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Transition to (spatio-temporal complexity and) turbulence

in thermoconvection & aerodynamics

http://emmanuelplaut.perso.univ-lorraine.fr/t2t

Session Date Content

1 - 29/09 Thermoconvection: phenomena, equations, differentially heated cavity,

cavity heated from below = RB cavity, linear stability analysis

2 - 06/10 RB Thermoconvection: linear stability analysis

3 - 13/10 RB Thermoconvection: (weakly) nonlinear phenomena

→ 4 - 20/10 Aerodynamics of OSF: linear stability analysis

5 - 27/10 Aerodynamics of OSF: linear & weakly nonlinear stability analyses

6 - 10/11 Aerodynamics of OSF: nonlinear phenomena

24/11 Examination

RB∗ = Rayleigh-Bénard OSF∗ = Open Shear Flows

Today: session 4: transition in open shear flows:

• Introduction: OSF, instabilities of OSF, Rayleigh criterion

• Numerical linear stability analysis of plane Poiseuille flow: towards TS waves
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Introduction: open shear flows, a new family of systems,
quite different from Rayleigh-Bénard thermoconvection systems

RB Thermoconvection Open shear flows (OSF)

[ Leclerc & Métivier ] [ Homsy et al. ]

Fields v v

T T = constant

Base state v = 0 trivial v 6= 0 complex

T = T (z) T = constant

Eqs and nonlinearities Navier-Stokes contains (v ·∇)v Navier-Stokes contains (v ·∇)v

Heat equation contains v ·∇T Heat equation trivially fulfilled

OSF quite interesting but also quite challenging:

easier to understand v ·∇T than (v ·∇)v !
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Open shear flows are often encountered in aerodynamics

Turbulent (?) flow around an obstacle, an airfoil, at an angle of attack α = 15o,
observed with smoke in a wind tunnel at U. Stanford:

[ Homsy et al. 2019 Multimedia Fluid Mechanics Online. Cambridge University Press

Films en bas de cette page web en fonction de α ]
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Open shear flows are often encountered in aerodynamics

Laminar flow around an obstacle, an airfoil, also exists, and may be computed,
for the external flow, with potential flow theory - complex analysis techniques:

[ Plaut 2018 Mécanique des fluides : des bases à la turbulence. Cours Mines Nancy 2A.

Film sur la page web de ce module ]

When and how laminar open shear flows get unstable and go to turbulence ?
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When and how laminar open shear flows get unstable ?

In the case of open shear flows around an airfoil,

the transition to turbulence develops into space,

and it changes the lift and drag !

Hybrid Delayed Detached Eddy Simulations,

with the Spalart-Allmaras model, of flow around an airfoil at Re = U∞c/ν = 8 104,

with a laminar free stream and an angle of attack α = 4o that implies separation:

In green: iso-surface of zero streamwise velocity ' separated region

In colors: Q iso-surfaces, coloured by vorticity magnitude ' vortices

[ Tangermann & Klein 2019 in New Results in Numerical and Experimental Fluid Mechanics XII - Springer

www.unibw.de/numerik ]
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Q criterion to detect numerically vortices

Vortices detected by the condition that vorticity dominates strain

in the local gradient of velocity

∇v = Ω + S

with the rate-of-vorticity tensor

Ω =
1

2

(
∇v − ∇vT

)
and the rate-of-strain tensor

S =
1

2

(
∇v + ∇vT

)
.

Thus

Q =
1

2

(
Ω : ΩT − S : ST

)
=

1

2
(Ωij Ωij − SijSij ) = − 1

2
(∂xi vj )(∂xj vi ) > 0 .

[ Hunt, Wray & Moin 1988 Eddies, streams, and convergence zones in turbulent flows. NASA report;

Jeong & Hussain 1995 On the identification of a vortex. J. Fluid Mech. ]
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When and how laminar open shear flows get unstable ?

In the case of open shear flows around an airfoil,

the transition to turbulence develops into space,

and it changes the lift and drag !

Hybrid Delayed Detached Eddy Simulations,

with the Spalart-Allmaras model, of flow around an airfoil at Re = U∞c/ν = 8 104,

with a laminar free stream and an angle of attack α = 4 that implies separation:

In green: iso-surface of zero streamwise velocity ' separated region

In colors: Q iso-surfaces, coloured by vorticity magnitude ' vortices

[ Tangermann & Klein 2019 - www.unibw.de/numerik ]

This is quite complex

→ we want to study this question in simpler cases !
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When and how

2D xz

laminar open shear flows get unstable ?

Example: Blasius boundary layer over a flat plate

Aerodynamical case: x and z in meters:

U = 0.1 m/s :

x

z

1 2 3 4 5 6

0.2

0.4

0.6

δ =

√
νx

U
, ζ =

z

δ
, vx = Uf ′(ζ) , vz =

1

2

√
νU

x
[ζf ′(ζ)− f (ζ)]

Thickness of the boundary layer where vx = 0.99U :

δ99 = 5

√
νx

U
⇐⇒ U = 25

νx

δ2
99

' 25
2 10−5 m2/s 6 m

(0.2 m)2
' 0.1 m/s
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When and how 2D xz laminar open shear flows get unstable ?
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When and how 2D xz laminar open shear flows get unstable ?
Example: plane Poiseuille flow

x

z

1 2 3 4 5 6

-1

-0.5

0.5

1

Viscous flow between two plates at z = ±h : velocity and modified pressure:

v = U(z) ex = U0(1− (z/h)2) ex , p = pstatic + ρgZ =

−Gx with G = 2η
U0

h2
.

Particular case of plane parallel flow !
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When and how 2D xz laminar open shear flows get unstable ?
General example: plane parallel flows

v = v0 = U(z) ex , p = pstatic + ρgZ = 0 in an inviscid fluid,

p = pstatic + ρgZ = −Gx in a viscous fluid,

is solution of the Euler (η = 0) of Navier-Stokes (η 6= 0) equation

ρ
[
∂tv + (v ·∇)v

]
= −∇p + η∆v

⇐⇒ 0 = Gex + ηU ′′(z)ex

whatever U(z) in an inviscid fluid,

provided U(z) = α + βz + γz2 in a viscous fluid.

Mixing layer Poiseuille flow Couette flow Couette-Poiseuille flows

x

z

x

z

x

z

x

z

inviscid fl. viscous fl. viscous fl. viscous fl.
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Stability analysis of plane parallel flows

Basic flow:

v0 = U(z) ex , p0 = −Gx with G = 0 in an inviscid fluid,

G > 0 in a viscous fluid.

Basic flow with perturbations:

v = v0 + u , p = p0 + p̃

∂tv + (v ·∇)v = − (1/ρ)∇p + ν∆v (NS)

∂tu + U ′uz ex + U∂x u + (u ·∇)u = − (1/ρ)∇p̃ + ν∆u (NS)

divv = 0 (MC)

divu = 0 (MC)

� Unit of length = h half-width of the channel, thickness of the mixing layer...

� Unit of velocity = U0 = maxz U(z) scale of U

� Unit of time = h/U0 advection time

∂tu + U ′uz ex + U∂x u + (u ·∇)u = −∇p̃ + R−1 ∆u (NS)

with the Reynolds number R = U0h/ν , R = ∞ in an inviscid fluid.
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Mines Nancy 2022 Plaut - T2TS4 - 13/22



Plan Open shear flows... instabilities plane parallel flows... Linear stability of viscous plane Poiseuille flow

2D xz

stability analysis of plane parallel flows
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2D xz perturbations are most relevant, see Tangermann’s movies or Ex. 2.7 !

They can be defined by their streamfunction ψ(x ,z) :

u = curl(ψ ey ) = (∇ψ)× ey = − (∂zψ) ex + (∂xψ) ez .

How can one eliminate p̃ in (NS) ? Consider curl(NS) · ey i.e. the vorticity equation:

∂t(−∆ψ) +
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)]
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+ U∂x (∆ψ)−U ′′(∂xψ) .

(Vort)

D · ∂tψ = LR · ψ + N2(ψ,ψ) . (Vort)

Boundary conditions:

viscous fluid : u = 0 ⇐⇒ ∂xψ = ∂zψ = 0 if z = z± ,

inviscid fluid : uz = 0 ⇐⇒ ∂xψ = 0 if z = z± .
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2D xz linear stability analysis of plane parallel flows

D · ∂tψ = LR · ψ (Vort)

D · ∂tψ = −∆∂tψ , LR · ψ = R−1∆(−∆ψ) + U∂x (∆ψ)− U ′′(∂xψ) ,

viscous fluid : u = 0 ⇐⇒ ∂xψ = ∂zψ = 0 if z = z± ,

inviscid fluid : uz = 0 ⇐⇒ ∂xψ = 0 if z = z± .

Normal mode analysis:

ψ = Ψn(z) exp(ikx + σt)

= Ψn(z) exp[ik(x − cr t)] exp(kci t)

with k = horizontal wavenumber, k 6= 0, n another label to mark normal modes,

σ = temporal eigenvalue.

Most often the bulk velocity of the basic flow 〈U〉z > 0 ⇒ by advection

σ = − iω = − ikc with c the complex phase velocity,

cr > 0 the real phase velocity,

kci > 0 (resp. < 0) the growth rate (resp. the opposite of the damping rate).
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2D xz linear stability analysis of plane parallel flows

−σ∆ψ = R−1∆(−∆ψ) + U∂x (∆ψ)− U ′′(∂xψ) (Vort)

⇐⇒ ikc∆ψ = R−1∆(−∆ψ) + ikU∆ψ − ikU ′′ψ (Vort)

⇐⇒ (U − c)∆ψ − U ′′ψ = (ikR)−1∆∆ψ (Vort)

Orr - Sommerfeld eq. in a viscous fluid, Rayleigh eq. in an inviscid fluid (R =∞)

BC at z = z± : viscous fluid: ψ = ∂zψ = 0 ; inviscid fluid: ψ = 0 .

Normal mode analysis:
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2D xz linear stability analysis of inviscid plane parallel flows

Normal mode analysis: assume ∃ one amplified mode

ψ = Ψ(z) exp(ikx − ikct) = Ψ(z) exp[ik(x − cr t)] exp(kci t)

with cr the real phase velocity, kci > 0 the growth rate.

Satisfies Rayleigh equation (U − c)∆ψ − U ′′ψ = 0 with BC ψ = 0 at z = z±.

Ex. 2.1

Rayleigh’s inflection point criterion

� Express Ψ′′(z) as a function of Ψ(z), U(z), U ′′(z), k and c.

� By multiplication with a suitable function and integration over z ∈ [z−,z+], show that∫ z+

z−

(
k2|Ψ(z)|2 + |Ψ′(z)|2

)
dz +

∫ z+

z−

U ′′(z) |Ψ(z)|2

U(z)− c
dz = 0

then

∫ z+

z−

U ′′(z) |Ψ(z)|2

|U(z)− c|2 dz = 0

⇒ if U ′′ 6= 0 , U ′′ must change sign somewhere,

there must exist an inflection point in the U-profile.

� U ′′ = 0 everywhere ⇒ contradiction ⇒ flow is stable (possibly only neutrally).
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Instability of an inviscid plane parallel flow, the mixing layer

The hyperbolic tangent mixing layer

v0 = U0 tanh(z/h) ex x

z

displays a Kelvin-Helmholtz Instability !

Initial condition v = v0 + u with u small:

[ Plaut 2018 Mécanique des fluides : des bases à la turbulence. Cours Mines Nancy 2A.

Film sur la page web de ce module ]
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Instability of an inviscid plane parallel flow, the mixing layer

The hyperbolic tangent mixing layer

v0 = U0 tanh(z/h) ex x

z

displays a Kelvin-Helmholtz instability !

Time development: the perturbation u becomes large !

[ Plaut 2018 Mécanique des fluides : des bases à la turbulence. Cours Mines Nancy 2A.

Film sur la page web de ce module ]
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Stability of inviscid plane Poiseuille flow

Plane Poiseuille flow of an inviscid fluid has no inflection point ⇒ it is stable.

v0 = U0(1− (z/h)2) ex x

z
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Stability of viscous plane Poiseuille flow

Plane Poiseuille flow of a viscous fluid might be unstable ?

v0 = (1− z2) ex x

z

Must calculate normal modes

ψ = Ψ(z) exp(ikx + σt) = Ψ(z) exp[ik(x − cr t)] exp(kci t)

by solving the Orr - Sommerfeld equation

σDψ = − σ∆ψ = LRψ = − R−1∆∆ψ + ik(U∆ψ − U ′′ψ)

with the BC at z = ±1 : ψ = ∂zψ = 0.

Eigenvalue σ = −ikc ; cr = −σi/k phase velocity ; σr > 0 ↔ amplified mode

σr = 0 ↔ neutral mode

σr < 0 ↔ damped mode

Problem 2.1
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Stability of viscous plane Poiseuille flow: problem 2.1

σDΨ = − σ∆Ψ = LR Ψ = − R−1∆∆Ψ + ik(U∆Ψ− U ′′Ψ) (OS)

with ∆ = − k2 +
d2

dz2

and the boundary conditions Ψ = Ψ′ = 0 if z = ±1 .

Spectral expansion taking into account the BC and even symmetry under z 7→ −z :

Ψ(z) =
N∑

n=1

ΨnFn(z)

with Fn(z) = (z − 1)2 (z + 1)2 T2n−2(z) = (z2 − 1)2 T2n−2(z) ,

Tn(z) = nth Chebyshev polynomial of the first kind.

Evaluate (OS) at the Gauss-Lobatto collocation points

zm = cos[mπ/(2N + 1)] for m ∈ {1,2, · · · ,N}

⇐⇒ σ
∑

n

ΨnDFn(zm) =
∑

n

ΨnLFn(zm) ⇐⇒ σMD · V = ML · V

with V = (Ψ1, ...,ΨN )T , [MD]mn = DFn(zm) , [ML]mn = LFn(zm) .
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