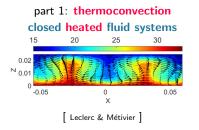
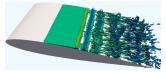
Emmanuel Plaut

How does the flow in a (closed or open) fluid system change from laminar to complex or turbulent as a control parameter is changed ?

Fluid physics:



part 2: aerodynamics open shear flows



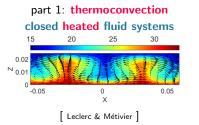
[Tangermann & Klein]

Methods:

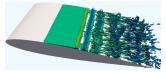
Emmanuel Plaut

How does the flow in a (closed or open) fluid system change from laminar to complex or turbulent as a control parameter is changed ?

Fluid physics:



part 2: aerodynamics open shear flows



[Tangermann & Klein]

Methods: linear then weakly nonlinear stability analysis = bifurcation theory or 'catastrophe theory'

Analytical calculations in part 1 vs numerical computations in part 2 with a 'spectral method'... and Mathematica !

http://emmanuelplaut.perso.univ-lorraine.fr/t2t

Session	Date	Content		
ightarrow 1 -	29/09	Thermoconvection: phenomena, equations, differentially heated cavity,		
		cavity heated from below $= \mathbf{RB}$ cavity, linear stability analysis		
2 -	06/10	RB Thermoconvection: linear & weakly nonlinear stability analysis		
3 -	13/10	RB Thermoconvection: nonlinear phenomena		
4 -	20/10	Aerodynamics of OSF : linear stability analysis		
5 -	27/10	Aerodynamics of OSF : linear & weakly nonlinear stability analyses		
6 -	10/11	Aerodynamics of OSF : nonlinear phenomena		
	24/11	Examination		

RB = Rayleigh-Bénard **OSF** = Open Shear Flows

http://emmanuelplaut.perso.univ-lorraine.fr/t2t

Date	Content		
29/09	Thermoconvection: phenomena, equations, differentially heated cavity,		
	cavity heated from below = $f RB$ cavity, linear stability analysis		
06/10	RB Thermoconvection: linear & weakly nonlinear stability analysis		
13/10	RB Thermoconvection: nonlinear phenomena		
20/10	Aerodynamics of OSF : linear stability analysis		
27/10	Aerodynamics of ${f OSF}$: linear & weakly nonlinear stability analyses		
10/11	Aerodynamics of OSF : nonlinear phenomena		
24/11	Examination		
	29/09 06/10 13/10 20/10 27/10 10/11		

 \mathbf{RB} = Rayleigh-Bénard \mathbf{OSF} = Open Shear Flows

Follow up module in January & February 2023: Turbulence & Wind Energy

http://emmanuelplaut.perso.univ-lorraine.fr/twe

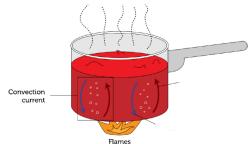
Natural thermoconvection: Eqs. Diff. heated cavity 0000000000

Rayleigh-Bénard system: Model - LA 000000000

1st part of this module:

Transition to turbulence, or, to spatio-temporal complexity, in natural thermoconvection

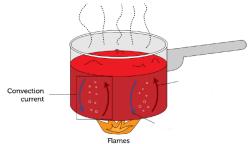
- Fluids in non-isothermal situations
- temperature gradients **buoyancy forces** may drive **natural thermoconvection** = **heat-driven flows and transfers** !
- This happens in the kitchen...



1st part of this module:

Transition to turbulence, or, to spatio-temporal complexity, in natural thermoconvection

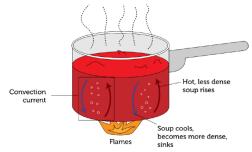
- Fluids in non-isothermal situations have a density ρ that depends on the temperature T, $\rho = \rho(T)$ which often \downarrow as $T \uparrow$.
- temperature gradients
 buoyancy forces
 may drive natural thermoconvection = heat-driven flows and transfers !
- This happens in the kitchen...



1st part of this module:

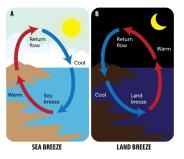
Transition to turbulence, or, to spatio-temporal complexity, in natural thermoconvection

- Fluids in non-isothermal situations have a density ρ that depends on the temperature T, $\rho = \rho(T)$ which often \downarrow as $T \uparrow$.
- If temperature gradients exist, in a gravity field, buoyancy forces part of ρg may drive natural thermoconvection = heat-driven flows and transfers !
- This happens in the kitchen...



1st part of this module: Transition to turbulence, or, to spatio-temporal complexity, in natural thermoconvection

- Fluids in non-isothermal situations have a density ρ that depends on the temperature T, $\rho = \rho(T)$ which often \downarrow as $T \uparrow$.
- If temperature gradients exist, in a gravity field, buoyancy forces part of ρg may drive natural thermoconvection = heat-driven flows and transfers !
- This happens in the nature...



1st part of this module:

Transition to turbulence, or, to spatio-temporal complexity, in natural thermoconvection

The question is: how thermoconvection comes in and develops ? or:

how do flows transit to spatial complexity in thermoconvection...

in simpler systems ?

Seeking the answer, we will learn advanced methods for fluid mechanics !

1st part of this module:

Transition to turbulence, or, to spatio-temporal complexity, in natural thermoconvection

The question is: how thermoconvection comes in and develops ? or:

how do flows transit to spatial complexity in thermoconvection...

in simpler systems ?

Seeking the answer, we will learn advanced methods for fluid mechanics !

Today - session 1

• Natural thermoconvection:

introduction, equations, example of the differentially heated cavity

• **Rayleigh-Bénard system** = cavity heated from below: linear stability analysis with slip boundary conditions

Natural thermoconvection: equations

• Fluids in non-isothermal situations have a density ρ that depends on T

 $\rho = \rho(T) .$

- If temperature gradients exist, in a gravity field, **buoyancy forces** part of ρ**g** may drive **natural thermoconvection**.
- Equations of motion

Rayleigh-Bénard system: Model - LA 000000000

Natural thermoconvection: equations

• Fluids in non-isothermal situations have a density ρ that depends on T

$$\rho = \rho(T) .$$

- If temperature gradients exist, in a gravity field, buoyancy forces part of ρg may drive natural thermoconvection.
- Equations of motion of a Newtonian fluid:

$$\rho \frac{d\mathbf{v}}{dt} = \rho [\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v}] = \rho \mathbf{g} - \nabla \rho + \eta \Delta \mathbf{v} , \qquad (NS)$$

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{v}) = \mathbf{0}$$
, (MC)

$$\frac{dT}{dt} = \partial_t T + \mathbf{v} \cdot \nabla T = \kappa \Delta T , \qquad (\text{HE})$$

with η the dynamic viscosity, κ the heat diffusivity.

Natural thermoconvection: equations

- criterion of existence of hydrostatic conduction solutions ?
- Fluids in non-isothermal situations have a density ρ that depends on ${\cal T}$

$$\rho = \rho(T) .$$

- If temperature gradients exist, in a gravity field, buoyancy forces part of ρg may drive natural thermoconvection.
- Equations of motion of a Newtonian fluid:

$$\rho \frac{d\mathbf{v}}{dt} = \rho [\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v}] = \rho \mathbf{g} - \nabla \rho + \eta \Delta \mathbf{v} , \qquad (NS)$$

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{v}) = \mathbf{0},$$
 (MC)

$$\frac{dT}{dt} = \partial_t T + \mathbf{v} \cdot \nabla T = \kappa \Delta T , \qquad (\text{HE})$$

with η the dynamic viscosity, κ the heat diffusivity.

• Hydrostatic conduction solutions:

Natural thermoconvection: equations

- criterion of existence of hydrostatic conduction solutions ?
- Fluids in non-isothermal situations have a density ρ that depends on ${\cal T}$

$$\rho = \rho(T) .$$

- If temperature gradients exist, in a gravity field, buoyancy forces part of ρg may drive natural thermoconvection.
- Equations of motion of a Newtonian fluid:

$$\rho \frac{d\mathbf{v}}{dt} = \rho [\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v}] = \rho \mathbf{g} - \nabla \rho + \eta \Delta \mathbf{v} , \qquad (NS)$$

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{v}) = \mathbf{0},$$
 (MC)

$$\frac{dT}{dt} = \partial_t T + \mathbf{v} \cdot \nabla T = \kappa \Delta T , \qquad (\text{HE})$$

with η the dynamic viscosity, κ the heat diffusivity.

• Hydrostatic conduction solutions: $\mathbf{v} = \mathbf{0} \implies \nabla T \parallel \mathbf{g}$.

Natural thermoconvection: equations

- criterion of existence of hydrostatic conduction solutions ?
- Fluids in non-isothermal situations have a density ρ that depends on ${\cal T}$

$$\rho = \rho(T) .$$

- If temperature gradients exist, in a gravity field, buoyancy forces part of ρg may drive natural thermoconvection.
- Equations of motion of a Newtonian fluid:

$$\rho \frac{d\mathbf{v}}{dt} = \rho [\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v}] = \rho \mathbf{g} - \nabla \rho + \eta \Delta \mathbf{v} , \qquad (NS)$$

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{v}) = \mathbf{0},$$
 (MC)

$$\frac{dT}{dt} = \partial_t T + \mathbf{v} \cdot \nabla T = \kappa \Delta T , \qquad (\text{HE})$$

with η the dynamic viscosity, κ the heat diffusivity.

• Hydrostatic conduction solutions: $\mathbf{v} = \mathbf{0} \implies \nabla T \parallel \mathbf{g}$. Hence ∇T not vertical \implies thermoconvection flows always develop. Mines Nancy 2022 Plaut - T2T - 8/27

Natural thermoconvection: equations under the Oberbeck-Boussinesq approximations

• Fluids in non-isothermal situations have a density ρ that depends on *T*, under the 1st OB approximation, linearly:

$$\rho = \rho_0 \left[1 - \alpha (T - T_0)\right]$$

with ρ_0 the reference density, T_0 the reference temperature,

 $\boldsymbol{\alpha}$ the small thermal expansion coefficient.

• Equations of motion under the **OB** approximations:

$$\rho_0 \frac{d\mathbf{v}}{dt} = \rho_0 [\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v}] = \rho \mathbf{g} - \nabla \rho + \eta \Delta \mathbf{v} , \qquad (NS)$$

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (MC)$$

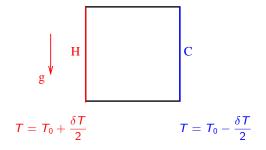
$$\frac{dT}{dt} = \partial_t T + \mathbf{v} \cdot \nabla T = \kappa \Delta T , \qquad (\text{HE})$$

with η the dynamic viscosity, κ the heat diffusivity.

• Hydrostatic conduction solutions: $\mathbf{v} = \mathbf{0} \implies \nabla T \parallel \mathbf{g}$. Hence ∇T not vertical \implies thermoconvection flows always develop. Mines Nancy 2022 Plaut - T2T - 9/27

Rayleigh-Bénard system: Model - LA 000000000

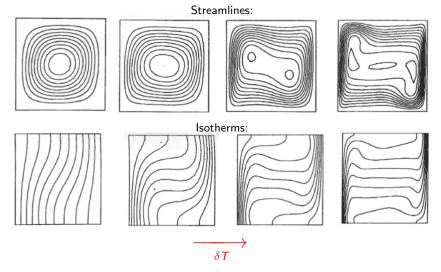
Thermoconvection in a differentially heated cavity



Mines Nancy 2022 Plaut - T2T - 10/27

Generalities 000000 Rayleigh-Bénard system: Model - LA 000000000

Steady thermoconvection in a 2D differentially heated cavity



[De Vahl Davis 1983 Natural convection of air in a square cavity: A benchmark numerical solution. *Int. J. Num. Meth. Fluids*]

Rayleigh-Bénard system: Model - LA 000000000

Main dimensionless control parameter: dimensionless measure of δT ?

Generalities

Natural thermoconvection: Eqs. Diff. heated cavity 00000000000

Rayleigh-Bénard system: Model - LA 000000000

Main dimensionless control parameter: dimensionless measure of δT ?

 $\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (MC)$

OB equations :

$$\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v} , \qquad (NS)$$

$$\frac{dT}{dt} = \kappa \Delta T , \qquad (\text{HE})$$

with ν the kinematic viscosity.

Rayleigh-Bénard system: Model - LA 000000000

Main dimensionless control parameter: dimensionless measure of δT ? better: of αT g ?

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (\mathsf{MC})$$

OB equations :

$$\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v} , \qquad (NS)$$

$$\frac{dT}{dt} = \kappa \Delta T , \qquad (\text{HE})$$

with ν the kinematic viscosity.

Rayleigh-Bénard system: Model - LA 000000000

Main dimensionless control parameter: dimensionless measure of δT ? better: of αT g ?

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (\mathsf{MC})$$

$$\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v} , \qquad (NS)$$

$$\frac{dT}{dt} = \kappa \Delta T , \qquad (\text{HE})$$

with ν the kinematic viscosity.

Idea:
$$R = \frac{\alpha \ \delta T \ g}{\nu \Delta \mathbf{v}} = \frac{\alpha \ \delta T \ g \ d^2}{\nu V}$$
 with *d* the length scale of the cavity.

Determine V taking into account the feedback of \mathbf{v} onto T. Where is this feedback ?

Rayleigh-Bénard system: Model - LA 000000000

Main dimensionless control parameter: dimensionless measure of δT ? better: of αT g ?

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (\mathsf{MC})$$

OB equations :

$$\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v} , \qquad (NS)$$

$$\frac{dT}{dt} = \kappa \Delta T , \qquad (\text{HE})$$

with ν the kinematic viscosity.

Idea:
$$R = \frac{\alpha \ \delta T \ g}{\nu \Delta \mathbf{v}} = \frac{\alpha \ \delta T \ g \ d^2}{\nu V}$$
 with *d* the length scale of the cavity.

Determine V taking into account the feedback of \mathbf{v} onto T. Where is this feedback ?

In (HE) ! Balancing the convection and diffusion terms in (HE) one gets

$$\mathbf{v} \cdot \nabla T = \kappa \Delta T \iff V = \kappa / d$$

Rayleigh-Bénard system: Model - LA 000000000

Main dimensionless control parameter: dimensionless measure of δT ? better: of αT g ?

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (\mathsf{MC})$$

OB equations :

$$\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v} , \qquad (NS)$$

$$\frac{dT}{dt} = \kappa \Delta T , \qquad (\text{HE})$$

with ν the kinematic viscosity.

Idea:
$$R = \frac{\alpha \ \delta T \ g}{\nu \Delta \mathbf{v}} = \frac{\alpha \ \delta T \ g \ d^2}{\nu V}$$
 with *d* the length scale of the cavity.

Determine V taking into account the feedback of v onto T. Where is this feedback ? In (HE) ! Balancing the convection and diffusion terms in (HE) one gets

$$\mathbf{v}\cdot oldsymbol{
abla} T \;=\; \kappa \Delta T \;\iff\; V \;=\; \kappa/d \;=\; d/ au_{ ext{therm}}$$

with $au_{
m therm} = d^2/\kappa$ the heat diffusion time

Rayleigh-Bénard system: Model - LA 000000000

Main dimensionless control parameter: dimensionless measure of δT ? better: of αT g ?

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (\mathsf{MC})$$

OB equations :

$$\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v} , \qquad (NS)$$

$$\frac{dT}{dt} = \kappa \Delta T , \qquad (\text{HE})$$

with ν the kinematic viscosity.

Idea:
$$R = \frac{\alpha \ \delta T \ g}{\nu \Delta \mathbf{v}} = \frac{\alpha \ \delta T \ g \ d^2}{\nu V}$$
 with *d* the length scale of the cavity.

Determine V taking into account the feedback of v onto T. Where is this feedback ? In (HE) ! Balancing the convection and diffusion terms in (HE) one gets

$$\mathbf{v}\cdot oldsymbol{
abla} T \;=\; \kappa \Delta T \;\; \iff \;\; V \;=\; \kappa/d \;=\; d/ au_{ ext{therm}}$$

with $\tau_{\rm therm} = d^2/\kappa$ the heat diffusion time \Longrightarrow

$$R = \frac{\alpha \ \delta T \ g \ d^3}{\kappa \nu}$$

Rayleigh number .

Rayleigh-Bénard system: Model - LA 000000000

(NS)

(HE)

Main dimensionless control parameter: dimensionless measure of δT ? better: of αT g ?

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (\mathsf{MC})$$

OB equations : $\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v} ,$ $\frac{dT}{dt} = \kappa \Delta T ,$

with ν the kinematic viscosity.

Idea:
$$R = \frac{\alpha \ \delta T \ g}{\nu \Delta \mathbf{v}} = \frac{\alpha \ \delta T \ g \ d^2}{\nu V}$$
 with *d* the length scale of the cavity.

Determine V taking into account the feedback of v onto T. Where is this feedback ? In (HE) ! Balancing the convection and diffusion terms in (HE) one gets

$$\mathbf{v}\cdot oldsymbol{
abla} T \;=\; \kappa \Delta T \;\iff\; V \;=\; \kappa/d \;=\; d/ au_{ ext{therm}}$$

with $au_{ ext{therm}} = d^2/\kappa$ the heat diffusion time \Longrightarrow

$$\implies R = \frac{\alpha \, \sigma \, r \, g \, u}{\kappa \nu}$$
 Ray

 $\infty \delta T = d^3$

Rayleigh number .

Caution: $V = \kappa/d$ meaningful from the point of view of dimensional analysis - not always true regarding orders of magnitude ! Mines Nancy 2022 Plaut - T2T - **12**/27

Rayleigh-Bénard system: Model - LA 000000000

Main dimensionless control parameter: Rayleigh number

$$R = \frac{\alpha \ \delta T \ g \ d^3}{\nu \kappa}$$

Order of magnitude for typical fluids ?

		thermal expansion coefficient	kinematic viscosity	heat diffusivity
Fluid	T_0	α	ν	κ
Water	$20^{\mathrm{o}}\mathrm{C}$	$2 \ 10^{-4} \ {\rm K}^{-1}$	$1 \ 10^{-6} \ m^2/s$	$1 \ 10^{-7} \ m^2/s$
Air	$27^{\mathrm{o}}\mathrm{C}$		$2 \ 10^{-5} \ m^2/s$	$2 \ 10^{-5} \ m^2/s$

www.engineeringtoolbox.com

Rayleigh-Bénard system: Model - LA 000000000

Main dimensionless control parameter: Rayleigh number

$$R = \frac{\alpha \ \delta T \ g \ d^3}{\nu \kappa}$$

Order of magnitude for typical fluids ?

		thermal expansion coefficient	kinematic viscosity	heat diffusivity
Fluid	T_0	α	ν	κ
Water	$20^{\mathrm{o}}\mathrm{C}$	$2 \ 10^{-4} \ {\rm K}^{-1}$	$1 \ 10^{-6} \ m^2/s$	$1 \ 10^{-7} \ m^2/s$
Air	$27^{\mathrm{o}}\mathrm{C}$	$1/T_0$	$2 \ 10^{-5} \ m^2/s$	$2 \ 10^{-5} \ m^2/s$
		with the perfect gas law		

www.engineeringtoolbox.com

Rayleigh-Bénard system: Model - LA 000000000

Main dimensionless control parameter: Rayleigh number

$$R = \frac{\alpha \ \delta T \ g \ d^3}{\nu \kappa}$$

Order of magnitude for typical fluids ?

		thermal expansion coefficient	kinematic viscosity	heat diffusivity
Fluid	T_0	α	ν	κ
Water	$20^{\rm o}{\rm C}$	$2 \ 10^{-4} \ {\rm K}^{-1}$	$1 \ 10^{-6} \ m^2/s$	$1 \ 10^{-7} \ m^2/s$
Air	$27^{\mathrm{o}}\mathrm{C}$	$1/T_0 = 3 \ 10^{-3} \ {\rm K}^{-1}$	$2 \ 10^{-5} \ m^2/s$	$2 \ 10^{-5} \ m^2/s$
		with the perfect gas law		

www.engineeringtoolbox.com

Rayleigh-Bénard system: Model - LA 000000000

Main dimensionless control parameter: Rayleigh number

$$R = \frac{\alpha \ \delta T \ g \ d^3}{\nu \kappa}$$

Order of magnitude for typical fluids ?

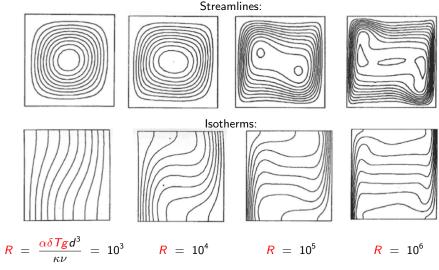
		thermal expansion coefficient	kinematic viscosity	heat diffusivity
Fluid	T_0	lpha	ν	κ
Water	$20^{\mathrm{o}}\mathrm{C}$	$2 \ 10^{-4} \ {\rm K}^{-1}$	$1 \ 10^{-6} \ m^2/s$	$1 \ 10^{-7} \ m^2/s$
Air	$27^{\mathrm{o}}\mathrm{C}$	$1/T_0 = 3 \ 10^{-3} \ {\rm K}^{-1}$	$2 \ 10^{-5} \ m^2/s$	$2 \ 10^{-5} \ m^2/s$
		with the perfect gas law		

R large as soon as δT and *d* not too small !

www.engineeringtoolbox.com

Rayleigh-Bénard system: Model - LA 000000000

Steady thermoconvection in a 2D differentially heated cavity

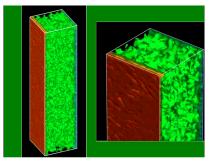


[De Vahl Davis 1983 Natural convection of air in a square cavity: A benchmark numerical solution. *Int. J. Num. Meth. Fluids*]

Rayleigh-Bénard system: Model - LA 000000000

Unsteady thermoconvection in a 3D differentially heated cavity

DNS at $R = 2 \ 10^9$, for a height aspect ratio of 4 : initial condition isotherms:

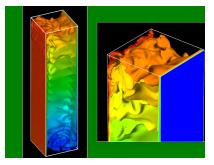


[Trias, Soria et al. 2007 DNS of 2 and 3-dimensional turbulent natural convection flows in a differentially heated cavity of aspect ratio 4. *J. Fluid Mech.*]

www.fxtrias.com/natural_convection.html

Unsteady thermoconvection in a 3D differentially heated cavity

DNS at $R = 2 \ 10^9$, for a height aspect ratio of 4 : end-of-the-run isotherms:



[Trias, Soria et al. 2007 DNS of 2 and 3-dimensional turbulent natural convection flows in a differentially heated cavity of aspect ratio 4. *J. Fluid Mech.*]

The isotherms are, in the core of the cavity, roughly horizontal planes...

like in the high-R 2D case of De Vahl Davis, see frame 14 !..

The study of a simpler 2D system at $R = 10^6$ gives relevant informations for the complex 3D system at $R = 2 \ 10^9$! Mines Nancy 2022 Plaut - T2T - 16/27

Rayleigh-Bénard system: Model - LA 000000000

What we learnt about natural thermoconvection

• It is governed (in 1st approximation) by the **OB equations**:

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (MC)$$

$$\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v} , \qquad (NS)$$

$$\frac{dT}{dt} = \kappa \Delta T . \tag{HE}$$

• The main dimensionless control parameter is the Rayleigh number

$$R = \frac{\alpha \ \delta T \ g \ d^3}{\kappa \nu}$$

Rayleigh-Bénard system: Model - LA 000000000

What we learnt about natural thermoconvection

• It is governed (in 1st approximation) by the **OB equations**:

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (MC)$$

$$\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v} , \qquad (NS)$$

$$\frac{dT}{dt} = \kappa \Delta T . \tag{HE}$$

• The main dimensionless control parameter is the Rayleigh number

$$R = \frac{\alpha \ \delta T \ g \ d^3}{\kappa \nu}$$

• ∇T not vertical \Rightarrow thermoconvection flows develop at once.

Rayleigh-Bénard system: Model - LA 000000000

What we learnt about natural thermoconvection

• It is governed (in 1st approximation) by the **OB equations**:

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (MC)$$

$$\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v} , \qquad (NS)$$

$$\frac{dT}{dt} = \kappa \Delta T . \tag{HE}$$

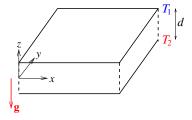
• The main dimensionless control parameter is the Rayleigh number

$$R = \frac{\alpha \ \delta T \ g \ d^3}{\kappa \nu}$$

- ∇T not vertical \Rightarrow thermoconvection flows develop at once.
- ∇T vertical ⇒ thermoconvection flows do not always start ? how do they start ?

Rayleigh-Bénard system: Model - LA •00000000

Study of the Rayleigh-Bénard system: plane cavity heated from below



The OB equations

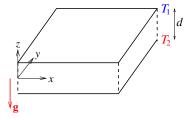
div $\mathbf{v} = 0$, (MC) $\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v},$ (NS)

$$\frac{dT}{dt} = \kappa \Delta T , \qquad (\text{HE})$$

always admit a static solution

 Rayleigh-Bénard system: Model - LA •00000000

Study of the Rayleigh-Bénard system: plane cavity heated from below



The OB equations

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (\mathsf{MC})$$

$$\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v} , \qquad (NS)$$

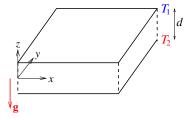
$$\frac{dT}{dt} = \kappa \Delta T , \qquad (\text{HE})$$

always admit a static solution that satisfies the isothermal boundary conditions:

$$\mathbf{v} = \mathbf{0}$$
, $T = T_0 - \delta T \frac{z}{d}$ with $\delta T = T_2 - T_1$.

 Rayleigh-Bénard system: Model - LA •00000000

Study of the Rayleigh-Bénard system: plane cavity heated from below



The OB equations

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (MC)$$

$$\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v} , \qquad (NS)$$

$$\frac{dT}{dt} = \kappa \Delta T , \qquad (\text{HE})$$

always admit a static solution that satisfies the isothermal boundary conditions:

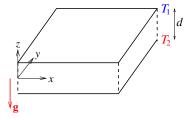
.

$$\mathbf{v} = \mathbf{0}$$
, $T = T_0 - \delta T \frac{z}{d}$ with $\delta T = T_2 - T_1$.

Thus, how convection can set in ?

 Rayleigh-Bénard system: Model - LA •00000000

Study of the Rayleigh-Bénard system: plane cavity heated from below



The OB equations

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (MC)$$

$$\frac{d\mathbf{v}}{dt} = -\alpha T \mathbf{g} - \nabla p'' + \nu \Delta \mathbf{v} , \qquad (NS)$$

$$\frac{dT}{dt} = \kappa \Delta T , \qquad (\text{HE})$$

always admit a static solution that satisfies the isothermal boundary conditions:

$$\mathbf{v} = \mathbf{0}$$
, $T = T_0 - \delta T \frac{z}{d}$ with $\delta T = T_2 - T_1$.

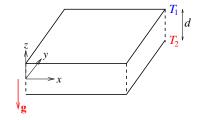
Thus, how convection can set in ? Through an instability of the static solution ! Mines Nancy 2022 Plaut - T2T - 18/27

Rayleigh-Bénard system: Model - LA 000000000

Study of the Rayleigh-Bénard system: dimensionless model

- Unit of length = thickness d
- Unit of time = heat diffus^o time $\tau_{\text{therm}} = \frac{d^2}{c}$
- Unit of velocity = $V = \frac{d}{\tau_{\text{therm}}} = \frac{\kappa}{d}$
- Unit of temperature = δT

Dimensionless time $t' = t/ au_{ ext{therm}} = t\kappa/d^2 =$

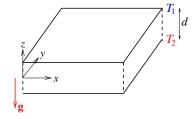


Natural thermoconvection: Eqs. Diff. heated cavity ${\tt 00000000000}$

Rayleigh-Bénard system: Model - LA 000000000

Study of the Rayleigh-Bénard system: dimensionless model

- Unit of length = thickness d
- Unit of time = heat diffus^o time $\tau_{\text{therm}} = \frac{d^2}{r}$
- Unit of velocity = $V = \frac{d}{\tau_{\text{therm}}} = \frac{\kappa}{d}$
- Unit of temperature = δT



Dimensionless time $t'=t/ au_{ ext{therm}}=t\kappa/d^2=$ Fourier number

Rayleigh-Bénard system: Model - LA 000000000

Study of the Rayleigh-Bénard system: dimensionless model

• Unit of length = thickness d • Unit of time = heat diffus^o time $\tau_{\text{therm}} = \frac{d^2}{\kappa}$ • Unit of velocity = $V = \frac{d}{\tau_{\text{therm}}} = \frac{\kappa}{d}$ • Unit of temperature = δT

Dimensionless time $t' = t/\tau_{\text{therm}} = t\kappa/d^2 = \text{Fourier number}$ Introduce a dimensionless perturbat^o of temperature θ , s.t. the dimensionless temperature

$$T' = T'_0 - z' + \theta$$

Rayleigh-Bénard system: Model - LA 000000000

Study of the Rayleigh-Bénard system: dimensionless model

- Unit of length = thickness d • Unit of time = heat diffus^o time $\tau_{\text{therm}} = \frac{d^2}{\kappa}$
- Unit of velocity = $V = \frac{d}{\tau_{\text{therm}}} = \frac{\kappa}{d}$
- Unit of temperature = δT

Dimensionless time $t' = t/\tau_{\text{therm}} = t\kappa/d^2 =$ Fourier number Introduce a dimensionless perturbat^o of temperature θ , s.t. the dimensionless temperature

$$T' = T'_0 - z' + \theta$$

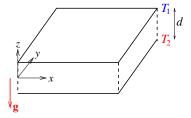
 \Rightarrow dimensionless **OB equations**

$$\operatorname{div} \mathbf{v} = \mathbf{0}$$
, (MC)

$$P^{-1}\frac{d\mathbf{v}}{dt} = R\theta \,\mathbf{e}_z - \nabla p + \Delta \mathbf{v} \,, \tag{NS}$$

$$\frac{d\theta}{dt} = \Delta\theta + \mathbf{v}_{\mathbf{z}}, \qquad (\mathsf{HE})$$

with the Rayleigh number $R = \alpha \ \delta T \ g \ d^3/(\kappa \nu)$ and the Prandtl number $P = \nu/\kappa$. Mines Nancy 2022 Plaut - T2T - 19/27



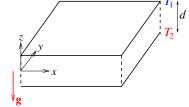
Rayleigh-Bénard system: Model - LA

Study of the Rayleigh-Bénard system: dimensionless model

OB equations:

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (MC)$$

$$P^{-1}\frac{d\mathbf{v}}{dt} = R\theta \,\mathbf{e}_{z} - \nabla p + \Delta \mathbf{v} , \qquad (\text{NS})$$
$$\frac{d\theta}{dt} = \Delta\theta + \mathbf{v}_{z} , \qquad (\text{HE})$$



Isotropy of the problem in the horizontal plane \Rightarrow focus on 2D xz solutions

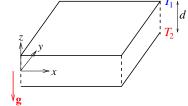
$$\mathbf{v} = v_x(x,z,t) \mathbf{e}_x + v_z(x,z,t) \mathbf{e}_z , \quad \theta = \theta(x,z,t) \dots$$

Rayleigh-Bénard system: Model - LA 000000000

Study of the Rayleigh-Bénard system: dimensionless model OB equations:

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (MC)$$

$$P^{-1}\frac{d\mathbf{v}}{dt} = R\theta \,\mathbf{e}_{z} - \nabla p + \Delta \mathbf{v} , \qquad (\text{NS})$$
$$\frac{d\theta}{dt} = \Delta\theta + \mathbf{v}_{z} , \qquad (\text{HE})$$



Isotropy of the problem in the horizontal plane \Rightarrow focus on 2D xz solutions

$$\mathbf{v} = v_x(x,z,t) \mathbf{e}_x + v_z(x,z,t) \mathbf{e}_z , \quad \theta = \theta(x,z,t) \dots$$

How can one solve (MC) in a convenient manner ?

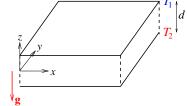
Rayleigh-Bénard system: Model - LA 000000000

Study of the Rayleigh-Bénard system: dimensionless model

OB equations:

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (MC)$$

$$P^{-1}\frac{d\mathbf{v}}{dt} = R\theta \,\mathbf{e}_{z} - \nabla p + \Delta \mathbf{v} , \quad (NS)$$
$$\frac{d\theta}{dt} = \Delta \theta + \mathbf{v}_{z} , \qquad (HE)$$



Isotropy of the problem in the horizontal plane \Rightarrow focus on 2D xz solutions

$$\mathbf{v} = v_x(x,z,t) \mathbf{e}_x + v_z(x,z,t) \mathbf{e}_z , \quad \theta = \theta(x,z,t) \dots$$

How can one solve (MC) in a convenient manner ? Use a streamfunction ψ such that

$$\mathbf{v} = \operatorname{curl}(\psi \, \mathbf{e}_y) = (\mathbf{\nabla}\psi) \times \mathbf{e}_y = -(\partial_z \psi) \, \mathbf{e}_x + (\partial_x \psi) \, \mathbf{e}_z \; .$$

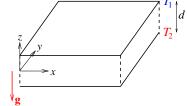
Rayleigh-Bénard system: Model - LA

Study of the Rayleigh-Bénard system: dimensionless model

OB equations:

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (MC)$$

$$P^{-1}\frac{d\mathbf{v}}{dt} = R\theta \,\mathbf{e}_{z} - \nabla p + \Delta \mathbf{v} , \quad (NS)$$
$$\frac{d\theta}{dt} = \Delta \theta + \mathbf{v}_{z} , \qquad (HE)$$



Isotropy of the problem in the horizontal plane \Rightarrow focus on 2D xz solutions

$$\mathbf{v} = v_x(x,z,t) \mathbf{e}_x + v_z(x,z,t) \mathbf{e}_z , \quad \theta = \theta(x,z,t) \dots$$

How can one solve (MC) in a convenient manner ? Use a streamfunction ψ such that

$$\mathbf{v} = \operatorname{curl}(\psi \ \mathbf{e}_y) = (\nabla \psi) \times \mathbf{e}_y = -(\partial_z \psi) \ \mathbf{e}_x + (\partial_x \psi) \ \mathbf{e}_z \ .$$

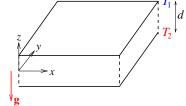
How can one eliminate p in (NS) ?

Rayleigh-Bénard system: Model - LA

Study of the Rayleigh-Bénard system: dimensionless model

$$\operatorname{div} \mathbf{v} = \mathbf{0} , \qquad (MC)$$

$$P^{-1}\frac{d\mathbf{v}}{dt} = R\theta \,\mathbf{e}_{z} - \nabla p + \Delta \mathbf{v} , \qquad (\text{NS})$$
$$\frac{d\theta}{dt} = \Delta\theta + \mathbf{v}_{z} , \qquad (\text{HE})$$



Isotropy of the problem in the horizontal plane \Rightarrow focus on 2D xz solutions

$$\mathbf{v} = v_x(x,z,t) \mathbf{e}_x + v_z(x,z,t) \mathbf{e}_z , \quad \theta = \theta(x,z,t) \dots$$

How can one solve (MC) in a convenient manner ? Use a streamfunction ψ such that

$$\mathbf{v} = \operatorname{curl}(\psi \ \mathbf{e}_y) = (\nabla \psi) \times \mathbf{e}_y = -(\partial_z \psi) \ \mathbf{e}_x + (\partial_x \psi) \ \mathbf{e}_z \ .$$

How can one eliminate p in (NS)? Consider $curl(NS) \cdot e_y$ i.e. the vorticity equation:

$$P^{-1}\partial_t(-\Delta\psi) + P^{-1}[\partial_z(\mathbf{v}\cdot\nabla v_x) - \partial_x(\mathbf{v}\cdot\nabla v_z)] = -R\partial_x\theta + \Delta(-\Delta\psi). \quad (VortE)$$

Natural thermoconvection: Eqs. Diff. heated cavity ${\tt 00000000000}$

Rayleigh-Bénard system: Model - LA

Study of 2D xz solutions of the Rayleigh-Bénard problem

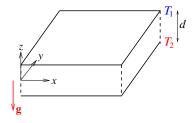
Local state vector: $V = (\psi, \theta)$ s. t.

$$\mathbf{v} = -(\partial_z \psi) \mathbf{e}_x + (\partial_x \psi) \mathbf{e}_z$$
,

$$T = T_0 - z + \theta ,$$

obeys the system of coupled P.D.E.

$$D \cdot \partial_t V = L_{\mathbf{R}} \cdot V + N_2(V,V)$$



with D, L_{R} linear, N_{2} nonlinear differential operators. 1st eq. is the vorticity equation:

$$\begin{split} [D \cdot \partial_t V]_{\psi} &= P^{-1}(-\Delta \partial_t \psi) , \quad [L_R \cdot V]_{\psi} &= -R \partial_x \theta + \Delta(-\Delta \psi) , \\ [N_2(V,V)]_{\psi} &= P^{-1} \big[\partial_x \big(\mathbf{v} \cdot \nabla v_z \big) - \partial_z \big(\mathbf{v} \cdot \nabla v_x \big) \big] , \end{split}$$

2^d eq. is the **heat equation**:

$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$

Rayleigh-Bénard system: Model - LA

Study of 2D xz solutions of the Rayleigh-Bénard problem

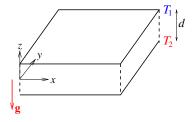
Local state vector: $V = (\psi, \theta)$ s. t.

$$\mathbf{v} = -(\partial_z \psi) \mathbf{e}_x + (\partial_x \psi) \mathbf{e}_z$$
,

$$T = T_0 - z + \theta ,$$

obeys the system of coupled P.D.E.

$$D \cdot \partial_t V = L_{\mathbf{R}} \cdot V + N_2(V,V)$$



with D, L_{R} linear, N_{2} nonlinear differential operators. 1st eq. is the vorticity equation:

$$\begin{split} [D \cdot \partial_t V]_{\psi} &= P^{-1}(-\Delta \partial_t \psi) , \quad [L_R \cdot V]_{\psi} &= -R \partial_x \theta + \Delta(-\Delta \psi) , \\ [N_2(V,V)]_{\psi} &= P^{-1} \big[\partial_x \big(\mathbf{v} \cdot \nabla v_z \big) - \partial_z \big(\mathbf{v} \cdot \nabla v_x \big) \big] , \end{split}$$

2^d eq. is the **heat equation**:

$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$

What do we need to close this system ?

Rayleigh-Bénard system: Model - LA

Study of 2D xz solutions of the Rayleigh-Bénard problem

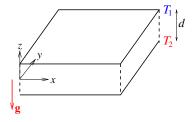
Local state vector: $V = (\psi, \theta)$ s.t.

$$\mathbf{v} = -(\partial_z \psi) \mathbf{e}_x + (\partial_x \psi) \mathbf{e}_z$$
,

$$T = T_0 - z + \theta ,$$

obeys the system of coupled P.D.E.

$$D \cdot \partial_t V = L_{\mathbf{R}} \cdot V + N_2(V,V)$$



with D, L_{R} linear, N_{2} nonlinear differential operators. 1st eq. is the vorticity equation:

$$\begin{split} [D \cdot \partial_t V]_{\psi} &= P^{-1}(-\Delta \partial_t \psi) , \quad [L_R \cdot V]_{\psi} &= -R \partial_x \theta + \Delta(-\Delta \psi) , \\ [N_2(V,V)]_{\psi} &= P^{-1} \big[\partial_x \big(\mathbf{v} \cdot \nabla v_z \big) - \partial_z \big(\mathbf{v} \cdot \nabla v_x \big) \big] , \end{split}$$

2^d eq. is the **heat equation**:

$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$

What do we need to close this system ? Boundary conditions !

Natural thermoconvection: Eqs. Diff. heated cavity ${\tt 00000000000}$

Rayleigh-Bénard system: Model - LA

Study of 2D xz solutions of the Rayleigh-Bénard problem

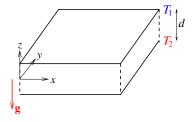
Local state vector: $V = (\psi, \theta)$ s. t.

$$\mathbf{v} = -(\partial_z \psi) \mathbf{e}_x + (\partial_x \psi) \mathbf{e}_z$$
,

$$T = T_0 - z + \theta ,$$

obeys the system of coupled P.D.E.

$$D \cdot \partial_t V = L_{\mathbf{R}} \cdot V + N_2(V,V)$$



with D, L_{R} linear, N_{2} nonlinear differential operators. 1st eq. is the vorticity equation:

$$\begin{split} [D \cdot \partial_t V]_{\psi} &= P^{-1}(-\Delta \partial_t \psi) , \quad [L_R \cdot V]_{\psi} &= -R \partial_x \theta + \Delta(-\Delta \psi) \\ &[N_2(V,V)]_{\psi} &= P^{-1} \big[\partial_x \big(\mathbf{v} \cdot \nabla v_z \big) - \partial_z \big(\mathbf{v} \cdot \nabla v_x \big) \big] , \end{split}$$

2^d eq. is the **heat equation**:

$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$

Boundary conditions on θ :

Rayleigh-Bénard system: Model - LA

Study of 2D xz solutions of the Rayleigh-Bénard problem

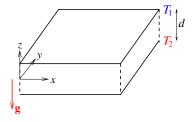
Local state vector: $V = (\psi, \theta)$ s. t.

$$\mathbf{v} = -(\partial_z \psi) \mathbf{e}_x + (\partial_x \psi) \mathbf{e}_z$$
,

$$T = T_0 - z + \theta ,$$

obeys the system of coupled P.D.E.

$$D \cdot \partial_t V = L_{\mathbf{R}} \cdot V + N_2(V,V)$$



with D, L_R linear, N_2 nonlinear differential operators. 1st eq. is the vorticity equation:

$$\begin{split} [D \cdot \partial_t V]_{\psi} &= P^{-1}(-\Delta \partial_t \psi) , \quad [L_R \cdot V]_{\psi} &= -R \partial_x \theta + \Delta(-\Delta \psi) , \\ [N_2(V,V)]_{\psi} &= P^{-1} \big[\partial_x \big(\mathbf{v} \cdot \nabla v_z \big) - \partial_z \big(\mathbf{v} \cdot \nabla v_x \big) \big] , \end{split}$$

2^d eq. is the **heat equation**:

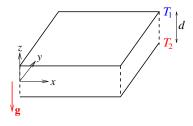
$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$

Boundary conditions on θ : isothermal boundaries: $\theta = 0$ if $z = \pm 1/2$.

Rayleigh-Bénard system: Model - LA 000000000

Study of 2D xz solutions of the Rayleigh-Bénard problem

Local state vector: $V = (\psi, \theta)$ s. t. $\mathbf{v} = -(\partial_z \psi) \mathbf{e}_x + (\partial_x \psi) \mathbf{e}_z$, $T = T_0 - z + \theta$, obeys the system of coupled P.D.E. $D \cdot \partial_t V = L_R \cdot V + N_2(V, V)$,



$$[D \cdot \partial_t V]_{\psi} = P^{-1}(-\Delta \partial_t \psi) , \quad [L_R \cdot V]_{\psi} = -R \partial_x \theta + \Delta(-\Delta \psi) , \qquad (\text{VortE})$$
$$[N_2(V,V)]_{\psi} = P^{-1}[\partial_z (\mathbf{v} \cdot \nabla v_x) - \partial_x (\mathbf{v} \cdot \nabla v_z)] , \qquad (\text{VortE})$$

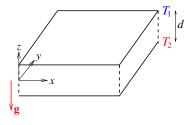
$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$
(HE)

Boundary conditions on θ : isothermal boundaries: $\theta = 0$ if $z = \pm 1/2$. Boundary conditions on ψ i.e. **v**:

Rayleigh-Bénard system: Model - LA 000000000

Study of 2D xz solutions of the Rayleigh-Bénard problem

Local state vector: $V = (\psi, \theta)$ s. t. $\mathbf{v} = -(\partial_z \psi) \mathbf{e}_x + (\partial_x \psi) \mathbf{e}_z$, $T = T_0 - z + \theta$, obeys the system of coupled P.D.E. $D \cdot \partial_t V = L_R \cdot V + N_2(V, V)$,



$$[D \cdot \partial_t V]_{\psi} = P^{-1}(-\Delta \partial_t \psi), \quad [L_R \cdot V]_{\psi} = -R \partial_x \theta + \Delta(-\Delta \psi), \quad (\text{VortE})$$

$$[N_2(V,V)]_{\psi} = P^{-1} [\partial_z (\mathbf{v} \cdot \nabla v_x) - \partial_x (\mathbf{v} \cdot \nabla v_z)], \qquad (VortE)$$

$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$
(HE)

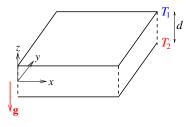
Boundary conditions on θ : isothermal boundaries: $\theta = 0$ if $z = \pm 1/2$. Boundary conditions on ψ i.e. **v**:

no-slip boundaries: $\mathbf{v} = \mathbf{0}$ i.e. $\partial_x \psi = \partial_z \psi = 0$ if $z = \pm 1/2$

Rayleigh-Bénard system: Model - LA 000000000

Study of 2D xz solutions of the Rayleigh-Bénard problem

Local state vector: $V = (\psi, \theta)$ s. t. $\mathbf{v} = -(\partial_z \psi) \mathbf{e}_x + (\partial_x \psi) \mathbf{e}_z$, $T = T_0 - z + \theta$, obeys the system of coupled P.D.E. $D \cdot \partial_t V = L_R \cdot V + N_2(V, V)$,



$$[D \cdot \partial_t V]_{\psi} = P^{-1}(-\Delta \partial_t \psi), \quad [L_R \cdot V]_{\psi} = -R \partial_x \theta + \Delta(-\Delta \psi), \quad (\text{VortE})$$

$$[N_2(V,V)]_{\psi} = P^{-1} [\partial_z (\mathbf{v} \cdot \nabla v_x) - \partial_x (\mathbf{v} \cdot \nabla v_z)], \qquad (VortE)$$

$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$
(HE)

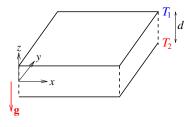
Boundary conditions on θ : isothermal boundaries: $\theta = 0$ if $z = \pm 1/2$. Boundary conditions on ψ i.e. **v**:

no-slip boundaries: $\mathbf{v} = \mathbf{0}$ i.e. $\partial_x \psi = \partial_z \psi = 0$ if $z = \pm 1/2$ or slip boundaries: $\mathbf{v}_z = 0$ i.e. $\partial_x \psi = 0$ if $z = \pm 1/2$

Rayleigh-Bénard system: Model - LA 000000000

Study of 2D xz solutions of the Rayleigh-Bénard problem

Local state vector: $V = (\psi, \theta)$ s. t. $\mathbf{v} = -(\partial_z \psi) \mathbf{e}_x + (\partial_x \psi) \mathbf{e}_z$, $T = T_0 - z + \theta$, obeys the system of coupled P.D.E. $D \cdot \partial_t V = L_R \cdot V + N_2(V, V)$,



$$[D \cdot \partial_t V]_{\psi} = P^{-1}(-\Delta \partial_t \psi), \quad [L_R \cdot V]_{\psi} = -R \partial_x \theta + \Delta(-\Delta \psi), \quad (\text{VortE})$$

$$[N_2(V,V)]_{\psi} = P^{-1} [\partial_z (\mathbf{v} \cdot \nabla v_x) - \partial_x (\mathbf{v} \cdot \nabla v_z)], \qquad (VortE)$$

$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$
(HE)

Boundary conditions on θ : isothermal boundaries: $\theta = 0$ if $z = \pm 1/2$. Boundary conditions on ψ i.e. **v**:

no-slip boundaries: $\mathbf{v} = \mathbf{0}$ i.e. $\partial_x \psi = \partial_z \psi = 0$ if $z = \pm 1/2$ or slip boundaries: $v_z = 0$ i.e. $\partial_x \psi = 0$ if $z = \pm 1/2$ without shear stress ! Mines Nancy 2022 Plaut - T2T - 23/27

Natural thermoconvection: Eqs. Diff. heated cavity 0000000000

Rayleigh-Bénard system: Model - LA 0000000000

Shear stresses or tangential stresses

Come only from viscous stresses.

In physical units, the viscous stress vector

$$\mathbf{T} = \boldsymbol{\tau} \cdot \mathbf{n}$$

with the viscous stress tensor

$$\tau = 2\eta S$$

and the rate-of-strain tensor

$${f S} \;=\; {1\over 2} \Big({f
abla} {f v} + {f
abla} {f v}^{\, au} \Big) \;,$$

n the unit vector normal to the boundary, pointing outward.

Natural thermoconvection: Eqs. Diff. heated cavity 0000000000

Rayleigh-Bénard system: Model - LA 0000000000

Shear stresses or tangential stresses

Come only from viscous stresses.

In physical units, the viscous stress vector

$$\mathbf{T} = \boldsymbol{\tau} \cdot \mathbf{n}$$

with the viscous stress tensor

$$\tau = 2\eta S$$

and the rate-of-strain tensor

$${f S} \;=\; {1\over 2} \Big({f
abla} {f v} + {f
abla} {f v}^{\, au} \Big) \;,$$

n the unit vector normal to the boundary, pointing outward.

Here

$$\mathbf{v} = -(\partial_z \psi) \mathbf{e}_x + (\partial_x \psi) \mathbf{e}_z$$

and

$$\mathbf{n} = \mp \mathbf{e}_z$$

$$\implies \text{ Shear stress } T_x = \mp \eta (\partial_z \mathbf{v}_x + \partial_x \mathbf{v}_z) \quad \text{if} \quad z = \pm 1/2 .$$

Natural thermoconvection: Eqs. Diff. heated cavity 0000000000

Rayleigh-Bénard system: Model - LA 000000000

Shear stresses or tangential stresses

Come only from viscous stresses.

In physical units, the viscous stress vector

$$\mathbf{T} = \boldsymbol{\tau} \cdot \mathbf{n}$$

with the viscous stress tensor

$$\tau = 2\eta S$$

and the rate-of-strain tensor

$$\mathbf{S} \;=\; rac{1}{2} \Big(oldsymbol{
abla} \mathbf{v} + oldsymbol{
abla} \mathbf{v}^{\, au} \Big) \;,$$

n the unit vector normal to the boundary, pointing outward.

Here

$$\mathbf{v} = -(\partial_z \psi) \mathbf{e}_x + (\partial_x \psi) \mathbf{e}_z$$

and

$${f n} = \mp {f e}_z$$

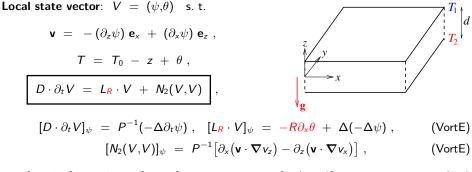
 \implies Shear stress $T_x = \mp \eta (\partial_z v_x + \partial_x v_z)$ if $z = \pm 1/2$.

Since $v_z = 0$, $T_x = 0$ at the boundaries $\iff \partial_z v_x = 0$ if $z = \pm 1/2$. Mines Nancy 2022 Plaut - T2T - 24/27

Natural thermoconvection: Eqs. Diff. heated cavity 0000000000

Rayleigh-Bénard system: Model - LA 0000000000

Study of 2D xz solutions of the Rayleigh-Bénard problem



$$[D \cdot \partial_t V]_{\theta} = \partial_t \theta , \quad [L_{\mathbf{R}} \cdot V]_{\theta} = \Delta \theta + \mathbf{v}_{\mathbf{z}} , \quad [N_2(V,V)]_{\theta} = -\mathbf{v} \cdot \nabla \theta .$$
 (HE)

Boundary conditions on θ : Isothermal boundaries: $\theta = 0$ if $z = \pm 1/2$. Boundary conditions on ψ i.e. \mathbf{v} :

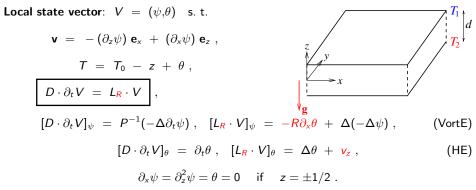
Slip boundaries: $v_z = 0$ and $\partial_z v_x = 0 \iff \partial_x \psi = \partial_z^2 \psi = 0$ if $z = \pm 1/2$.

Extended geometry in the *xy* **plane:** no B.C. or periodic B.C. under $x \mapsto x + L$. Mines Nancy 2022 Plaut - T2T - 25/27

Natural thermoconvection: Eqs. Diff. heated cavity 0000000000

Rayleigh-Bénard system: Model - LA

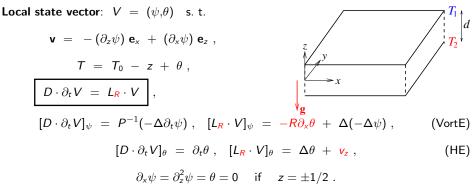
Linear stability analysis of the 2D xz Rayleigh-Bénard problem



Natural thermoconvection: Eqs. Diff. heated cavity 0000000000

Rayleigh-Bénard system: Model - LA 000000000

Linear stability analysis of the 2D xz Rayleigh-Bénard problem



Ex. 1.1: Normal mode analysis: the solution of the initial value problem is the superposition of normal modes that are Fourier modes in exp(ikx),

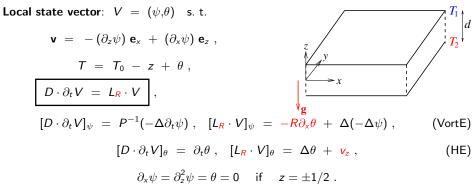
 $V = V_1(k,N) \exp[\sigma(k,N) t]$ with $V_1(k,N) = (\widehat{\Psi}(z), \widehat{\Theta}(z)) \exp(ikx)$,

k = horizontal wavenumber, $k \neq 0$, N another label to mark normal modes, $\sigma(k,N)$ the temporal eigenvalue.

Natural thermoconvection: Eqs. Diff. heated cavity 0000000000

Rayleigh-Bénard system: Model - LA 000000000

Linear stability analysis of the 2D xz Rayleigh-Bénard problem



Ex. 1.1: Normal mode analysis: the solution of the initial value problem is the superposition of normal modes that are Fourier modes in exp(ikx),

 $V = V_1(k,N) \exp[\sigma(k,N) t]$ with $V_1(k,N) = (\widehat{\Psi}(z), \widehat{\Theta}(z)) \exp(ikx)$,

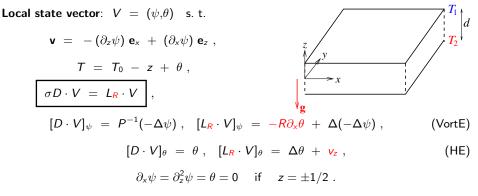
k = horizontal wavenumber, $k \neq 0$, N another label to mark normal modes, $\sigma(k,N)$ the temporal eigenvalue.

Boundary conditions: $\widehat{\Psi} = \widehat{\Psi}'' = 0$, $\widehat{\Theta} = 0$ if $z = \pm 1/2$.

Natural thermoconvection: Eqs. Diff. heated cavity 0000000000

Rayleigh-Bénard system: Model - LA 000000000

Normal mode analysis of the 2D xz Rayleigh-Bénard problem



Ex. 1.1: Generalized eigenvalue problem solved by normal modes analysis: most relevant normal modes are Fourier modes in exp(ikx) and have a z-profile in $cos(\pi z)$,

 $V = V_1(k,N) \exp[\sigma(k,N) t]$ with $V_1(k,N) = (\Psi, \Theta) \exp(ikx) \cos(\pi z)$, k = horizontal wavenumber, $k \neq 0$, N another label to mark normal modes, $\sigma(k,N)$ the temporal eigenvalue.

They satisfy the boundary conditions: $\widehat{\Psi} = \widehat{\Psi}'' = 0$, $\widehat{\Theta} = 0$ if $z = \pm 1/2$. Mines Nancy 2022 Plaut - T2T - **27**/27