Plan RBT with slip BC: model Linear stability analysis

[ Ie} [e]ele} 000000

Transition to (spatio-temporal complexity and) turbulence
in thermoconvection & aerodynamics

http://emmanuelplaut.perso.univ-lorraine.fr/t2t

Session | Date Content

1-129/09| Thermoconvection: phenomena, equations, differentially heated cavity,
cavity heated from below = RB cavity, linear stability analysis
— 2-/06/10| RB Thermoconvection: linear & weakly nonlinear stability analysis

3-/13/10 RB Thermoconvection: nonlinear phenomena
4 -120/10 Aerodynamics of OSF: linear stability analysis
5-127/10| Aerodynamics of OSF: linear & weakly nonlinear stability analyses
6-/10/11 Aerodynamics of OSF: nonlinear phenomena

24/11 Examination

RB = Rayleigh-Bénard OSF = Open Shear Flows

e | propose 2 possible homeworks (HW) today,
you will choose between 3 possible HW...
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Transition to spatial complexity in Rayleigh-Bénard thermoconvection

Today: session 2

1 The system - The equations and (stress-free) slip boundary conditions

2 Linear stability analysis - Structures - Patterning bifurcation
Next thursday: session 3

2 Linear stability analysis - Time dependence

3 Weakly nonlinear analysis: towards the amplitude equation...
> The direct and adjoint mode bases... at order A...
> Quasistatic elimination of the passive mode at order A® - Nusselt number
> Resonant terms at order A%...

> Amplitude equation, supercritical bifurcation

4 Results in the highly nonlinear regime, for other BC, and another geometry...
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Rayleigh-Bénard Thermoconvection: dimensionless model

e Unit of length = thickness d :Tl d
2 '
o Unit of time = heat diffus® time Tiherm = L z T,
K
. . d K pid {
e Unit of velocity = V = = = '
Ttherm d I .
e Unit of temperature = 6T = T, — Th L ' '

Introduce a dimensionless perturbat® of temperature 6, s.t. the dimensionless temperature

T =T, -2 + 96

= dimensionless Oberbeck - Boussinesq equations

divw = 0, (MC)
P‘l% = Rle, — Vp + Av, (NS)
do
— = A 2 HE
& 0 + v (HE)
with the Rayleigh number R = and the Prandtl number P =
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Rayleigh-Bénard Thermoconvection: dimensionless model

e Unit of length = thickness d :Tl d
2 '
o Unit of time = heat diffus® time Tiherm = L z T,
K
. . d K pid {
e Unit of velocity = V = = = '
Ttherm d I .
e Unit of temperature = 6T = T, — Th L ' '

Introduce a dimensionless perturbat® of temperature 6, s.t. the dimensionless temperature

T =T, -2 + 96

= dimensionless Oberbeck - Boussinesq equations

divw = 0, (MC)

P‘l% = Rfe, — Vp + Av, (NS)
dé

9 _ A - HE

ot 0 + v (HE)

with the Rayleigh number R = o 6T g d*/(kv) and the Prandtl number P = v/x.
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Rayleigh-Bénard Thermoconvection: dimensionless model
OB equations:

T
P ld
divwv = 0, (MC) . :T2
y
P’IZ‘: = Roe, — Vp + Av, (NS) ~ ;
X ‘
%zA@—}-vz, (HE) l ‘

g
Isotropy of the problem in the horizontal plane = focus on 2D xz solutions

v = w(x,z,t) ex + vi(x,z,t) e, 0 = 0(x,z,t) .

Solve (MC)
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Rayleigh-Bénard Thermoconvection: dimensionless model

OB equations: T
v ld
divv = 0, (MC) . T
y

P’I% = Rle, — Vp + Av, (NS) A ;

X '

ﬁ:A9+vz, (HE) l ‘

dt g

Isotropy of the problem in the horizontal plane = focus on 2D xz solutions

v = w(x,z,t) ex + vi(x,z,t) e, 0 = 0(x,z,t) .

Solve (MC) by introducing a streamfunction ¢ such that

V= ar(e,) = (Vi) xe, = —(0:0) ex + (9t) e .
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Rayleigh-Bénard Thermoconvection: dimensionless model

OB equations: T
v ld
divv = 0, (MC) . T
y

P’I% = Rle, — Vp + Av, (NS) A ;

X '

ﬁ:A9+vz, (HE) l ‘

dt g

Isotropy of the problem in the horizontal plane = focus on 2D xz solutions

v = w(x,z,t) ex + vi(x,z,t) e, 0 = 0(x,z,t) .

Solve (MC) by introducing a streamfunction ¢ such that

V= ar(e,) = (Vi) xe, = —(0:0) ex + (9t) e .

Eliminate p in (NS)
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Rayleigh-Bénard Thermoconvection: dimensionless model

OB equations: T
v ld
divv = 0, (MC) . ‘T
y
P’I% = Rle, — Vp + Av, (NS) A ;
X '
ﬁ:A9+vz, (HE) l ‘
dt g
Isotropy of the problem in the horizontal plane = focus on 2D xz solutions
v = w(x,z,t) ex + vi(x,z,t) e, 0 = 0(x,z,t) .
Solve (MC) by introducing a streamfunction ¢ such that
v = curl(v e) = (V) xe, = —(0:0) ex + (0x¥) e .
Eliminate p in (NS) by considering curl(NS) - e, i.e. the vorticity equation:
P10((—AY) + PH0.(v- V) — k(v V)] = —RO0 + A(-AY). (Vort)
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RBT: 2D xz model

Local state vector: V = (¢,0) s.t. T
v ld
v = _(8zw) ex + (8x'¢’) e; , . .T2
T=To—z+ 6, s .
obeys the system of coupled PDE l ! X E
D0,V = Lg-V + Ny(V,V) g
[D-8:V]y = P H(=A8:), [Lrx-V]y = —RO0 + A(-AY), (Vort)
No(V V)] = P Hok(v- Vi) —0:(v- V)], (Vort)
[D-8:V]p = 90, [La-V]o = 80 + v., [Ma(V,V)]o = —v-VO. (HE)
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RBT: 2D xz model
Local state vector: V = (¢,0) s.t. T
v ld
v = _(8zw) ex + (8x'¢’) e; , . .T2
T=To—z+ 6, s .
obeys the system of coupled PDE l ! X E
D3V = Lg-V + No(V,V) g
[D-8:V]y = P H(=A8:), [Lrx-V]y = —RO0 + A(-AY), (Vort)
No(V V)] = P Hok(v- Vi) —0:(v- V)], (Vort)
[D-0:V]p = 00, [Le-V]o = D0 + v., [Mo(V,V)]o = —v-VO. (HE)

Boundary conditions on 6 :
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RBT: 2D xz model

Linear stability analysis

Local state vector: V (v,0) s t. T
Cold
v = _(8zw) ex + (8x'¢’) e; , . .T2
T =T —z+90, - -
obeys the system of coupled PDE l ! x E
D-0:V = Lg-V + No(V,V) g
[D-8:V]y = P Y (=08:)), [Lr-V]y = —RO0 + A(-AY), (Vort)
No(V V)] = P Hok(v- Vi) —0:(v- V)], (Vort)
[D-0:V]e = 00, [Lr-V]o = A0 + v., [No(V,V)]g = —v-V6. (HE)
Boundary conditions on 6 :  isothermal boundaries: 6 =0 if z=+1/2.
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RBT: 2D xz model

Linear stability analysis

Local state vector: V (v,0) s t. T
Cold
v = _(8zw) ex + (8x'¢’) e; , . .T2
T =T —z+90, - -
obeys the system of coupled PDE l ! x E
D-0:V = Lg-V + No(V,V) g
[D-8:V]y = P Y (=08:)), [Lr-V]y = —RO0 + A(-AY), (Vort)
No(V V)] = P Hok(v- Vi) —0:(v- V)], (Vort)
[D-0:V]e = 00, [Lr-V]o = A0 + v., [No(V,V)]g = —v-V6. (HE)
Boundary conditions on 6 :  isothermal boundaries: 6 =0 if z=+1/2.

Boundary conditions on ¢ i.e. v :
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RBT: 2D xz model with slip BC

Linear stability analysis

Local state vector: = (¢,0) st
v = —(9:9) e + (&) ez,
z
T =T —z+80, PR ,
obeys the system of coupled PDE l I E
D-0V = Lg-V + No(V,V) g
[D-8:V]y = P Y (=08:)), [Lr-V]y = —RO0 + A(-AY),
[No(V )]y = P HOk(v: Vvz) —0:(v- V)],
[D-at\/]g = 6t9, [LR~V]9 = AO + vz, [NQ(V,V)]e = —v-V0.

Boundary conditions on 6 :  isothermal boundaries: 6 =0 if z=+1/2.

Boundary conditions on ¢ i.e. v : slip without stress (‘stress-free’):

=0 and Te = One=0 < Bp=08Y=0 if

Mines Nancy 2022 Plaut - T2TS2 - 5/11
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RBT: 2D xz model with slip BC

Linear stability analysis

Local state vector: = (¢,0) st
v = —(9:9) e + (&) ez,
z
T =T —z+80, PR ,
obeys the system of coupled PDE l I E
D-0V = Lg-V + No(V,V) g
[D-8:V]y = P Y (=08:)), [Lr-V]y = —RO0 + A(-AY),
[No(V )]y = P HOk(v: Vvz) —0:(v- V)],
[D-at\/]g = 6t9, [LR~V]9 = AO + vz, [NQ(V,V)]Q = —v-V0.

Boundary conditions on 6 :  isothermal boundaries: 6 =0 if z=+1/2.

Boundary conditions on ¢ i.e. v : slip without stress (‘stress-free’):

=0 and Te = One=0 < Bp=08Y=0 if

Extended geometry in the xy plane: (no BC or) periodic BC under x — x + L.
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RBT 2D xz model with slip BC: linear stability analysis

Local state vector: V = (¥,0) s.t. i
v |d
V= —@) e + (O, Z P
y
T =Ty — z + 0, A f
X |
D-8,V = Lg-V |, t. !
g
[D-8:V]y = P Y-A8), [Lx-V]w = —RO0 + A(-AY), (VortE)
[D-0:V]e = 0:0, [Lr-V]o = A0 + v, (HE)

p=02h=0=0 if z=+1/2.
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RBT 2D xz model with slip BC: linear stability analysis
Local state vector: V = (¥,0) s.t. i
)
V= —@d) e + (0)e., Z 7
T =Ty —z+ 0, < f
X |
D8V = Lg-V |, L ;
g
[D-8:V]y = P Y =Ad), [Lr-V]y = —RO0O + A(-AY), (VortE)
[D-8:V]p = 80, [Lx-V]o = DO + v, , (HE)

p=02h=0=0 if z=+1/2.

Ex. 1.1: Normal mode analysis: the solution of the initial value problem
is the superposition of normal modes that are Fourier modes in exp(ikx),

V = Vi(k,N) explo(k,N) t] with Vi(k,N) = (V(z), ©(z)) exp(ikx) ,

k_

o(k,N) the temporal eigenvalue.

Mines Nancy 2022 Plaut - T2TS2 - 6/11
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RBT 2D xz model with slip BC: linear stability analysis
Local state vector: V = (¥,0) s.t. i
)
V= - e + () e, ] I
y
T =Ty —z+ 0, A f
X |
D8V = Lg-V |, L ;
g
[D-8:V]y = P Y =Ad), [Lr-V]y = —RO0O + A(-AY), (VortE)
[D-0:V]e = 0:0, [Lr-V]o = A0 + v, (HE)

p=02h=0=0 if z=+1/2.

Ex. 1.1: Normal mode analysis: the solution of the initial value problem
is the superposition of normal modes that are Fourier modes in exp(ikx),

V = Vi(k,N) explo(k,N) t] with Vi(k,N) = (V(z), ©(z)) exp(ikx) ,

k =
o(k,N) the temporal eigenvalue.
Boundary conditions: W=W"=0, ©=0 if z=41/2.
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RBT 2D xz model with slip BC: normal mode analysis

Local state vector: V = (¢,0) s.t. T J
V= —(00) e + (Bv) e, . T,
P2
T=To—-2z+20, |
X |
oD-V = Lg-V |, l' '
g
[D-V]y = PH-A9), [Le-V]y = —ROO + A(-Aw), (VortE)
[D-V]e = 6, [Lr-V]s = A0 + v, , (HE)

=2 =0=0 if z==41/2.

Ex. 1.1: Generalized eigenvalue problem solved by normal modes analysis: most

relevant normal modes are Fourier modes in exp(ikx) and have a z-profile in cos(7z),

V = Vi(k,N) explo(k,N) t] with Vi(k,N) = (W, ©) exp(ikx) cos(nz) ,
k = horizontal wavenumber, k # 0, N another label to mark normal modes,
o(k,N) the temporal eigenvalue.

They satisfy the boundary conditions: W =U"=0, ©=0 if z==+1/2.
Mines Nancy 2022 Plaut - T2TS2 - 7/11
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RBT 2D xz model with slip BC: normal mode analysis
Local state vector: V = (¢,0) s.t. T
vo\d
v = —(0:0) ex + (0kt) e, :T
z 2
T=To—-z+86, e !
oD-V = Lg-V L: ) 5
g
Ex. 1.1 and 1.2: Most relevant normal modes: N = (£,n) = (+,1) i.e.
V = Vi(k,+,1) = (V, ©) exp(ikx) cos(nz)
(HE) = WV = with D = —A = K +7°

(Vort) =  characteristic equation for the temporal eigenvalue o :
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RBT 2D xz model with slip BC: normal mode analysis
Local state vector: V = (¢,0) s.t. T
vo\d
v = —(0:0) ex + (0kt) e, :T
z 2
T=To—-z+86, e !
oD-V = Lg-V L: ) 5
g
Ex. 1.1 and 1.2: Most relevant normal modes: N = (£,n) = (+,1) i.e.
V = Vi(k,£,1) = (V, ©) exp(ikx) cos(mz)
(HE) = ¥ = - (Di+0)© with D= —A = K47

(Vort) =  characteristic equation for the temporal eigenvalue o :
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RBT 2D xz model with slip BC: normal mode analysis
Local state vector: V = (¢,0) s.t. T
vo\d
v = —(0:0) ex + (0kt) e, :T
z 2
T=To—-z+86, e !
oD-V = Lg-V L: ) 5
g
Ex. 1.1 and 1.2: Most relevant normal modes: N = (£,n) = (+,1) i.e.
V = Vi(k,£,1) = (V, ©) exp(ikx) cos(mz)
(HE) = ¥ = - (Di+0)© with D= —A = K47

(Vort) =  characteristic equation for the temporal eigenvalue o :

o> + (1+P)Dio + P(D; — RK*)/D1 = 0

Mines Nancy 2022 Plaut - T2TS2 - 8/11
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RBT 2D xz model with slip BC: normal mode analysis
Local state vector: V = (¢,0) s.t. T

vV = —(821/1) e + (8/(/)) €z, Tz

T=To—z+ 0, A

cD-V = Lg-V

Ex. 1.1 and 1.2: Most relevant normal modes: N = (£,n) = (+,1) i.e.
V = Vi(k,+,1) = (V, ©) exp(ikx) cos(nz)
(HE) = Vv = — i(Dl—i—a) © with D = —A = K +n?
(Vort) =  characteristic equation for the temporal eigenvalue o :
o> + (1+P)Dio + P(D; — RK*)/D1 = 0

Discriminant € R™* = 2realrootsoy s. t. oy +o_- = —(1+P)D;1 <0,

ocio- = P(D? —RKk®)/Dy > 0 forsmall R« o+ <0
oio- = P(D} —RKk*)/Di < 0 forlarge R < o0_<0,0.>0
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RBT 2D xz model with slip BC: normal mode analysis
Local state vector: V = (¢,0) s.t. T

vV = —(821/1) e + (3x1/)) €z, TZ

T=To—z+ 0, A

cD-V = Lg-V

Ex. 1.1 and 1.2: Most relevant normal modes: N = (£,n) = (+,1) i.e.
V = Vi(k,+,1) = (V, ©) exp(ikx) cos(nz)
(HE) = Vv = — i(Dl—i—a) © with D = —A = K +n?
(Vort) =  characteristic equation for the temporal eigenvalue o :
o> + (1+P)Dio + P(D; — RK*)/D1 = 0

Discriminant € R™* = 2realrootsoy s. t. oy +o_- = —(1+P)D;1 <0,

ocio- = P(D? —RKk®)/Dy > 0 forsmall R« o+ <0 stability
oi0- = P(D? —RKk®)/Di < 0 forlarge R < o_<0,04 >0 instability !
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RBT 2D xz model with slip BC: normal mode analysis: results !

This characteristic equation for the temporal eigenvalue has 2 real roots o4 ,

olk,+ 1LLRP)>0 <= R > Ry(k) = (kK*+7)%/k*.
(k, +,1,R,P) (k) = (

Neutral curve : 4000
3000 |
unstable
R 2000t
1000 . .
_____________________ T Bifurcation !
I stable
ols L | L L L L
0 16 2 3 4 5 6
Minimum < critical wavenumber k. = n/ﬁ ~ 222

critical wavelength \. = 27/k. = 22 ~ 283
critical Rayleigh number R, = 277%/4 ~ 657.5
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RBT 2D xz model with slip BC: normal mode analysis: results !

This characteristic equation for the temporal eigenvalue has 2 real roots o4 ,

o(k,+,1,RP)>0 <= R > Ro(k) = (K +7°) /K.

Neutral curve : 4000
3000 |
unstable
R 2000+
1000 . .
_____________________ T Bifurcation !
! stable
0 L L L L L L L
0 1 2 3 4 5 6
Minimum < critical wavenumber k. = n/ﬁ ~ 222

critical wavelength \. = 27/k. = 2v/2 ~ 2.83
critical Rayleigh number R, = 277%/4 ~ 657.5
Thus an increase of 0.2% of R from 657 to 658 produces ‘dramatic’ effects:
the system becomes unstable ! Some say that a bifurcation is a ‘catastrophe’ !..
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RBT 2D xz model with slip BC: normal mode analysis... However !

cD-V = Lg-V

Ex. 1.1: Eigenproblem solved by normal modes analysis: most relevant normal modes
V = Vi(k,x) explo(k,£,1,R,P) t] with Vi(k,£) = (V, ©) exp(ikx) cos(wz) ,
k = horizontal wavenumber # 0.
i

(HE) = Vv = — (Di+0)© with D = —A =K+

(Vort) = o> 4+ (1+P)Dic + P(D; — RK*)/Dy = 0
e Quid of x-homogeneous modes with k =0 ?

e Are there other modes with a more complex z-dependence ?

Mines Nancy 2022 Plaut - T2TS2 - 10/11
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RBT 2D xz model with slip BC: normal mode analysis... However !

cD-V = Lg-V

Ex. 1.1: Eigenproblem solved by normal modes analysis: most relevant normal modes
V = Vi(k,x) explo(k,£,1,R,P) t] with Vi(k,£) = (V, ©) exp(ikx) cos(wz) ,
k = horizontal wavenumber # 0.
i

(HE) = Vv = — (Di+0)© with D = —A =K+

(Vort) = o> 4+ (1+P)Dic + P(D; — RK*)/Dy = 0
e Quid of x-homogeneous modes with k =0 ?
e Are there other modes with a more complex z-dependence ?
— ex. 1.2: general linear stability analysis = first of 3 possible homeworks !..

e x-homogeneous modes are ‘not dangerous' !
e More general x-dependent modes with k # O:

V = Vi(k,+,n) = (V, ©) exp(ikx) sin(nmz + nm/2)

n <> dependence on z , + <+ 2 modes at fixed k and n.

e Modes with n > 1 ‘not dangerous’ at ‘low’ values of R ?..
Mines Nancy 2022 Plaut - T2TS2 - 10/11
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2D RBT with slip BC: linear stability analysis: structures

Complex critical mode: Vi, =
where we used the normalization condition
O(x=0,z=0)in Vic = 1

= real critical mode: Vi, =

Streamlines and isotherms of 6 ?

Mines Nancy 2022 Plaut - T2TS2 - 11/11
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2D RBT with slip BC: linear stability analysis: structures
Complex critical mode: Vic = (—3im/+v/2, 1) exp(ikex) cos(rz)

where we used the normalization condition
O(x=0,z=0)in Vic = 1

= real critical mode: Vi, =

Streamlines and isotherms of 6 ?
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2D RBT with slip BC: linear stability analysis: structures
Complex critical mode: Vic = (—3im/+v/2, 1) exp(ikex) cos(rz)
where we used the normalization condition

O(x=0,z=0)in Vic = 1

= real critical mode: Vi, = AVi.+cc =

Streamlines and isotherms of 6 ?

Mines Nancy 2022 Plaut - T2TS2 - 11/11



Plan RBT with slip BC: model Linear stability analysis
oo 000 oooooe

2D RBT with slip BC: linear stability analysis: structures
Complex critical mode: Vic = (—3im/+v/2, 1) exp(ikex) cos(rz)
where we used the normalization condition
O(x=0,z=0)in Vic = 1
= real critical mode: Vi, = AVic +cc = A(BV2r sin(kex), 2cos(kex)) cos(nz)

Streamlines and isotherms of 6 ?
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