
Plan RBT with slip BC: model Linear stability analysis

Transition to (spatio-temporal complexity and) turbulence

in thermoconvection & aerodynamics

http://emmanuelplaut.perso.univ-lorraine.fr/t2t

Session Date Content

1 - 29/09 Thermoconvection: phenomena, equations, differentially heated cavity,

cavity heated from below = RB cavity, linear stability analysis

→ 2 - 06/10 RB Thermoconvection: linear & weakly nonlinear stability analysis

3 - 13/10 RB Thermoconvection: nonlinear phenomena

4 - 20/10 Aerodynamics of OSF: linear stability analysis

5 - 27/10 Aerodynamics of OSF: linear & weakly nonlinear stability analyses

6 - 10/11 Aerodynamics of OSF: nonlinear phenomena

24/11 Examination

RB = Rayleigh-Bénard OSF = Open Shear Flows

• I propose 2 possible homeworks (HW) today,

you will choose between 3 possible HW...
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Transition to spatial complexity in Rayleigh-Bénard thermoconvection

Today: session 2

1 The system - The equations and (stress-free) slip boundary conditions

2 Linear stability analysis - Structures - Patterning bifurcation

Next thursday: session 3

2 Linear stability analysis - Time dependence

3 Weakly nonlinear analysis: towards the amplitude equation...

� The direct and adjoint mode bases... at order A...

� Quasistatic elimination of the passive mode at order A2 - Nusselt number

� Resonant terms at order A3...

� Amplitude equation, supercritical bifurcation

4 Results in the highly nonlinear regime, for other BC, and another geometry...
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Rayleigh-Bénard Thermoconvection: dimensionless model
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• Unit of length = thickness d

• Unit of time = heat diffuso time τtherm =
d2

κ

• Unit of velocity = V =
d

τtherm
=

κ

d

• Unit of temperature = δT = T2 − T1

Introduce a dimensionless perturbato of temperature θ, s.t. the dimensionless temperature

T ′ = T ′0 − z ′ + θ

⇒ dimensionless Oberbeck - Boussinesq equations

divv = 0 , (MC)

P−1 dv

dt
= Rθ ez − ∇p + ∆v , (NS)

dθ

dt
= ∆θ + vz , (HE)

with the Rayleigh number R =

α δT g d3/(κν)

and the Prandtl number P =

ν/κ

.
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Rayleigh-Bénard Thermoconvection: dimensionless model
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OB equations:

divv = 0 , (MC)

P−1 dv

dt
= Rθ ez − ∇p + ∆v , (NS)

dθ

dt
= ∆θ + vz , (HE)

Isotropy of the problem in the horizontal plane ⇒ focus on 2D xz solutions

v = vx(x ,z ,t) ex + vz(x ,z ,t) ez , θ = θ(x ,z ,t) .

Solve (MC)

by introducing a streamfunction ψ such that

v = curl(ψ ey ) = (∇ψ)× ey = − (∂zψ) ex + (∂xψ) ez .

Eliminate p in (NS) by considering curl(NS) · ey i.e. the vorticity equation:

P−1∂t(−∆ψ) + P−1[∂z(v ·∇vx
)
− ∂x

(
v ·∇vz

)]
= −R∂xθ + ∆(−∆ψ) . (Vort)

Mines Nancy 2022 Plaut - T2TS2 - 4/11



Plan RBT with slip BC: model Linear stability analysis

Rayleigh-Bénard Thermoconvection: dimensionless model

T

d

T

x

y
z 2

1

g

OB equations:

divv = 0 , (MC)

P−1 dv

dt
= Rθ ez − ∇p + ∆v , (NS)

dθ

dt
= ∆θ + vz , (HE)

Isotropy of the problem in the horizontal plane ⇒ focus on 2D xz solutions

v = vx(x ,z ,t) ex + vz(x ,z ,t) ez , θ = θ(x ,z ,t) .

Solve (MC) by introducing a streamfunction ψ such that

v = curl(ψ ey ) = (∇ψ)× ey = − (∂zψ) ex + (∂xψ) ez .

Eliminate p in (NS) by considering curl(NS) · ey i.e. the vorticity equation:

P−1∂t(−∆ψ) + P−1[∂z(v ·∇vx
)
− ∂x

(
v ·∇vz

)]
= −R∂xθ + ∆(−∆ψ) . (Vort)

Mines Nancy 2022 Plaut - T2TS2 - 4/11



Plan RBT with slip BC: model Linear stability analysis

Rayleigh-Bénard Thermoconvection: dimensionless model

T

d

T

x

y
z 2

1

g

OB equations:

divv = 0 , (MC)

P−1 dv

dt
= Rθ ez − ∇p + ∆v , (NS)

dθ

dt
= ∆θ + vz , (HE)

Isotropy of the problem in the horizontal plane ⇒ focus on 2D xz solutions

v = vx(x ,z ,t) ex + vz(x ,z ,t) ez , θ = θ(x ,z ,t) .

Solve (MC) by introducing a streamfunction ψ such that

v = curl(ψ ey ) = (∇ψ)× ey = − (∂zψ) ex + (∂xψ) ez .

Eliminate p in (NS)

by considering curl(NS) · ey i.e. the vorticity equation:

P−1∂t(−∆ψ) + P−1[∂z(v ·∇vx
)
− ∂x

(
v ·∇vz

)]
= −R∂xθ + ∆(−∆ψ) . (Vort)

Mines Nancy 2022 Plaut - T2TS2 - 4/11



Plan RBT with slip BC: model Linear stability analysis

Rayleigh-Bénard Thermoconvection: dimensionless model

T

d

T

x

y
z 2

1

g

OB equations:

divv = 0 , (MC)

P−1 dv

dt
= Rθ ez − ∇p + ∆v , (NS)

dθ

dt
= ∆θ + vz , (HE)

Isotropy of the problem in the horizontal plane ⇒ focus on 2D xz solutions

v = vx(x ,z ,t) ex + vz(x ,z ,t) ez , θ = θ(x ,z ,t) .

Solve (MC) by introducing a streamfunction ψ such that

v = curl(ψ ey ) = (∇ψ)× ey = − (∂zψ) ex + (∂xψ) ez .

Eliminate p in (NS) by considering curl(NS) · ey i.e. the vorticity equation:

P−1∂t(−∆ψ) + P−1[∂z(v ·∇vx
)
− ∂x

(
v ·∇vz

)]
= −R∂xθ + ∆(−∆ψ) . (Vort)

Mines Nancy 2022 Plaut - T2TS2 - 4/11



Plan RBT with slip BC: model Linear stability analysis

RBT: 2D xz model

with slip BC
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Local state vector: V = (ψ,θ) s. t.

v = − (∂zψ) ex + (∂xψ) ez ,

T = T0 − z + θ ,

obeys the system of coupled PDE

D · ∂tV = LR · V + N2(V ,V ) .

[D · ∂tV ]ψ = P−1(−∆∂tψ) , [LR · V ]ψ = −R∂xθ + ∆(−∆ψ) , (Vort)

[N2(V ,V )]ψ = P−1[∂x(v ·∇vz
)
− ∂z

(
v ·∇vx

)]
, (Vort)

[D · ∂tV ]θ = ∂tθ , [LR · V ]θ = ∆θ + vz , [N2(V ,V )]θ = − v ·∇θ . (HE)

Boundary conditions on θ : isothermal boundaries: θ = 0 if z = ±1/2.

Boundary conditions on ψ i.e. v : slip without stress (‘stress-free’):

vz = 0 and τxz = ∂zvx = 0 ⇐⇒ ∂xψ = ∂2
zψ = 0 if z = ±1/2 .

Extended geometry in the xy plane: (no BC or) periodic BC under x 7→ x + L.
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RBT: 2D xz model with slip BC
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RBT 2D xz model with slip BC: linear stability analysis
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Local state vector: V = (ψ,θ) s. t.

v = − (∂zψ) ex + (∂xψ) ez ,

T = T0 − z + θ ,

D · ∂tV = LR · V ,

[D · ∂tV ]ψ = P−1(−∆∂tψ) , [LR · V ]ψ = −R∂xθ + ∆(−∆ψ) , (VortE)

[D · ∂tV ]θ = ∂tθ , [LR · V ]θ = ∆θ + vz , (HE)

∂xψ = ∂2
zψ = θ = 0 if z = ±1/2 .

Ex. 1.1: Normal mode analysis: the solution of the initial value problem

is the superposition of normal modes that are Fourier modes in exp(ikx),

V = V1(k,N) exp[σ(k,N) t] with V1(k,N) = (Ψ̂(z), Θ̂(z)) exp(ikx) ,

k = horizontal wavenumber, k 6= 0, N another label to mark normal modes,

σ(k,N) the temporal eigenvalue.

Boundary conditions: Ψ̂ = Ψ̂′′ = 0 , Θ̂ = 0 if z = ±1/2 .
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RBT 2D xz model with slip BC: normal mode analysis
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Local state vector: V = (ψ,θ) s. t.

v = − (∂zψ) ex + (∂xψ) ez ,

T = T0 − z + θ ,

σD · V = LR · V ,

[D · V ]ψ = P−1(−∆ψ) , [LR · V ]ψ = −R∂xθ + ∆(−∆ψ) , (VortE)

[D · V ]θ = θ , [LR · V ]θ = ∆θ + vz , (HE)

∂xψ = ∂2
zψ = θ = 0 if z = ±1/2 .

Ex. 1.1: Generalized eigenvalue problem solved by normal modes analysis: most

relevant normal modes are Fourier modes in exp(ikx) and have a z-profile in cos(πz),

V = V1(k,N) exp[σ(k,N) t] with V1(k,N) = (Ψ, Θ) exp(ikx) cos(πz) ,

k = horizontal wavenumber, k 6= 0, N another label to mark normal modes,

σ(k,N) the temporal eigenvalue.

They satisfy the boundary conditions: Ψ̂ = Ψ̂′′ = 0 , Θ̂ = 0 if z = ±1/2 .
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RBT 2D xz model with slip BC: normal mode analysis
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Local state vector: V = (ψ,θ) s. t.

v = − (∂zψ) ex + (∂xψ) ez ,

T = T0 − z + θ ,

σ D · V = LR · V .

Ex. 1.1 and 1.2: Most relevant normal modes: N = (±,n) = (+,1) i.e.

V = V1(k,± ,1) = (Ψ, Θ) exp(ikx) cos(πz)

(HE) =⇒ Ψ =

− i

k
(D1 + σ) Θ

with D1 = −∆ = k2 + π2

(Vort) =⇒ characteristic equation for the temporal eigenvalue σ :

σ2 + (1 + P)D1σ + P(D3
1 − Rk2)/D1 = 0

Discriminant ∈ R+∗ ⇒ 2 real roots σ± s. t. σ+ + σ− = − (1 + P)D1 < 0 ,

σ+σ− = P(D3
1 − Rk2)/D1 > 0 for small R ↔ σ± < 0

stability

σ+σ− = P(D3
1 − Rk2)/D1 < 0 for large R ↔ σ− < 0, σ+ > 0

instability !
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instability !
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RBT 2D xz model with slip BC: normal mode analysis

T

d

T

x

y
z 2

1

g

Local state vector: V = (ψ,θ) s. t.

v = − (∂zψ) ex + (∂xψ) ez ,

T = T0 − z + θ ,

σ D · V = LR · V .

Ex. 1.1 and 1.2: Most relevant normal modes: N = (±,n) = (+,1) i.e.

V = V1(k,± ,1) = (Ψ, Θ) exp(ikx) cos(πz)

(HE) =⇒ Ψ = − i

k
(D1 + σ) Θ with D1 = −∆ = k2 + π2

(Vort) =⇒ characteristic equation for the temporal eigenvalue σ :

σ2 + (1 + P)D1σ + P(D3
1 − Rk2)/D1 = 0

Discriminant ∈ R+∗ ⇒ 2 real roots σ± s. t. σ+ + σ− = − (1 + P)D1 < 0 ,

σ+σ− = P(D3
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RBT 2D xz model with slip BC: normal mode analysis: results !

This characteristic equation for the temporal eigenvalue has 2 real roots σ± ,

σ(k,+ ,1,R,P) > 0 ⇐⇒ R > R0(k) = (k2 + π2)3/k2 .

Neutral curve :

stable

unstable

0 1 2 3 4 5 6

0

1000

2000

3000

4000

R

↑ Bifurcation !

k

Minimum ↔ critical wavenumber kc = π/
√

2 ' 2.22

critical wavelength λc = 2π/kc = 2
√

2 ' 2.83

critical Rayleigh number Rc = 27π4/4 ' 657.5

Thus an increase of 0.2% of R from 657 to 658 produces ‘dramatic’ effects:

the system becomes unstable ! Some say that a bifurcation is a ‘catastrophe’ !..
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RBT 2D xz model with slip BC: normal mode analysis... However !

σ D · V = LR · V

Ex. 1.1: Eigenproblem solved by normal modes analysis: most relevant normal modes

V = V1(k,±) exp[σ(k,± ,1,R,P) t] with V1(k,±) = (Ψ, Θ) exp(ikx) cos(πz) ,

k = horizontal wavenumber 6= 0.

(HE) =⇒ Ψ = − i

k
(D1 + σ) Θ with D1 = −∆ = k2 + π2

(Vort) =⇒ σ2 + (1 + P)D1σ + P(D3
1 − Rk2)/D1 = 0

• Quid of x-homogeneous modes with k = 0 ?

• Are there other modes with a more complex z-dependence ?

↪→ ex. 1.2: general linear stability analysis = first of 3 possible homeworks !..

• x-homogeneous modes are ‘not dangerous’ !

• More general x-dependent modes with k 6= 0:

V = V1(k,± ,n) = (Ψ, Θ) exp(ikx) sin(nπz + nπ/2)

n↔ dependence on z , ± ↔ 2 modes at fixed k and n.

• Modes with n > 1 ‘not dangerous’ at ‘low’ values of R ?..
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2D RBT with slip BC: linear stability analysis: structures

Complex critical mode: V1c =

(−3iπ/
√

2, 1) exp(ikcx) cos(πz)

where we used the normalization condition

θ(x = 0,z = 0) in V1c = 1

⇒ real critical mode: V1r =

AV1c + c.c. = A(3
√

2π sin(kcx), 2 cos(kcx)) cos(πz)

Streamlines and isotherms of θ ?
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