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How does the flow in a (closed or open) fluid system

change from laminar to complex or turbulent as a control parameter is changed ?
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closed heated fluid systems open shear flows
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Methods:

linear then weakly nonlinear stability analysis

= bifurcation theory or ‘catastrophe theory’
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with a ‘spectral method’... and Mathematica !
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→ 1 - 29/09 Thermoconvection: phenomena, equations, differentially heated cavity,

cavity heated from below = RB cavity, linear stability analysis
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3 - 13/10 RB Thermoconvection: nonlinear phenomena
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Generalities Natural thermoconvection: Eqs. Diff. heated cavity Rayleigh-Bénard system: Model - LA

1st part of this module:

Transition to turbulence, or, to spatio-temporal complexity,

in natural thermoconvection

• Fluids in non-isothermal situations

have a density ρ that depends on the temperature

T , ρ = ρ(T ) which often ↓ as T ↑ .

• If temperature gradients exist, in a gravity field, buoyancy forcespart of ρg

may drive natural thermoconvection = heat-driven flows and transfers !

• This happens in the kitchen...

Mines Nancy 2022 Plaut - T2T - 3/27
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1st part of this module:

Transition to turbulence, or, to spatio-temporal complexity,

in natural thermoconvection

The question is: how thermoconvection comes in and develops ?

or:

how do flows transit to spatial complexity in thermoconvection...

in simpler systems ?

Seeking the answer, we will learn advanced methods for fluid mechanics !

Today - session 1

• Natural thermoconvection:

introduction, equations, example of the differentially heated cavity

• Rayleigh-Bénard system = cavity heated from below:

linear stability analysis with slip boundary conditions

Mines Nancy 2022 Plaut - T2T - 6/27
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Natural thermoconvection: equations

• Fluids in non-isothermal situations have a density ρ that depends on T

ρ = ρ(T ) .

• If temperature gradients exist, in a gravity field, buoyancy forces part of ρg

may drive natural thermoconvection.

• Equations of motion

of a Newtonian fluid:

ρ
dv

dt
= ρ[∂tv + (v ·∇)v] = ρg − ∇p + η∆v , (NS)

∂tρ + div(ρv) = 0 , (MC)

dT

dt
= ∂tT + v ·∇T = κ∆T , (HE)

with η the dynamic viscosity, κ the heat diffusivity.

Mines Nancy 2022 Plaut - T2T - 7/27
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Natural thermoconvection: equations
=⇒ criterion of existence of hydrostatic conduction solutions ?

• Fluids in non-isothermal situations have a density ρ that depends on T

ρ = ρ(T ) .

• If temperature gradients exist, in a gravity field, buoyancy forces part of ρg

may drive natural thermoconvection.

• Equations of motion of a Newtonian fluid:
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dt
= ∂tT + v ·∇T = κ∆T , (HE)

with η the dynamic viscosity, κ the heat diffusivity.

• Hydrostatic conduction solutions:

v = 0 =⇒ ∇T ‖ g .

Hence ∇T not vertical =⇒ thermoconvection flows always develop.

Mines Nancy 2022 Plaut - T2T - 8/27



Generalities Natural thermoconvection: Eqs. Diff. heated cavity Rayleigh-Bénard system: Model - LA

Natural thermoconvection: equations
=⇒ criterion of existence of hydrostatic conduction solutions ?

• Fluids in non-isothermal situations have a density ρ that depends on T

ρ = ρ(T ) .

• If temperature gradients exist, in a gravity field, buoyancy forces part of ρg

may drive natural thermoconvection.

• Equations of motion of a Newtonian fluid:

ρ
dv

dt
= ρ[∂tv + (v ·∇)v] = ρg − ∇p + η∆v , (NS)

∂tρ + div(ρv) = 0 , (MC)

dT

dt
= ∂tT + v ·∇T = κ∆T , (HE)

with η the dynamic viscosity, κ the heat diffusivity.

• Hydrostatic conduction solutions: v = 0 =⇒ ∇T ‖ g .

Hence ∇T not vertical =⇒ thermoconvection flows always develop.

Mines Nancy 2022 Plaut - T2T - 8/27



Generalities Natural thermoconvection: Eqs. Diff. heated cavity Rayleigh-Bénard system: Model - LA

Natural thermoconvection: equations
=⇒ criterion of existence of hydrostatic conduction solutions ?

• Fluids in non-isothermal situations have a density ρ that depends on T

ρ = ρ(T ) .

• If temperature gradients exist, in a gravity field, buoyancy forces part of ρg

may drive natural thermoconvection.

• Equations of motion of a Newtonian fluid:

ρ
dv

dt
= ρ[∂tv + (v ·∇)v] = ρg − ∇p + η∆v , (NS)

∂tρ + div(ρv) = 0 , (MC)

dT

dt
= ∂tT + v ·∇T = κ∆T , (HE)

with η the dynamic viscosity, κ the heat diffusivity.

• Hydrostatic conduction solutions: v = 0 =⇒ ∇T ‖ g .

Hence ∇T not vertical =⇒ thermoconvection flows always develop.

Mines Nancy 2022 Plaut - T2T - 8/27



Generalities Natural thermoconvection: Eqs. Diff. heated cavity Rayleigh-Bénard system: Model - LA

Natural thermoconvection: equations
under the Oberbeck-Boussinesq approximations

• Fluids in non-isothermal situations have a density ρ that depends on T ,

under the 1st OB approximation, linearly:

ρ = ρ0 [1− α(T − T0)]

with ρ0 the reference density, T0 the reference temperature,

α the small thermal expansion coefficient.

• Equations of motion under the OB approximations:

ρ0
dv

dt
= ρ0[∂tv + (v ·∇)v] = ρg − ∇p + η∆v , (NS)

divv = 0 , (MC)

dT

dt
= ∂tT + v ·∇T = κ∆T , (HE)

with η the dynamic viscosity, κ the heat diffusivity.

• Hydrostatic conduction solutions: v = 0 =⇒ ∇T ‖ g .

Hence ∇T not vertical =⇒ thermoconvection flows always develop.
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Thermoconvection in a differentially heated cavity

H C

g

T = T0 +
δT

2
T = T0 −

δT

2
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Generalities Natural thermoconvection: Eqs. Diff. heated cavity Rayleigh-Bénard system: Model - LA

Steady thermoconvection in a 2D differentially heated cavity
Streamlines:

Isotherms:

−−−−−→
δT

[ De Vahl Davis 1983 Natural convection of air in a square cavity:

A benchmark numerical solution. Int. J. Num. Meth. Fluids ]
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Generalities Natural thermoconvection: Eqs. Diff. heated cavity Rayleigh-Bénard system: Model - LA

Main dimensionless control parameter:
dimensionless measure of δT ?

better: of αT g ?

divv = 0 , (MC)

OB equations :
dv

dt
= −αT g − ∇p′′ + ν∆v , (NS)

dT

dt
= κ∆T , (HE)

with ν the kinematic viscosity.

Idea: R =
α δT g

ν∆v
=

α δT g d2

νV
with d the length scale of the cavity.

Determine V taking into account the feedback of v onto T . Where is this feedback ?

In (HE) ! Balancing the convection and diffusion terms in (HE) one gets

v ·∇T = κ∆T ⇐⇒ V = κ/d

= d/τtherm

with τtherm = d2/κ the heat diffusion time

=⇒ R =
α δT g d3

κν
Rayleigh number .

Caution: V = κ/d meaningful from the point of view of dimensional analysis -

not always true regarding orders of magnitude !

Mines Nancy 2022 Plaut - T2T - 12/27
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Generalities Natural thermoconvection: Eqs. Diff. heated cavity Rayleigh-Bénard system: Model - LA

Main dimensionless control parameter: Rayleigh number

R =
α δT g d3

νκ

Order of magnitude for typical fluids ?

thermal expansion coefficient kinematic viscosity heat diffusivity

Fluid T0 α ν κ

Water 20 oC 2 10−4 K−1 1 10−6 m2/s 1 10−7 m2/s

Air 27 oC

1/T0 = 3 10−3 K−1

2 10−5 m2/s 2 10−5 m2/s

with the perfect gas law

R large as soon as δT and d not too small !

www.engineeringtoolbox.com

Mines Nancy 2022 Plaut - T2T - 13/27
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Generalities Natural thermoconvection: Eqs. Diff. heated cavity Rayleigh-Bénard system: Model - LA

Steady thermoconvection in a 2D differentially heated cavity
Streamlines:

Isotherms:

R =
αδTgd3

κν
= 103 R = 104 R = 105 R = 106

[ De Vahl Davis 1983 Natural convection of air in a square cavity:

A benchmark numerical solution. Int. J. Num. Meth. Fluids ]
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Unsteady thermoconvection in a 3D differentially heated cavity

DNS at R = 2 109, for a height aspect ratio of 4 : initial condition isotherms:

[ Trias, Soria et al. 2007 DNS of 2 and 3-dimensional turbulent natural convection flows in a

differentially heated cavity of aspect ratio 4. J. Fluid Mech. ]

www.fxtrias.com/natural_convection.html

like in the high-R 2D case of De Vahl Davis, see frame 10 !..

Thus the study of a simpler 2D system at R = 106

gives relevant informations for the complex 3D system at R = 109.

Mines Nancy 2022 Plaut - T2T - 15/27
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Unsteady thermoconvection in a 3D differentially heated cavity

DNS at R = 2 109, for a height aspect ratio of 4 : end-of-the-run isotherms:

[ Trias, Soria et al. 2007 DNS of 2 and 3-dimensional turbulent natural convection flows in a

differentially heated cavity of aspect ratio 4. J. Fluid Mech. ]

The isotherms are, in the core of the cavity, roughly horizontal planes...

like in the high-R 2D case of De Vahl Davis, see frame 14 !..

The study of a simpler 2D system at R = 106

gives relevant informations for the complex 3D system at R = 2 109 !

Mines Nancy 2022 Plaut - T2T - 16/27



Generalities Natural thermoconvection: Eqs. Diff. heated cavity Rayleigh-Bénard system: Model - LA

What we learnt about natural thermoconvection

• It is governed (in 1st approximation) by the OB equations:

divv = 0 , (MC)

dv

dt
= −αT g − ∇p′′ + ν∆v , (NS)

dT

dt
= κ∆T . (HE)

• The main dimensionless control parameter is the Rayleigh number

R =
α δT g d3

κν
.

• ∇T not vertical ⇒ thermoconvection flows develop at once.

• ∇T vertical ⇒ thermoconvection flows do not always start ?

how do they start ?

Mines Nancy 2022 Plaut - T2T - 17/27
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R =
α δT g d3

κν
.

• ∇T not vertical ⇒ thermoconvection flows develop at once.

• ∇T vertical ⇒ thermoconvection flows do not always start ?

how do they start ?
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Generalities Natural thermoconvection: Eqs. Diff. heated cavity Rayleigh-Bénard system: Model - LA

Study of the Rayleigh-Bénard system: plane cavity heated from below
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The OB equations

divv = 0 , (MC)

dv

dt
= −αT g − ∇p′′ + ν∆v , (NS)

dT

dt
= κ∆T , (HE)

always admit a static solution

that satisfies the isothermal boundary conditions:

v = 0 , T = T0 − δT
z

d
with δT = T2 − T1 .

Thus, how convection can set in ? Through an instability of the static solution !
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Generalities Natural thermoconvection: Eqs. Diff. heated cavity Rayleigh-Bénard system: Model - LA

Study of the Rayleigh-Bénard system: dimensionless model
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• Unit of length = thickness d

• Unit of time = heat diffuso time τtherm =
d2

κ

• Unit of velocity = V =
d

τtherm
=

κ

d

• Unit of temperature = δT

Dimensionless time t′ = t/τtherm = tκ/d2 =

Fourier number

Introduce a dimensionless perturbato of temperature θ, s.t. the dimensionless temperature

T ′ = T ′0 − z ′ + θ

⇒ dimensionless OB equations

divv = 0 , (MC)

P−1 dv

dt
= Rθ ez − ∇p + ∆v , (NS)

dθ

dt
= ∆θ + vz , (HE)

with the Rayleigh number R = α δT g d3/(κν) and the Prandtl number P = ν/κ.
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Study of the Rayleigh-Bénard system: dimensionless model
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OB equations:

divv = 0 , (MC)

P−1 dv

dt
= Rθ ez − ∇p + ∆v , (NS)

dθ

dt
= ∆θ + vz , (HE)

Isotropy of the problem in the horizontal plane ⇒ focus on 2D xz solutions

v = vx(x ,z ,t) ex + vz(x ,z ,t) ez , θ = θ(x ,z ,t) ...

How can one solve (MC) in a convenient manner ? Use a streamfunction ψ such that

v = curl(ψ ey ) = (∇ψ)× ey = − (∂zψ) ex + (∂xψ) ez .

How can one eliminate p in (NS) ? Consider curl(NS) · ey i.e. the vorticity equation:

P−1∂t(−∆ψ) + P−1[∂z(v ·∇vx
)
− ∂x

(
v ·∇vz

)]
= −R∂xθ + ∆(−∆ψ) . (VortE)
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Generalities Natural thermoconvection: Eqs. Diff. heated cavity Rayleigh-Bénard system: Model - LA

Study of 2D xz solutions of the Rayleigh-Bénard problem

T

d

T

x

y
z 2

1

g

Local state vector: V = (ψ,θ) s. t.

v = − (∂zψ) ex + (∂xψ) ez ,

T = T0 − z + θ ,

obeys the system of coupled P.D.E.

D · ∂tV = LR · V + N2(V ,V )

with D, LR linear, N2 nonlinear differential operators. 1st eq. is the vorticity equation:

[D · ∂tV ]ψ = P−1(−∆∂tψ) , [LR · V ]ψ = −R∂xθ + ∆(−∆ψ) ,

[N2(V ,V )]ψ = P−1[∂x(v ·∇vz
)
− ∂z

(
v ·∇vx

)]
,

2d eq. is the heat equation:

[D · ∂tV ]θ = ∂tθ , [LR · V ]θ = ∆θ + vz , [N2(V ,V )]θ = − v ·∇θ .

What do we need to close this system ? Boundary conditions !
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Study of 2D xz solutions of the Rayleigh-Bénard problem
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Local state vector: V = (ψ,θ) s. t.

v = − (∂zψ) ex + (∂xψ) ez ,

T = T0 − z + θ ,

obeys the system of coupled P.D.E.

D · ∂tV = LR · V + N2(V ,V )

with D, LR linear, N2 nonlinear differential operators. 1st eq. is the vorticity equation:

[D · ∂tV ]ψ = P−1(−∆∂tψ) , [LR · V ]ψ = −R∂xθ + ∆(−∆ψ) ,

[N2(V ,V )]ψ = P−1[∂x(v ·∇vz
)
− ∂z

(
v ·∇vx

)]
,

2d eq. is the heat equation:

[D · ∂tV ]θ = ∂tθ , [LR · V ]θ = ∆θ + vz , [N2(V ,V )]θ = − v ·∇θ .

Boundary conditions on θ :

isothermal boundaries: θ = 0 if z = ±1/2.
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[N2(V ,V )]ψ = P−1[∂z(v ·∇vx
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(
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, (VortE)

[D · ∂tV ]θ = ∂tθ , [LR · V ]θ = ∆θ + vz , [N2(V ,V )]θ = − v ·∇θ . (HE)

Boundary conditions on θ : isothermal boundaries: θ = 0 if z = ±1/2.

Boundary conditions on ψ i.e. v :

no-slip boundaries: v = 0 i.e. ∂xψ = ∂zψ = 0 if z = ±1/2

or slip boundaries: vz = 0 i.e. ∂xψ = 0 if z = ±1/2

without shear stress !
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Shear stresses or tangential stresses

Come only from viscous stresses.

In physical units, the viscous stress vector

T = τ · n

with the viscous stress tensor

τ = 2ηS

and the rate-of-strain tensor

S =
1

2

(
∇v + ∇vT

)
,

n the unit vector normal to the boundary, pointing outward.

Here

v = − (∂zψ) ex + (∂xψ) ez

and

n = ∓ ez

=⇒ Shear stress Tx = ∓ η(∂zvx + ∂xvz) if z = ±1/2 .

Since vz = 0, Tx = 0 at the boundaries ⇐⇒ ∂zvx = 0 if z = ±1/2 .
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Study of 2D xz solutions of the Rayleigh-Bénard problem

T

d

T

x

y
z 2

1

g

Local state vector: V = (ψ,θ) s. t.

v = − (∂zψ) ex + (∂xψ) ez ,

T = T0 − z + θ ,

D · ∂tV = LR · V + N2(V ,V ) ,

[D · ∂tV ]ψ = P−1(−∆∂tψ) , [LR · V ]ψ = −R∂xθ + ∆(−∆ψ) , (VortE)

[N2(V ,V )]ψ = P−1[∂x(v ·∇vz
)
− ∂z

(
v ·∇vx

)]
, (VortE)

[D · ∂tV ]θ = ∂tθ , [LR · V ]θ = ∆θ + vz , [N2(V ,V )]θ = − v ·∇θ . (HE)

Boundary conditions on θ : Isothermal boundaries: θ = 0 if z = ±1/2.

Boundary conditions on ψ i.e. v :

Slip boundaries: vz = 0 and ∂zvx = 0 ⇐⇒ ∂xψ = ∂2
zψ = 0 if z = ±1/2 .

Extended geometry in the xy plane: no B.C. or periodic B.C. under x 7→ x + L.
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Linear stability analysis of the 2D xz Rayleigh-Bénard problem

T

d

T

x

y
z 2

1

g

Local state vector: V = (ψ,θ) s. t.

v = − (∂zψ) ex + (∂xψ) ez ,

T = T0 − z + θ ,

D · ∂tV = LR · V ,

[D · ∂tV ]ψ = P−1(−∆∂tψ) , [LR · V ]ψ = −R∂xθ + ∆(−∆ψ) , (VortE)

[D · ∂tV ]θ = ∂tθ , [LR · V ]θ = ∆θ + vz , (HE)

∂xψ = ∂2
zψ = θ = 0 if z = ±1/2 .

Ex. 1.1: Normal mode analysis: the solution of the initial value problem

is the superposition of normal modes that are Fourier modes in exp(ikx),

V = V1(k,N) exp[σ(k,N) t] with V1(k,N) = (Ψ̂(z), Θ̂(z)) exp(ikx) ,

k = horizontal wavenumber, k 6= 0, N another label to mark normal modes,

σ(k,N) the temporal eigenvalue.

Boundary conditions: Ψ̂ = Ψ̂′′ = 0 , Θ̂ = 0 if z = ±1/2 .
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Normal mode analysis of the 2D xz Rayleigh-Bénard problem

T

d

T

x

y
z 2

1

g

Local state vector: V = (ψ,θ) s. t.

v = − (∂zψ) ex + (∂xψ) ez ,

T = T0 − z + θ ,

σD · V = LR · V ,

[D · V ]ψ = P−1(−∆ψ) , [LR · V ]ψ = −R∂xθ + ∆(−∆ψ) , (VortE)

[D · V ]θ = θ , [LR · V ]θ = ∆θ + vz , (HE)

∂xψ = ∂2
zψ = θ = 0 if z = ±1/2 .

Ex. 1.1: Generalized eigenvalue problem solved by normal modes analysis: most

relevant normal modes are Fourier modes in exp(ikx) and have a z-profile in cos(πz),

V = V1(k,N) exp[σ(k,N) t] with V1(k,N) = (Ψ, Θ) exp(ikx) cos(πz) ,

k = horizontal wavenumber, k 6= 0, N another label to mark normal modes,

σ(k,N) the temporal eigenvalue.

They satisfy the boundary conditions: Ψ̂ = Ψ̂′′ = 0 , Θ̂ = 0 if z = ±1/2 .
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