0$ the growth rate.

Satisfies Rayleigh equation $(U-c)\Delta u$

$$(-c)\Delta\psi - U''\psi = 0$$
 with BC $\psi = 0$ at $z = z_{\pm}$.

Ex. 2.1 Rayleigh's inflection point criterion

 \rhd Express $\Psi''(z)$ as a function of $\Psi(z), U(z), U''(z), k$ and c.

Dash By multiplication with a suitable function and integration over $z \in [z_-,z_+]$, show that

$$\int_{z_{-}}^{z_{+}} (k^{2} |\Psi(z)|^{2} + |\Psi'(z)|^{2}) dz + \int_{z_{-}}^{z_{+}} \frac{U''(z) |\Psi(z)|^{2}}{U(z) - c} dz = 0$$

then $\int_{z_{-}}^{z_{+}} \frac{U''(z) |\Psi(z)|^{2}}{|U(z) - c|^{2}} dz = 0 \Rightarrow \text{ if } U'' \neq 0, U'' \text{ must change sign somewhere,}$ there must exist an inflection point in the U-profile.

 \triangleright U'' = 0 everywhere \Rightarrow contradiction \Rightarrow flow is stable (possibly only neutrally). Mines Nancy 2022 Plaut - T2TS4 - 17/22
 Plan
 Open shear flows...
 instabilities
 plane parallel flows...
 Linear stability of viscous plane Poiseuille flow

 0
 000
 0000000000
 00

Instability of an inviscid plane parallel flow, the mixing layer

The hyperbolic tangent mixing layer

 $\mathbf{v}_0 = U_0 \tanh(z/h) \mathbf{e}_x$

displays a Kelvin-Helmholtz Instability !

[Plaut 2018 *Mécanique des fluides : des bases à la turbulence*. Cours Mines Nancy 2A. Film sur la page web de ce module]

 Plan
 Open shear flows...
 instabilities
 plane parallel flows...
 Linear stability of viscous plane Poiseuille flow

 0
 000
 0000000000
 00

Instability of an inviscid plane parallel flow, the mixing layer

The hyperbolic tangent mixing layer

 $\mathbf{v}_0 = U_0 \tanh(z/h) \mathbf{e}_x$

displays a Kelvin-Helmholtz instability !

Time development: the perturbation u becomes large !

Plaut 2018 *Mécanique des fluides : des bases à la turbulence*. Cours Mines Nancy 2A. Film sur la page web de ce module

Stability of inviscid plane Poiseuille flow

Plane Poiseuille flow of an **inviscid fluid** has no inflection point \Rightarrow it is stable.

 Plan
 Open shear flows...
 instabilities
 plane parallel flows...
 Linear stability of viscous plane Poiseuille flow

 Stability of viscous plane Poiseuille flow
 •••
 •••

Plane Poiseuille flow of a viscous fluid might be unstable ?

 Plan
 Open shear flows...
 instabilities
 plane parallel flows...
 Linear stability of viscous plane Poiseuille flow

 Stability of viscous plane
 Poiseuille flow
 •••

Plane Poiseuille flow of a viscous fluid might be unstable ?

Must calculate normal modes

$$\psi = \Psi(z) \exp(ikx + \sigma t) = \Psi(z) \exp[ik(x - c_r t)] \exp(kc_i t)$$

by solving the Orr - Sommerfeld equation

 $\mathbf{v}_0 = (1-z^2) \mathbf{e}_x$

$$\sigma D\psi = -\sigma \Delta \psi = L_R \psi = -R^{-1} \Delta \Delta \psi + ik(U \Delta \psi - U'' \psi)$$

with the BC at $z = \pm 1$: $\psi = \partial_z \psi = 0$.

Eigenvalue $\sigma = -ikc$; $c_r = -\sigma_i/k$ phase velocity; $\sigma_r > 0 \iff$ amplified mode $\sigma_r = 0 \iff$ neutral mode $\sigma_r < 0 \iff$ damped mode

Problem 2.1

Stability of viscous plane Poiseuille flow: problem 2.1

$$\sigma D\Psi = -\sigma \Delta \Psi = L_{R}\Psi = -R^{-1}\Delta \Delta \Psi + ik(U\Delta \Psi - U''\Psi)$$
(OS)
with $\Delta = -k^{2} + \frac{d^{2}}{dz^{2}}$

and the boundary conditions $\Psi = \Psi' = 0$ if $z = \pm 1$.

Stability of viscous plane Poiseuille flow: problem 2.1

$$\sigma D\Psi = -\sigma \Delta \Psi = L_{R}\Psi = -R^{-1}\Delta \Delta \Psi + ik(U\Delta \Psi - U''\Psi)$$
 (OS)

with
$$\Delta = -k^2 + \frac{d^2}{dz^2}$$

and the boundary conditions $\ \ \Psi \ = \ \Psi' \ = \ 0 \quad \mbox{if} \quad z = \pm 1$.

Spectral expansion taking into account the BC and even symmetry under $z \mapsto -z$:

$$\Psi(z) = \sum_{n=1}^{N} \Psi_n F_n(z)$$

with $F_n(z) = (z-1)^2 (z+1)^2 T_{2n-2}(z) = (z^2-1)^2 T_{2n-2}(z)$,

 $T_n(z) = n^{th}$ Chebyshev polynomial of the first kind.

Stability of viscous plane Poiseuille flow: problem 2.1

$$\sigma D\Psi = -\sigma \Delta \Psi = L_R \Psi = -R^{-1} \Delta \Delta \Psi + ik(U \Delta \Psi - U'' \Psi)$$
 (OS

with
$$\Delta = -k^2 + \frac{d^2}{dz^2}$$

and the boundary conditions $\ \ \Psi \ = \ \Psi' \ = \ 0 \quad \mbox{if} \quad z = \pm 1$.

Spectral expansion taking into account the BC and even symmetry under $z \mapsto -z$:

$$\Psi(z) = \sum_{n=1}^{N} \Psi_n F_n(z)$$

with $F_n(z) = (z-1)^2 (z+1)^2 T_{2n-2}(z) = (z^2-1)^2 T_{2n-2}(z)$,

 $T_n(z) = n^{th}$ Chebyshev polynomial of the first kind.

Evaluate (OS) at the Gauss-Lobatto collocation points

$$z_m = \cos[m\pi/(2N+1)] \quad \text{for} \quad m \in \{1, 2, \cdots, N\}$$
$$\iff \sigma \sum_n \Psi_n DF_n(z_m) = \sum_n \Psi_n LF_n(z_m) \quad \Longleftrightarrow \quad \sigma MD \cdot V = ML \cdot V$$
with $V = (\Psi_1, ..., \Psi_N)^T$,

Stability of viscous plane Poiseuille flow: problem 2.1

$$\sigma D\Psi = -\sigma \Delta \Psi = L_{R}\Psi = -R^{-1}\Delta \Delta \Psi + ik(U\Delta \Psi - U''\Psi)$$
 (OS

with
$$\Delta = -k^2 + \frac{d^2}{dz^2}$$

and the boundary conditions $\ \ \Psi \ = \ \Psi' \ = \ 0 \quad \mbox{if} \quad z = \pm 1 \; .$

Spectral expansion taking into account the BC and even symmetry under $z \mapsto -z$:

$$\Psi(z) = \sum_{n=1}^{N} \Psi_n F_n(z)$$

with $F_n(z) = (z-1)^2 (z+1)^2 T_{2n-2}(z) = (z^2-1)^2 T_{2n-2}(z)$,

 $T_n(z) = n^{th}$ Chebyshev polynomial of the first kind.

Evaluate (OS) at the Gauss-Lobatto collocation points

$$z_m = \cos[m\pi/(2N+1)] \quad \text{for} \quad m \in \{1, 2, \cdots, N\}$$
$$\iff \quad \sigma \sum_n \Psi_n DF_n(z_m) = \sum_n \Psi_n LF_n(z_m) \iff \quad \sigma MD \cdot V = ML \cdot V$$
with $V = (\Psi_1, ..., \Psi_N)^T$, $[MD]_{mn} = DF_n(z_m)$, $[ML]_{mn} = LF_n(z_m)$.
Mines Nancy 2022 Plaut - T2TS4 - 22/22