Transition to (spatio-temporal complexity and) turbulence in thermoconvection & aerodynamics

http://emmanuelplaut.perso.univ-lorraine.fr/t2t

Session	Date	Content
1 -	29/09	Thermoconvection: phenomena, equations, differentially heated cavity,
		cavity heated from below = ${\bf RB}$ cavity, linear stability analysis
ightarrow 2 -	06/10	${\bf RB}$ Thermoconvection: linear & weakly nonlinear stability analysis
3 -	13/10	RB Thermoconvection: nonlinear phenomena
4 -	20/10	Aerodynamics of OSF : linear stability analysis
5 -	27/10	Aerodynamics of \ensuremath{OSF} : linear & weakly nonlinear stability analyses
6 -	10/11	Aerodynamics of OSF : nonlinear phenomena
	24/11	Examination

RB = Rayleigh-Bénard **OSF** = Open Shear Flows

• I propose 2 possible homeworks (HW) today,

you will choose between **3 possible HW**...

Transition to spatial complexity in Rayleigh-Bénard thermoconvection Today: session 2

- 1 The system The equations and (stress-free) slip boundary conditions
- 2 Linear stability analysis Structures Patterning bifurcation

Next thursday: session 3

- 2 Linear stability analysis Time dependence
- 3 Weakly nonlinear analysis: towards the amplitude equation...
 - \triangleright The direct and adjoint mode bases... at order A...
 - \triangleright Quasistatic elimination of the passive mode at order A^2 Nusselt number
 - \triangleright Resonant terms at order A^3 ...
 - > Amplitude equation, supercritical bifurcation
- 4 Results in the highly nonlinear regime, for other BC, and another geometry...

RBT with slip BC: model •00 Linear stability analysis

Rayleigh-Bénard Thermoconvection: dimensionless model

- Unit of length = thickness d
- Unit of time = heat diffus^o time $\tau_{\text{therm}} = \frac{d^2}{\kappa}$
- Unit of velocity = $V = \frac{d}{\tau_{\text{therm}}} = \frac{\kappa}{d}$
- Unit of temperature = $\delta T = T_2 T_1$

$$T' = T'_0 - z' + \theta$$

⇒ dimensionless Oberbeck - Boussinesq equations

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (\mathsf{MC})$$

$$P^{-1}\frac{d\mathbf{v}}{dt} = \mathbf{R}\theta \,\mathbf{e}_z - \nabla p + \Delta \mathbf{v} \,, \tag{NS}$$

$$\frac{d\theta}{dt} = \Delta\theta + \mathbf{v}_{z} , \qquad (\text{HE})$$

and the **Prandtl number** P =

Mines Nancy 2022 Plaut - T2TS2 - 3/11

with the **Rayleigh number** R =

RBT with slip BC: model $\bullet \circ \circ$

Linear stability analysis

Rayleigh-Bénard Thermoconvection: dimensionless model

- Unit of length = thickness d
- Unit of time = heat diffus^o time $\tau_{\text{therm}} = \frac{d^2}{\kappa}$
- Unit of velocity = $V = \frac{d}{\tau_{\text{therm}}} = \frac{\kappa}{d}$
- Unit of temperature = $\delta T = T_2 T_1$

$$T' = T'_0 - z' + \theta$$

⇒ dimensionless Oberbeck - Boussinesq equations

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (\mathsf{MC})$$

$$P^{-1}\frac{d\mathbf{v}}{dt} = \mathbf{R}\theta \,\mathbf{e}_{z} - \nabla p + \Delta \mathbf{v} , \qquad (NS)$$

$$\frac{d\theta}{dt} = \Delta\theta + \mathbf{v}_z , \qquad (\text{HE})$$

with the Rayleigh number $R = \alpha \ \delta T \ g \ d^3/(\kappa \nu)$ and the Prandtl number $P = \nu/\kappa$. Mines Nancy 2022 Plaut - T2TS2 - 3/11

Rayleigh-Bénard Thermoconvection: dimensionless model OB equations:

$$\operatorname{div} \boldsymbol{v} = \boldsymbol{0} , \qquad (MC)$$

$$P^{-1}\frac{d\mathbf{v}}{dt} = R\theta \,\mathbf{e}_z - \nabla p + \Delta \mathbf{v} \,, \quad (\text{NS})$$
$$\frac{d\theta}{dt} = \Delta\theta + \mathbf{v}_z \,, \quad (\text{HE})$$

Isotropy of the problem in the horizontal plane \Rightarrow focus on 2D xz solutions

$$\mathbf{v} = v_x(x,z,t) \mathbf{e}_x + v_z(x,z,t) \mathbf{e}_z , \quad \theta = \theta(x,z,t) .$$

Solve (MC)

Rayleigh-Bénard Thermoconvection: dimensionless model OB equations:

$$\operatorname{div} \boldsymbol{v} = \boldsymbol{0} , \qquad (MC)$$

$$P^{-1}\frac{d\mathbf{v}}{dt} = R\theta \,\mathbf{e}_z - \nabla \rho + \Delta \mathbf{v} \,, \quad (\text{NS})$$
$$\frac{d\theta}{dt} = \Delta \theta + \mathbf{v}_z \,, \quad (\text{HE})$$

Isotropy of the problem in the horizontal plane \Rightarrow focus on 2D xz solutions

$$\mathbf{v} = v_x(x,z,t) \mathbf{e}_x + v_z(x,z,t) \mathbf{e}_z , \quad \theta = \theta(x,z,t) .$$

Solve (MC) by introducing a streamfunction ψ such that

$$\mathbf{v} = \operatorname{curl}(\psi \ \mathbf{e}_y) = (\mathbf{\nabla}\psi) \times \mathbf{e}_y = -(\partial_z \psi) \ \mathbf{e}_x + (\partial_x \psi) \ \mathbf{e}_z \ .$$

Rayleigh-Bénard Thermoconvection: dimensionless model OB equations:

$$\operatorname{div} \boldsymbol{v} = \boldsymbol{0} , \qquad (MC)$$

$$P^{-1}\frac{d\mathbf{v}}{dt} = R\theta \,\mathbf{e}_z - \nabla \rho + \Delta \mathbf{v} \,, \quad (\text{NS})$$
$$\frac{d\theta}{dt} = \Delta \theta + \mathbf{v}_z \,, \quad (\text{HE})$$

Isotropy of the problem in the horizontal plane \Rightarrow focus on 2D xz solutions

$$\mathbf{v} = v_x(x,z,t) \mathbf{e}_x + v_z(x,z,t) \mathbf{e}_z , \quad \theta = \theta(x,z,t) .$$

Solve (MC) by introducing a streamfunction ψ such that

$$\mathbf{v} = \operatorname{curl}(\psi \ \mathbf{e}_y) = (\mathbf{\nabla}\psi) \times \mathbf{e}_y = -(\partial_z \psi) \ \mathbf{e}_x + (\partial_x \psi) \ \mathbf{e}_z \ .$$

Eliminate p in (NS)

Rayleigh-Bénard Thermoconvection: dimensionless model OB equations:

$$\operatorname{div} \boldsymbol{v} = \boldsymbol{0} , \qquad (MC)$$

$$P^{-1}\frac{d\mathbf{v}}{dt} = R\theta \,\mathbf{e}_z - \nabla \rho + \Delta \mathbf{v} \,, \quad (\text{NS})$$
$$\frac{d\theta}{dt} = \Delta\theta + \mathbf{v}_z \,, \quad (\text{HE})$$

Isotropy of the problem in the horizontal plane \Rightarrow focus on 2D xz solutions

$$\mathbf{v} = v_x(x,z,t) \mathbf{e}_x + v_z(x,z,t) \mathbf{e}_z , \quad \theta = \theta(x,z,t) .$$

Solve (MC) by introducing a streamfunction ψ such that

$$\mathbf{v} = \operatorname{curl}(\psi \ \mathbf{e}_y) = (\mathbf{\nabla}\psi) \times \mathbf{e}_y = -(\partial_z \psi) \ \mathbf{e}_x + (\partial_x \psi) \ \mathbf{e}_z \ .$$

Eliminate p in (NS) by considering $curl(NS) \cdot e_y$ i.e. the vorticity equation:

$$P^{-1}\partial_t(-\Delta\psi) + P^{-1}\left[\partial_z \left(\mathbf{v}\cdot\nabla v_x\right) - \partial_x \left(\mathbf{v}\cdot\nabla v_z\right)\right] = -R\partial_x \theta + \Delta(-\Delta\psi) . \quad (\text{Vort})$$

RBT with slip BC: model 000

Linear stability analysis

RBT: 2D xz model

Local state vector: $V = (\psi, \theta)$ s. t.

$$\mathbf{v} = -(\partial_z \psi) \, \mathbf{e}_x + (\partial_x \psi) \, \mathbf{e}_z \; ,$$

$$T = T_0 - z + \theta ,$$

obeys the system of coupled PDE

 $D \cdot \partial_t V = L_{\mathbf{R}} \cdot V + N_2(V,V) \quad .$

$$[D \cdot \partial_t V]_{\psi} = P^{-1}(-\Delta \partial_t \psi) , \quad [L_R \cdot V]_{\psi} = -R \partial_x \theta + \Delta(-\Delta \psi) , \quad (\text{Vort})$$

$$[N_2(V,V)]_{\psi} = P^{-1}[\partial_x (\mathbf{v} \cdot \nabla v_z) - \partial_z (\mathbf{v} \cdot \nabla v_x)], \qquad (Vort)$$

 $[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$ (HE)

RBT with slip BC: model $00 \bullet$

Linear stability analysis

RBT: 2D xz model

Local state vector: $V = (\psi, \theta)$ s. t.

$$\mathbf{v} = -(\partial_z \psi) \, \mathbf{e}_x + (\partial_x \psi) \, \mathbf{e}_z \; ,$$

$$T = T_0 - z + \theta ,$$

obeys the system of coupled PDE

 $D \cdot \partial_t V = L_{\mathbf{R}} \cdot V + N_2(V,V)$.

$$[D \cdot \partial_t V]_{\psi} = P^{-1}(-\Delta \partial_t \psi) , \quad [L_R \cdot V]_{\psi} = -R \partial_x \theta + \Delta(-\Delta \psi) , \quad (\text{Vort})$$

$$[N_2(V,V)]_{\psi} = P^{-1} [\partial_x (\mathbf{v} \cdot \nabla v_z) - \partial_z (\mathbf{v} \cdot \nabla v_x)], \qquad (Vort)$$

$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$
(HE)

Boundary conditions on θ :

RBT with slip BC: model 000

Linear stability analysis

RBT: 2D xz model

Local state vector: $V = (\psi, \theta)$ s. t.

$$\mathbf{v} = -(\partial_z \psi) \, \mathbf{e}_x + (\partial_x \psi) \, \mathbf{e}_z \; ,$$

$$T = T_0 - z + \theta ,$$

obeys the system of coupled PDE

 $D \cdot \partial_t V = L_{\mathbf{R}} \cdot V + N_2(V,V)$.

$$[D \cdot \partial_t V]_{\psi} = P^{-1}(-\Delta \partial_t \psi) , \quad [L_{\mathcal{R}} \cdot V]_{\psi} = -\mathcal{R} \partial_x \theta + \Delta(-\Delta \psi) , \quad (\text{Vort})$$

$$[N_2(V,V)]_{\psi} = P^{-1} [\partial_x (\mathbf{v} \cdot \nabla v_z) - \partial_z (\mathbf{v} \cdot \nabla v_x)], \qquad (Vort)$$

$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$
(HE)

Boundary conditions on θ : isothermal boundaries: $\theta = 0$ if $z = \pm 1/2$.

RBT with slip BC: model $00 \bullet$

Linear stability analysis

RBT: 2D xz model

Local state vector: $V = (\psi, \theta)$ s. t.

$$\mathbf{v} = -(\partial_z \psi) \, \mathbf{e}_x + (\partial_x \psi) \, \mathbf{e}_z \; ,$$

$$T = T_0 - z + \theta ,$$

obeys the system of coupled PDE

 $D \cdot \partial_t V = L_{\mathbf{R}} \cdot V + N_2(V,V)$.

$$[D \cdot \partial_t V]_{\psi} = P^{-1}(-\Delta \partial_t \psi) , \quad [L_R \cdot V]_{\psi} = -R \partial_x \theta + \Delta(-\Delta \psi) , \quad (\text{Vort})$$

$$[N_2(V,V)]_{\psi} = P^{-1} [\partial_x (\mathbf{v} \cdot \nabla v_z) - \partial_z (\mathbf{v} \cdot \nabla v_x)], \qquad (Vort)$$

$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$
 (HE)

Boundary conditions on θ : isothermal boundaries: $\theta = 0$ if $z = \pm 1/2$. Boundary conditions on ψ i.e. **v**:

RBT with slip BC: model 000

Linear stability analysis

RBT: 2D xz model with slip **BC**

Local state vector: $V = (\psi, \theta)$ s.t.

$$\mathbf{v} = -(\partial_z \psi) \, \mathbf{e}_x + (\partial_x \psi) \, \mathbf{e}_z \; ,$$

$$T = T_0 - z + \theta ,$$

obeys the system of coupled PDE

 $D \cdot \partial_t V = L_{\mathbf{R}} \cdot V + N_2(\overline{V,V)}$

$$[D \cdot \partial_t V]_{\psi} = P^{-1}(-\Delta \partial_t \psi) , \quad [L_R \cdot V]_{\psi} = -R \partial_x \theta + \Delta(-\Delta \psi) , \quad (\text{Vort})$$

$$[N_2(V,V)]_{\psi} = P^{-1} [\partial_x (\mathbf{v} \cdot \nabla v_z) - \partial_z (\mathbf{v} \cdot \nabla v_x)], \qquad (Vort)$$

$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$
 (HE)

Boundary conditions on θ : isothermal boundaries: $\theta = 0$ if $z = \pm 1/2$. Boundary conditions on ψ i.e. **v**: slip without stress ('stress-free'):

$$v_z = 0$$
 and $\tau_{xz} = \partial_z v_x = 0 \iff \partial_x \psi = \partial_z^2 \psi = 0$ if $z = \pm 1/2$.

RBT with slip BC: model 000

Linear stability analysis

RBT: 2D xz model with slip **BC**

Local state vector: $V = (\psi, \theta)$ s. t.

$$\mathbf{v} = -(\partial_z \psi) \, \mathbf{e}_x + (\partial_x \psi) \, \mathbf{e}_z \; ,$$

$$T = T_0 - z + \theta ,$$

obeys the system of coupled PDE

 $D \cdot \partial_t V = L_{\mathbf{R}} \cdot V + N_2(V,V) \quad .$

$$[D \cdot \partial_t V]_{\psi} = P^{-1}(-\Delta \partial_t \psi) , \quad [L_R \cdot V]_{\psi} = -R \partial_x \theta + \Delta(-\Delta \psi) , \quad (\text{Vort})$$

$$[N_2(V,V)]_{\psi} = P^{-1} [\partial_x (\mathbf{v} \cdot \nabla v_z) - \partial_z (\mathbf{v} \cdot \nabla v_x)], \qquad (Vort)$$

$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$
 (HE)

Boundary conditions on θ : isothermal boundaries: $\theta = 0$ if $z = \pm 1/2$. Boundary conditions on ψ i.e. **v**: slip without stress ('stress-free'):

$$v_z = 0$$
 and $\tau_{xz} = \partial_z v_x = 0 \iff \partial_x \psi = \partial_z^2 \psi = 0$ if $z = \pm 1/2$.

Extended geometry in the *xy* **plane:** (no BC or) periodic BC under $x \mapsto x + L$. Mines Nancy 2022 Plaut - T2TS2 - **5**/11

RBT 2D xz model with slip BC: linear stability analysis

RBT 2D xz model with slip BC: linear stability analysis

Ex. 1.1: Normal mode analysis: the solution of the initial value problem is the superposition of normal modes that are Fourier modes in exp(ikx),

 $V = V_1(k,N) \exp[\sigma(k,N) t]$ with $V_1(k,N) = (\widehat{\Psi}(z), \widehat{\Theta}(z)) \exp(ikx)$,

k = horizontal wavenumber, $k \neq 0$, N another label to mark normal modes, $\sigma(k,N)$ the temporal eigenvalue.

RBT 2D xz model with slip BC: linear stability analysis

Local state vector: $V = (\psi, \theta)$ s. t. $\mathbf{v} = -(\partial_z \psi) \mathbf{e}_x + (\partial_x \psi) \mathbf{e}_z$ $T = T_0 - z + \theta,$ > x $D \cdot \partial_t V = L_{\mathbf{R}} \cdot V \, ,$ $[D \cdot \partial_t V]_{\psi} = P^{-1}(-\Delta \partial_t \psi), \quad [L_R \cdot V]_{\psi} = -R \partial_x \theta + \Delta(-\Delta \psi),$ (VortE) $[D \cdot \partial_t V]_{\theta} = \partial_t \theta$, $[L_R \cdot V]_{\theta} = \Delta \theta + v_\tau$, (HE) $\partial_{z}\psi = \partial_{z}^{2}\psi = \theta = 0$ if $z = \pm 1/2$.

Ex. 1.1: Normal mode analysis: the solution of the initial value problem is the superposition of normal modes that are Fourier modes in exp(ikx),

 $V = V_1(k,N) \exp[\sigma(k,N) t]$ with $V_1(k,N) = (\widehat{\Psi}(z), \widehat{\Theta}(z)) \exp(ikx)$,

k = horizontal wavenumber, $k \neq 0$, N another label to mark normal modes, $\sigma(k,N)$ the temporal eigenvalue.

Boundary conditions: $\widehat{\Psi} = \widehat{\Psi}'' = 0$, $\widehat{\Theta} = 0$ if $z = \pm 1/2$.

RBT 2D xz model with slip **BC**: normal mode analysis

Ex. 1.1: Generalized eigenvalue problem solved by normal modes analysis: most relevant normal modes are Fourier modes in exp(ikx) and have a z-profile in $cos(\pi z)$,

 $V = V_1(k,N) \exp[\sigma(k,N) t]$ with $V_1(k,N) = (\Psi, \Theta) \exp(ikx) \cos(\pi z)$, k = horizontal wavenumber, $k \neq 0$, N another label to mark normal modes, $\sigma(k,N)$ the temporal eigenvalue.

They satisfy the boundary conditions: $\widehat{\Psi} = \widehat{\Psi}'' = 0$, $\widehat{\Theta} = 0$ if $z = \pm 1/2$. Mines Nancy 2022 Plaut - T2TS2 - 7/11

RBT 2D xz model with slip **BC**: normal mode analysis

Local state vector: $V = (\psi, \theta)$ s. t.

$$\mathbf{v} = -(\partial_z \psi) \, \mathbf{e}_x + (\partial_x \psi) \, \mathbf{e}_z \; ,$$

$$T = T_0 - z + \theta ,$$

Ex. 1.1 and 1.2: Most relevant normal modes: $N = (\pm, n) = (+, 1)$ i.e.

$$V = V_1(k, \pm, 1) = (\Psi, \Theta) \exp(ikx) \cos(\pi z)$$

(HE) $\implies \Psi =$ with $D_1 = -\Delta = k^2 + \pi^2$

(Vort) \implies characteristic equation for the **temporal eigenvalue** σ :

RBT 2D xz model with slip **BC**: normal mode analysis

Local state vector: $V = (\psi, \theta)$ s.t.

$$\mathbf{v} = -(\partial_z \psi) \, \mathbf{e}_x + (\partial_x \psi) \, \mathbf{e}_z \; ,$$

$$T = T_0 - z + \theta ,$$

$$\sigma D \cdot V = L_{R} \cdot V .$$

Ex. 1.1 and 1.2: Most relevant normal modes: $N = (\pm, n) = (+, 1)$ i.e.

$$V = V_1(k, \pm, 1) = (\Psi, \Theta) \exp(ikx) \cos(\pi z)$$

(HE)
$$\implies \Psi = -\frac{i}{k}(D_1 + \sigma) \Theta$$
 with $D_1 = -\Delta = k^2 + \pi^2$

(Vort) \implies characteristic equation for the **temporal eigenvalue** σ :

RBT 2D xz model with slip **BC**: normal mode analysis

Local state vector: $V = (\psi, \theta)$ s.t.

$$\mathbf{v} = -(\partial_z \psi) \, \mathbf{e}_x + (\partial_x \psi) \, \mathbf{e}_z \; ,$$

$$T = T_0 - z + \theta ,$$

$$\sigma D \cdot V = L_R \cdot V \quad .$$

Ex. 1.1 and 1.2: Most relevant normal modes: $N = (\pm, n) = (+, 1)$ i.e.

$$V = V_1(k, \pm, 1) = (\Psi, \Theta) \exp(ikx) \cos(\pi z)$$
(HE) $\implies \Psi = -\frac{i}{k}(D_1 + \sigma) \Theta$ with $D_1 = -\Delta = k^2 + \pi^2$
(Vort) \implies characteristic equation for the **temporal eigenvalue** σ :

$$\sigma^{2} + (1+P)D_{1}\sigma + P(D_{1}^{3} - Rk^{2})/D_{1} = 0$$

RBT 2D xz model with slip **BC**: normal mode analysis

Local state vector: $V = (\psi, \theta)$ s. t.

$$\mathbf{v} = -(\partial_z \psi) \, \mathbf{e}_x + (\partial_x \psi) \, \mathbf{e}_z \; ,$$

$$T = T_0 - z + \theta ,$$

$$\sigma D \cdot V = L_{\mathbf{R}} \cdot V \quad .$$

Ex. 1.1 and 1.2: Most relevant normal modes: $N = (\pm, n) = (+, 1)$ i.e.

$$V = V_1(k, \pm, 1) = (\Psi, \Theta) \exp(ikx) \cos(\pi z)$$
(HE) $\implies \Psi = -\frac{i}{k}(D_1 + \sigma) \Theta$ with $D_1 = -\Delta = k^2 + \pi^2$
(Vort) \implies characteristic equation for the **temporal eigenvalue** σ :
 $\sigma^2 + (1+P)D_1\sigma + P(D_1^3 - Rk^2)/D_1 = 0$

 $\mbox{Discriminant} \in \mathbb{R}^{+*} \ \Rightarrow \ 2 \ \mbox{real roots} \ \sigma_{\pm} \ \mbox{s. t.} \ \ \sigma_{+} + \sigma_{-} \ = \ - (1+P)D_1 < 0 \ ,$

$$\begin{array}{rcl} \sigma_{+}\sigma_{-} &=& P(D_{1}^{3}-\textit{R}k^{2})/D_{1} > 0 & \text{for small } \textit{R} & \leftrightarrow & \sigma_{\pm} < 0 \\ \sigma_{+}\sigma_{-} &=& P(D_{1}^{3}-\textit{R}k^{2})/D_{1} < 0 & \text{for large } \textit{R} & \leftrightarrow & \sigma_{-} < 0, \sigma_{+} > 0 \end{array}$$

RBT 2D xz model with slip **BC**: normal mode analysis

Local state vector: $V = (\psi, \theta)$ s.t.

$$\mathbf{v} = -(\partial_z \psi) \, \mathbf{e}_x + (\partial_x \psi) \, \mathbf{e}_z \; ,$$

$$T = T_0 - z + \theta ,$$

$$\sigma D \cdot V = L_{\mathbf{R}} \cdot V \quad .$$

Ex. 1.1 and 1.2: Most relevant normal modes: $N = (\pm, n) = (+, 1)$ i.e.

$$V = V_1(k, \pm, 1) = (\Psi, \Theta) \exp(ikx) \cos(\pi z)$$
(HE) $\implies \Psi = -\frac{i}{k}(D_1 + \sigma) \Theta$ with $D_1 = -\Delta = k^2 + \pi^2$
(Vort) \implies characteristic equation for the **temporal eigenvalue** σ :

$$\sigma^{2} + (1+P)D_{1}\sigma + P(D_{1}^{3} - Rk^{2})/D_{1} = 0$$

 $\text{Discriminant} \in \mathbb{R}^{+*} \ \Rightarrow \ 2 \ \text{real roots} \ \sigma_{\pm} \ \text{s. t.} \ \ \sigma_{+} + \sigma_{-} \ = \ -(1+P)D_1 < 0 \ ,$

 $\begin{array}{rcl} \sigma_{+}\sigma_{-} &=& P(D_{1}^{3}-Rk^{2})/D_{1} > 0 & \mbox{for small } R & \leftrightarrow & \sigma_{\pm} < 0 & \mbox{stability} \\ \sigma_{+}\sigma_{-} &=& P(D_{1}^{3}-Rk^{2})/D_{1} < 0 & \mbox{for large } R & \leftrightarrow & \sigma_{-} < 0, \ \sigma_{+} > 0 & \mbox{instability } \end{array}$

RBT 2D xz model with slip BC: normal mode analysis: results !

This characteristic equation for the temporal eigenvalue has 2 real roots σ_\pm ,

$$\sigma(k, +, 1, R, P) > 0 \iff R > R_0(k) = (k^2 + \pi^2)^3/k^2$$
.

Minimum \leftrightarrow critical wavenumber $k_c = \pi/\sqrt{2} \simeq 2.22$ critical wavelength $\lambda_c = 2\pi/k_c = 2\sqrt{2} \simeq 2.83$ critical Rayleigh number $R_c = 27\pi^4/4 \simeq 657.5$

RBT 2D xz model with slip BC: normal mode analysis: results !

This characteristic equation for the temporal eigenvalue has 2 real roots σ_\pm ,

$$\sigma(k, +, 1, R, P) > 0 \iff R > R_0(k) = (k^2 + \pi^2)^3/k^2$$
.

Minimum \leftrightarrow critical wavenumber $k_c~=~\pi/\sqrt{2}~\simeq~2.22$

critical wavelength $\lambda_c = 2\pi/k_c = 2\sqrt{2} \simeq 2.83$

critical Rayleigh number $R_c~=~27\pi^4/4~\simeq~657.5$

Thus an increase of 0.2% of R from 657 to 658 produces 'dramatic' effects: the system becomes unstable ! Some say that a bifurcation is a 'catastrophe' !...

RBT with slip BC: model

Linear stability analysis 000000

RBT 2D xz model with slip BC: normal mode analysis... However !

$$\sigma D \cdot V = L_{\mathbf{R}} \cdot V$$

Ex. 1.1: Eigenproblem solved by normal modes analysis: most relevant normal modes

$$V = V_1(k,\pm) \exp[\sigma(k,\pm,1,R,P) t] \quad \text{with} \quad V_1(k,\pm) = (\Psi, \Theta) \exp(ikx) \cos(\pi z) ,$$

$$k = \text{horizontal wavenumber} \neq 0.$$

$$(\text{HE}) \implies \Psi = -\frac{i}{k}(D_1 + \sigma) \Theta \quad \text{with} \quad D_1 = -\Delta = k^2 + \pi^2$$

$$(\text{Vort}) \implies \sigma^2 + (1+P)D_1\sigma + P(D_1^3 - Rk^2)/D_1 = 0$$

• Quid of x-homogeneous modes with k = 0 ?

• Are there other modes with a more complex *z*-dependence ?

RBT with slip BC: model

Linear stability analysis

RBT 2D xz model with slip BC: normal mode analysis... However !

$$\sigma D \cdot V = L_{\mathbf{R}} \cdot V$$

Ex. 1.1: Eigenproblem solved by normal modes analysis: most relevant normal modes

 $V = V_1(k,\pm) \exp[\sigma(k,\pm,1,R,P) t] \quad \text{with} \quad V_1(k,\pm) = (\Psi, \Theta) \exp(ikx) \cos(\pi z) ,$ $k = \text{horizontal wavenumber} \neq 0.$ $(\text{HE}) \implies \Psi = -\frac{i}{t}(D_1 + \sigma) \Theta \quad \text{with} \quad D_1 = -\Delta = k^2 + \pi^2$

$$\begin{array}{rcl} \mathsf{HE}) & \Longrightarrow & \Psi = -\frac{1}{k}(D_1 + \sigma) \ \Theta & \text{with} & D_1 = -\Delta = k^2 + \pi^2 \\ (\text{Vort}) & \Longrightarrow & \sigma^2 + (1 + P)D_1\sigma + P(D_1^3 - Rk^2)/D_1 = 0 \end{array}$$

- Quid of x-homogeneous modes with k = 0 ?
- Are there other modes with a more complex *z*-dependence ?
- \hookrightarrow ex. 1.2: general linear stability analysis = first of 3 possible homeworks !..
 - x-homogeneous modes are 'not dangerous' !
 - More general x-dependent modes with $k \neq 0$:

$$V = V_1(k, \pm, n) = (\Psi, \Theta) \exp(ikx) \sin(n\pi z + n\pi/2)$$

 $n \leftrightarrow$ dependence on z , $\pm \leftrightarrow 2$ modes at fixed k and n.

• Modes with n > 1 'not dangerous' at 'low' values of R ?...

2D RBT with slip BC: linear stability analysis: structures

Complex critical mode: $V_{1c} =$

where we used the normalization condition

$$\theta(x=0,z=0)$$
 in $V_{1c} = 1$

 \Rightarrow real critical mode: V_{1r} =

2D RBT with slip BC: linear stability analysis: structures

Complex critical mode: $V_{1c} = (-3i\pi/\sqrt{2}, 1) \exp(ik_c x) \cos(\pi z)$

where we used the normalization condition

$$heta(x=0,z=0)$$
 in $V_{1c}~=~1$

 \Rightarrow real critical mode: V_{1r} =

2D RBT with slip BC: linear stability analysis: structures

Complex critical mode: $V_{1c} = (-3i\pi/\sqrt{2}, 1) \exp(ik_c x) \cos(\pi z)$

where we used the normalization condition

$$\theta(x=0,z=0)$$
 in $V_{1c} = 1$

 \Rightarrow real critical mode: $V_{1r} = AV_{1c} + c.c. =$

2D RBT with slip BC: linear stability analysis: structures

Complex critical mode: $V_{1c} = (-3i\pi/\sqrt{2}, 1) \exp(ik_c x) \cos(\pi z)$

where we used the normalization condition

$$heta(x=0,z=0)$$
 in $V_{1c}~=~1$

 \Rightarrow real critical mode: $V_{1r} = AV_{1c} + c.c. = A(3\sqrt{2}\pi \sin(k_c x), 2\cos(k_c x)) \cos(\pi z)$

