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In a recent article (Nouar et al. 2007), a linear stability analysis of plane Poiseuille flow

of shear-thinning fluids has been performed. The authors concluded that the viscosity

stratification delays the transition and that is important to account for the viscosity per-

turbation. The current paper focuses on the first principles understanding of the influence

of the viscosity stratification and the nonlinear variation of the effective viscosity µ with

the shear rate γ̇ on the flow stability with respect to a finite amplitude perturbation. A

weakly nonlinear analysis, using the amplitude expansion method is adopted as a first

approach to study nonlinear effects. The bifurcation to two-dimensional travelling waves

is studied. For the numerical computations, the shear-thinning behavior is described by

the Carreau model. The rheological parameters are varied in a wide range. The results

indicate that (i) the nonlinearity of the viscous terms tends to reduce the viscous dissi-

pation and to accelerate the flow, (ii) the harmonic generated by the nonlinearity µ(γ̇)

is smaller and in opposite phase with that generated by the quadratic nonlinear iner-

tial terms and (iii) with increasing shear-thinning effects, the bifurcation becomes highly

subcritical. Consequently, the magnitude of the threshold amplitude of the perturbation,
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beyond which the flow is nonlinearly unstable, decreases. This result is confirmed by

computing higher order Landau constants.

1. Introduction

Non-Newtonian fluid flows occur in many industrial processes. The control of these

processes requires knowledge of the flow structure and in particular of the conditions

for stability and transition to turbulence. Most non-Newtonian fluids have two common

properties: viscoelasticity and shear-thinning. This theoretical work is related to the shear

flow stability of purely viscous shear-thinning fluids, i.e., fluids without elastic response

and for which the effective viscosity µ̂ decreases with increasing shear rate. Flows of these

fluids are mainly characterized by a viscosity stratification in the direction normal to the

wall. It has been shown by several authors that the stability characteristics of parallel

shear flows can be significantly modified by such a viscosity stratification, which can also

be obtained when the viscosity µ̂ depends on an intensive quantity obeying an advection-

diffusion equation. Wall & Wilson (1996) considered the stability of plane channel flow

of a Newtonian fluid with temperature-dependent viscosity, the walls being maintained

at different temperatures. Four different viscosity models were considered. They found

that a non-uniform increase of the viscosity in the channel always stabilizes the flow,

whereas a non-uniform decrease in the channel may either destabilize or stabilize the

flow. These results were explained in terms of three physical effects, namely bulk effect

due to uniform increase or decrease of viscosity, a velocity-profile shape effect as the

basic velocity profile becomes non-symmetrical and a thin-layer effect when a thin layer

of lower or higher viscosity develops adjacent to a channel wall. The influence of heating

on the stability of channel flow was also recently addressed by Sameen & Govindarajan
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(2007). They showed that a decrease in viscosity towards the wall stabilizes the flow.

The effect of viscosity stratification on the stability of plane channel flow with respect

to infinitesimal perturbations has been also analyzed by Ranganathan & Govindarajan

(2001), Govindarajan (2002), Govindarajan et al. (2003) and Chikkadi et al. (2005). They

showed that any viscosity profile in the critical layer, in which the viscosity decreases

towards the wall, delays significantly the onset of two-dimensional modes. This effect was

related to a reduced energy intake from the mean flow to the fluctuations. The energy

dissipation responds less drastically to changes in viscosity. It was then argued that sim-

ilar physics should hold in the case of turbulent drag reduction by polymers additive,

when the production layer overlaps the viscosity-stratified layer.

Recently, Nouar et al. (2007) investigated the linear stability of viscously stratified chan-

nel flow, focusing on shear-thinning fluids modeled by the Carreau rheological law. The

degree of stabilization observed is more modest than the prediction of Chikkadi et al.

(2005). The disagreement stems from the neglect of the viscosity perturbation in Chikkadi

et al. (2005), Govindarajan et al. (2001), Govindarajan et al. (2003). When it is taken into

account the fluctuating shear-stress tensor becomes anisotropic (Nouar et al. 2007). In-

deed, denoting by x and y the streamwise and wall-normal directions, the xy-component

of the viscous stress tensor perturbation implies the tangent viscosity, which is smaller

than the effective viscosity. The other components of the viscous stress tensor perturba-

tion are proportional to the effective viscosity (see equations 2.24, 2.25 and 2.30 below).

In the studies described above, the influence of the viscosity stratification on the stability

of plane channel flow has been described in the framework of linear stability analysis. It

is natural to inquire if the stabilizing effects observed in the linear regime exist also in

the nonlinear regime. Here, we seek a first-principles understanding of the influence of

the viscosity stratification and the nonlinear variation of the effective viscosity µ̂ with
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the shear rate ˆ̇γ on the flow stability in the presence of finite amplitude disturbances.

A weakly nonlinear analysis is used as a first approach to take into account nonlinear

effects. These effects will be analyzed through (i) the nature of the bifurcation, (ii) the

modification of the base flow, (iii) the generated harmonic and (iv) the threshold ampli-

tude of the perturbation which limits the basin of attraction of the laminar parallel flow.

To our knowledge, the weakly nonlinear stability analysis of shear-thinning fluid flow in a

plane channel has not been performed so far. For such non Newtonian fluids, the viscous

term in the momentum equation, which is linear (proportional to the Laplacian of the ve-

locity) in Newtonian fluids, becomes highly nonlinear. In fact, Govindarajan et al. (2003)

studied the effect of viscosity stratification on the development of secondary instabilities,

i.e. three dimensional linear instabilities of finite amplitude Tollmien-Schlichting waves.

The authors found a strong stabilization. The secondary instabilities modes are slaved by

the primary mode and are rapidly damped. In this study, the authors did not include the

viscosity fluctuation in the stability equations. This can be justified if an infinite scalar

coefficient diffusion is considered for the perturbation. This assumption is, however, in-

compatible with a laminar steady viscosity profile (Ern et al. 2003). Taking into account

the viscosity perturbation may modify the conclusions drawn by the authors.

Here, we consider only the case of shear-thinning behavior, i.e. the case where µ̂ de-

creases as the shear rate increases. Particulate dispersions, polymer colloids and polymer

solutions can display this behavior above a certain concentration threshold. For polymer

solutions, the shear-thinning phenomenon arises because the dissolved macromolecules

form aggregates via hydrogen bonds and polymer chain entanglement, which are progres-

sively disrupted under the influence of increasing shear rate (Phillips & Williams 2000).

In addition, the individual polymer network may align in the direction of the flow, reduc-

ing further the energy dissipated under shear. For suspension of particles, the mechanism



Subcritical bifurcation of shear-thinning channel flows 5

of shear-thinning is described for instance in Quemada (1978). The choice of a suitable

constitutive model is not crucial at this stage: all the analytical relations are given for

a general nonlinear purely viscous fluid. For the numerical applications, we adopt the

Carreau (1972) model. This model has been chosen because it has a sound theoretical

basis and is frequently adopted to describe the rheological behavior of shear-thinning

fluids. Stability analysis data are also available in the literature for this fluid model.

This article is organized as follows. In §2 we formulate the physical problem, state the

governing equations and define the dimensionless parameters. The velocity and viscos-

ity profiles of the base state are discussed and the disturbance equations are derived.

Subsequently, the linearization of the disturbance equations and the eigenvalue problem

derivation for the linear stability analysis are presented in §3. In §4, the weakly nonlinear

scheme is described in detail as well as the method of determination of the Landau con-

stant. Section 5 presents and discusses the numerical results focusing on the influence of

the shear-thinning behavior of the fluid. Finally, §6 summarizes the salient conclusions

of the present study.

2. Poiseuille flows of shear-thinning fluids

2.1. Governing equations - Dimensionless parameters

We consider the flow of a shear-thinning incompressible fluid between two plates at

ŷ = ± ĥ. A constant pressure gradient
∂P̂

∂x̂
is imposed in the streamwise direction ex.

The wall-normal direction is defined by the unit vector ey. Here and in what follows,

the quantities with hat (̂.) are dimensional. Distances are scaled with ĥ, velocity with

the maximal velocity Û0 of the base flow, time with
ĥ

Û0

, pressure and stresses with ρ̂ Û2
0 .
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Using these scales, the governing equations in dimensionless form are:

∇.U = 0, (2.1)

∂U

∂t
+ (U .∇) U = −∇P + ∇.τ , (2.2)

where U = Uex + V ey denotes the fluid velocity, P the pressure (incorporating gravity

effects) and τ the deviatoric stress tensor. The fluid is supposed to be purely viscous,

i.e., its viscosity depends only on the shear rate. The constitutive equation reads:

τ =
1

Re
µ (Γ) γ̇ with γ̇ = ∇U + (∇U)

T
. (2.3)

Here, Re is the Reynolds number defined as:

Re =
ρ̂ Û0 ĥ

µ̂0
, (2.4)

γ̇ is the rate-of-strain tensor and Γ its second invariant:

Γ =
1

2
γ̇ij γ̇ij . (2.5)

For the numerical applications, the viscosity µ̂ is given by the Carreau model (Bird et al.

1987),

µ̂− µ̂∞

µ̂0 − µ̂∞

=
(

1 + λ̂2 Γ̂
)

nc−1

2

, (2.6)

where µ̂0 and µ̂∞ are the viscosities at low and high shear rate, nc < 1 the shear-

thinning index, λ̂ the characteristic time of the fluid. The location of the transition

from the Newtonian plateau to the shear-thinning regime is determined by λ̂, since 1/λ̂

defines the characteristic shear rate for the onset of shear-thinning. Increasing λ̂ reduces

the Newtonian plateau to lower shear rates. The infinite-shear-rate viscosity is generally

associated with a breakdown of the fluid, and is frequently significantly smaller (10−3 to

10−4 times smaller) than µ̂0, see Bird et al. (1987) and Tanner (2000). The ratio µ̂∞/µ̂0
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will be thus neglected in the following. The dimensionless effective viscosity is then

µ =
µ̂

µ̂0
=
(

1 + λ2 Γ
)

nc−1

2 with λ =
λ̂

ĥ/Û0

=
λ̂

ρ̂ ĥ2/µ̂0

Re = ΛRe, (2.7)

where 1/λ is the dimensionless characteristic shear rate for the onset of shear-thinning

and Λ the ratio of the characteristic time of the fluid to the viscous diffusion time. This

ratio Λ is fixed for a given fluid and flow geometry. The Newtonian behavior, µ̂ = µ̂0, is

obtained by setting nc = 1 or λ̂ = 0. If Γ̂ >> 1/λ̂2, the Carreau model reduces to the

power-law model µ̂ = K̂Γ̂
nc−1

2 with a consistency K̂ = µ̂0 λ̂
nc−1.

2.2. Base flows

The base flow is parallel and steady: U b = Ub(y)ex and Pb = Pb(x). The momentum

equation reduces to

0 = −dPb

dx
+

1

Re

d

dy

(

µb
dUb

dy

)

(2.8)

with

µb =

(

1 + λ2

(

dUb

dy

)2
)

nc−1

2

.

The subscript b refers to the base flow. Numerical solutions of (2.8) are required, since this

equation is nonlinear. An iterative spectral method is used for this purpose. Examples of

the basic velocity, Ub(y), and the viscosity profile, µb(y), are given in figures 1 and 2 for

various values of the parameters λ and nc. As expected, the velocity profiles flatten with

increasing shear-thinning and the wall axial velocity gradients increase thereby reducing

the wall shear-viscosity. The figure 2 shows that both decreasing nc and increasing λ

have the effect of increasing shear-thinning in the fluid, but in two distinct ways. For

fixed nc, increasing λ to large values drives an increase of the viscosity-gradient |dµb/dy|

near the axis, and its decrease near the wall (figure 2a). Vice-versa, when λ is fixed

and nc is decreased (figure 2b). Because of the crucial role of the viscosity stratification



8 A. Chekila, C. Nouar, E. Plaut and A. Nemdili

0  0.2 0.4 0.6 0.8 1  
0

0.2

0.4

0.6

0.8

1

y

U
b

(a)

(1)

(3)

0  0.2 0.4 0.6 0.8 1  
0

0.2

0.4

0.6

0.8

1

(b) y

(1)
(4)

U
b

Figure 1. Basic velocity profiles: (a) nc = 0.5 and different values of λ: (1) λ = 0 Newtonian;

(2) λ = 1; (3) λ = 100. (b) λ = 10 and different values of nc: (1) nc = 1 Newtonian; (2)

nc = 0.7; (3) nc = 0.5; (4) nc = 0.3.

in the critical layer, in the linear stability analysis, we have represented in figure 3

the wall viscosity-gradient |dµb/dy|w as function of the rheological parameters nc and

λ. From λ = 0, i.e., Newtonian case, |dµb/dy|w increases sharply, reaches a maximum

at λ ≈ 1 and then decreases with increasing λ. It can be shown using (2.7) that when

λ >> 1, (dµb/dy)w ≈ (nc − 1)λnc−1 (Γb)
nc−1
w (dΓb/dy)w, where (Γb)w and (dΓb/dy)w can

be calculated analytically using power-law model. Thus, |dµb/dy|w decreases as λnc−1.

However, one should take care of the fact that (µb)w also decreases with increasing λ.

It appears therefore more appropriate to consider the ratio

(

1

µ b

∣

∣

∣

∣

dµb

dy

∣

∣

∣

∣

)

as function of

the rheological parameters. This ratio is called here the degree of viscosity stratification

and denoted Sv. Figure 3(b) shows that (Sv)w increases with increasing shear-thinning

effects. For λ >> 1, (Sv)w saturates to a constant value identical to that calculated for

a power-law fluid, i.e., (1 − nc)/nc.
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Figure 2. Basic viscosity profiles: (a) nc = 0.5 and different values of λ: (1) λ = 0 Newtonian;

(2) λ = 1; (3) λ = 10; (4) λ = 50; (5) λ = 100. (b) λ = 10 and different values of nc: (1) nc = 1

Newtonian; (2) nc = 0.7; (3) nc = 0.5; (4) nc = 0.3.
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Figure 3. (a) Wall viscosity-gradient as function of the rheological parameters. (b) Degree of

viscosity stratification Sv at the wall as function of the rheological parameters.

2.3. Disturbance equations

The velocity U and pressure P of the disturbed flow are split into the basic field (with

subscript b) and the disturbance:

U = U b + u, P = Pb + p. (2.9)
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Here, we consider two-dimensional disturbances in the (x, y)-plane added to the basic

field. It is worthy to note that there is no equivalent of Squire’s theorem for nonlinear

viscous fluids. However, the numerical tests performed in Nouar & Frigaard (2009), for

a large range of rheological parameters and of streamwise and spanwise wave numbers,

show that the lowest critical Reynolds number is obtained for spanwise homogeneous

perturbation. This result could be anticipated since the viscosity felt by the perturbation

in two-dimensional situation (tangent viscosity) is less than that in three-dimensional

situation, as it also indicated in equation (2.25) below.

We introduce the streamfunction for the disturbance, ψ(x, y; t), such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.10)

The equation governing the stream function of an unsteady disturbance is obtained by

cross-differentiating x− and y− momentum equations and eliminating the pressure. This

yields the vorticity equation,

∂

∂t
∆ψ =

(

D2Ub − Ub ∆
) ∂ψ

∂x
+ J(ψ,∆ψ) +

∂2

∂x∂y
[τxx (Ψb + ψ) − τyy (Ψb + ψ)]

+

(

∂2

∂y2
− ∂2

∂x2

)

τxy (Ψb + ψ) (2.11)

where D ≡ d/dy, Ψb is the stream function associated with the base flow Ub = DΨb,

J (f, g) is the Jacobian defined by (∂f/∂x) (∂g/∂y) − (∂f/∂y) (∂g/∂x), ∆ ≡ ∂2/∂x2 +

∂2/∂y2 and τij (Ψb + ψ) = µ (Ψb + ψ) γ̇ij (Ψb + ψ). No-slip boundary conditions are im-

posed at the walls:

∂ψ

∂x
=
∂ψ

∂y
= 0 at y = ±1. (2.12)

For a small amplitude disturbance, the viscosity of the perturbed flow can be expanded

around the base flow as:

µ(Ψb + ψ) = µb + µ1 (ψ) + µ2 (ψ, ψ) + µ3 (ψ, ψ, ψ) + ..., (2.13)
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where

µ1 (ψ) =
∂µ

∂γ̇ij

∣

∣

∣

∣

b

γ̇ij (ψ) , (2.14)

µ2 (ψ,ψ) =
1

2

∂2µ

∂γ̇ij ∂γ̇kℓ

∣

∣

∣

∣

b

γ̇ij(ψ) γ̇kℓ(ψ), (2.15)

µ3 (ψ, ψ, ψ) =
1

6

∂3µ

∂γ̇ij ∂γ̇kℓ ∂γ̇pq

∣

∣

∣

∣

b

γ̇ij(ψ) γ̇kℓ(ψ) γ̇pq(ψ). (2.16)

The deviatoric stresses in the disturbed flow can also be written as

τij (Ψb + ψ) = τij (Ψb) + τ1,ij (ψ) + τ2,ij (ψ, ψ) + τ3,ij (ψ, ψ, ψ) + ..., (2.17)

with

τ1,ij (ψ) =
1

Re
[µ1 (ψ) γ̇ij (Ψb) + µb γ̇ij (ψ) ] , (2.18)

τ2,ij (ψ,ψ) =
1

Re
[µ2 (ψ,ψ) γ̇ij (Ψb) + µ1 (ψ) γ̇ij (ψ) ] , (2.19)

τ3,ij (ψ,ψ, ψ) =
1

Re
[µ3 (ψ,ψ, ψ) γ̇ij (Ψb) + µ2 (ψ,ψ) γ̇ij (ψ) ] . (2.20)

In the following, A1(ψ), A2 (ψ,ψ) and A3 (ψ,ψ, ψ) where A stands for τij or µ, will be

denoted respectively A1, A2 and A3. In the base flow γ̇b
ij = γ̇ij (Ψb) = 0 if ij 6= xy, yx

and γ̇b
ij = DUb if ij = xy, yx. Setting Γb = (DUb)

2
and Γ2 = (1/2) γ̇ij (ψ) γ̇ij (ψ), the

expressions of µ1, µ2 and µ3 can be simplified,

µ1 = 2
∂µ

∂Γ

∣

∣

∣

∣

b

γ̇b
xy γ̇xy (ψ) , (2.21)

µ2 =
∂µ

∂Γ

∣

∣

∣

∣

b

Γ2 + 2
∂2µ

∂Γ2

∣

∣

∣

∣

b

Γb γ̇
2
xy (ψ) , (2.22)

µ3 = 2
∂2µ

∂Γ2

∣

∣

∣

∣

b

γ̇b
xy γ̇xy (ψ) Γ2 +

4

3

∂3µ

∂Γ3

∣

∣

∣

∣

b

(

γ̇b
xy

)3
γ̇3

xy (ψ) . (2.23)
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Replacing µ1, µ2 and µ3 by their corresponding expressions (2.21)-(2.23) into eqs. (2.18)-

(2.20) we obtain

τ1,ij =
1

Re
µbγ̇ij (ψ) if ij 6= xy, yx, (2.24)

τ1,xy = τ1,yx =
1

Re

[

µb + 2Γb
∂µ

∂Γ

∣

∣

∣

∣

b

]

γ̇xy (ψ) =
1

Re
µtγ̇xy (ψ) , (2.25)

τ2,ij =
1

Re
µ1 γ̇ij (ψ) if ij 6= xy, yx, (2.26)

τ2,xy =
1

Re
[µ1 γ̇xy (ψ) + µ2 γ̇xy (Ψb) ] , (2.27)

τ3,ij =
1

Re
µ2 γ̇ij (ψ) if ij 6= xy, yx, (2.28)

τ3,xy =
1

Re
[µ2 γ̇xy (ψ) + µ3 γ̇xy (Ψb) ] . (2.29)

In equation (2.25),

µt = µb + 2Γb
∂µ

∂Γ

∣

∣

∣

∣

b

(2.30)

is the tangent viscosity, which can be also defined by µt = (∂τxy/∂γ̇xy)b. For shear-

thinning fluid, dµb/dΓ < 0 and µt < µb. Finally, the disturbance equation (2.11) can be

rewritten

∂

∂t
∆ψ = L (ψ) + N (ψ) . (2.31)

The linear and nonlinear terms of (2.11) are gathered in L (ψ) and N (ψ) respectively,

where we separate the contributions of the inertial and viscous terms as follows:

L = LI + LV 1 + LV 2 + LV 3, (2.32)

N = NI + NV quad + NV cub + ..., (2.33)
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with

LI (ψ) =
(

D2Ub − Ub ∆
) ∂ψ

∂x
, (2.34)

Re LV 1 (ψ) = µb ∆2 (ψ) , (2.35)

Re LV 2 (ψ) =
(

D2µb

)

γ̇xy (ψ) +Dµb

[

2
∂γ̇xy

∂y
(ψ) +

∂γ̇xx

∂x
(ψ) − ∂γ̇yy

∂x
(ψ)

]

, (2.36)

Re LV 3 (ψ) =

(

∂2

∂y2
− ∂2

∂x2

)

[(µt − µb) γ̇xy (ψ)] , (2.37)

NI (ψ,ψ) = J (ψ,∆ψ) , (2.38)

Re NV quad (ψ,ψ) =
∂2

∂x∂y
[µ1 (γ̇xx (ψ) − γ̇yy (ψ) ) ]

+

(

∂2

∂y2
− ∂2

∂x2

)

[µ1γ̇xy (ψ) + µ2 γ̇xy (Ψb) ] , (2.39)

Re NV cub (ψ,ψ, ψ) =
∂2

∂x∂y
[µ2 (γ̇xx (ψ) − γ̇yy (ψ) ) ]

+

(

∂2

∂y2
− ∂2

∂x2

)

[µ2γ̇xy (ψ) + µ3 γ̇xy (Ψb) ] . (2.40)

The subscripts I and V refer to inertial and viscous terms. LV 1 is a “Newtonian-like”

viscous term, LV 2 and LV 3 reflect respectively the spatial stratification of the viscosity

and the anisotropy of the deviatoric shear-stress tensor perturbation. NI is the nonlin-

ear inertial term. NV quad and NV cub gather the quadratic and cubic terms which arise

from the nonlinear variation of the effective viscosity with the shear rate. Higher order

expansions, up to seventh order, are given in Appendix C

3. Linear stability analysis

3.1. Direct problem

To solve the linearized version of the disturbance equation (2.31), we use the normal

mode analysis, assuming that

ψ(x, y; t) = f1,1(y) exp [iα (x− c t)] (3.1)
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with α the axial wave number and c = cr + i ci the complex wave speed. Its real part cr

is the phase velocity and the imaginary part yields the growth rate α ci. It can be shown

that f1,1(y) satisfies the modified Orr-Sommerfeld equation

L1 f1,1 = 0 (3.2)

with

L1 ≡ −i α c S1 + i α
[

Ub S1 −D2Ub

]

− 1

Re

[

µb S
2
1 + 2 (Dµb) S1D +

(

D2µb

)

G1

]

− 1

Re
G1 [(µt − µb)G1 ] . (3.3)

The operators Sn and Gn are defined by

Sn ≡ D2 − n2 α2 and Gn ≡ D2 + n2 α2 , n > 1. (3.4)

The boundary conditions are

f1,1 = Df1,1 = 0 at y = ±1. (3.5)

The eigenvalue problem (3.2)-(3.5) is invariant with respect to the symmetry y 7→ −y,

therefore the eigenmodes are either odd or even under y 7→ −y. We consider only the

eigenmodes which are unstable at the lowest Reynolds number, which appear to be the

even modes as in the Newtonian case (Drazin & Reid 1995). The boundary conditions

at y = −1 can therefore be replaced by the parity conditions:

Df1,1 = D3f1,1 = 0 at y = 0. (3.6)

Since any multiple of an eigenfunction is also a solution of (3.2), f1,1 can be normalized

according to

f1,1 = 1 at y = 0, (3.7)

which fixes amplitude and phase of the wave (3.1). The eigenvalue problem (3.2) with its

boundary conditions is solved using Chebychev collocation method, see e.g. Schmid &
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Henningson (2001). The characteristics of the destabilizing waves and the critical param-

eters αc, cc and Rec (critical wavenumber, critical phase velocity and critical Reynolds

number) will be given in §5.1, after the presentation of the weakly nonlinear analysis.

3.2. Adjoint problem

The adjoint operator of L1, equation (3.2), is defined with the hermitian inner prod-

uct, (f, g) =

∫ 1

0

f(y) g∗(y) dy, between two functions f(y) and g(y) of H2([0, 1]). The

homogeneous adjoint problem associated to the equation (3.2) is given as

L†
1f

†
1,1 = 0, (3.8)

with

L†
1 ≡ i α c† S1 − i α [Ub S1 + 2 (DUb) D] − 1

Re

[

µb S
2
1 + 2 (Dµb)S1D +

(

D2µb

)

G1

]

− 1

Re
G1 [(µt − µb)G1] (3.9)

and

Df†1,1 = D3f†1,1 = 0 at y = 0 ; f†1,1 = Df†1,1 = 0 at y = 1. (3.10)

4. Weakly nonlinear analysis

4.1. General asymptotic expansion - Landau equation

Once the critical parameters are known, in order to study the saturation of the bifurcation

to the waves, a weakly nonlinear analysis is used. Due to the nonlinear terms in the distur-

bance equation (2.31), it is clear that a nonlinear solution which contains the fundamental

mode in exp [±iαc (x− cct)] must also contain harmonic modes in exp [niαc (x− cc t)] for

all n integers. Therefore, it seems natural to represent the nonlinear disturbance as the
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Fourier series

ψ (x, y, t) = φ0(y, t) +

+∞
∑

n=−∞
n6=0

φn (y, t) exp [niαc (x− cct)] , (4.1)

where we have separated out the mean part φ0(y, t), i.e. the mean flow distortion. Be-

cause ψ is real, we have that φ−n = φ∗n, where the star denotes complex conjugation.

Substituting (4.1) into (2.31) combined with (2.32)-(2.40) and (2.21)-(2.23) and separat-

ing out the coefficients of like exponentials, we obtain an infinite set of coupled nonlinear

partial differential equations for the Fourier components φn. The nonlinearity and cou-

pling of this infinite set makes its solution difficult. However, if the amplitude A of the

fundamental wave is small, the Fourier components φn can be sought using a perturba-

tion method expanding around the solution of the linear problem. It is clear that if the

linear solution is O(A), the leading term of φ2 is O(A2) because of the interaction of the

fundamental with itself. The same reasoning applied for higher harmonics indicate that

φn can be written as

φn(y, t) = An(t)fn(y, t) if n > 0 and φ0(y, t) = |A|2f0(y, t), (4.2)

with

fn(y, t) =

+∞
∑

m=1

|A|2(m−1)fn,n+2(m−1)(y) if n 6= 0 (4.3)

f0(y, t) =

+∞
∑

m=1

|A|2(m−1)f0,2m(y), (4.4)

see e.g. Watson (1960); Stuart (1960); Reynolds & Potter (1967); Herbert (1983). In the

above equations, A = A(t) is the complex amplitude of the fundamental, described as a

general function of time and considered as a small parameter. The subscripts to function

fk,ℓ means that it has an harmonic index k and asymptotic order ℓ.

The time evolution of the disturbance amplitude A is given by the Stuart-Landau equa-
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tion:

dA

dt
= −iα (c− cc) A+

+∞
∑

j=1

gj |A|2j
A, (4.5)

where c is the complex phase velocity evaluated in the vicinity of the critical conditions

c = c (αc, Re) and gj is jth Landau coefficient. This is in fact a rigorous series expansion

in powers of A at the onset, i.e., for c = cc, but it is customary to truncate the series at

a finite order, and to use the Landau equation (4.5) at a finite distance of the onset. As

A is assumed complex, the real amplitude is given by the the modulus of the amplitude

A which is determined by:

d |A|2
dt

= 2α ci |A|2 + 2

+∞
∑

j=1

gjr |A|2(j+1)
, (4.6)

where the subscript jr in gjr means the real part of gj . For linearly unstable flows,

the nature of the bifurcation is determined g1r. If g1r is positive, then the instability is

subcritical, while if g1r is negative, the instability is supercritical. The imaginary part

g1i gives the first order correction to the frequency of the basic wave due to nonlinear

effects.

In the system of equations obtained after substituting (4.1) into (2.31) and separating

terms of like exponential, the Fourier components φn are replaced by their expression

(4.2) combined with (4.3)-(4.5). Equating the same powers A, a hierarchy of ordinary

differential equations for the functions fk,ℓ is obtained. These are solved sequentially

beginning from k = 1, ℓ = 1. The problem k = 1, ℓ = 1 is the linear problem (3.2)

which gives the critical point around which the harmonic-amplitude expansion is carried

out. The problem k = 0, ℓ = 2 yields the first correction to the mean flow. The problem

k = 2, ℓ = 2 yields the first harmonic of the fundamental mode. The problem k = 1, ℓ = 3

yields the coefficient g1 of feedback on the fundamental mode.

In order to avoid overloading the text, the linear (Lk), bilinear (NI and NV quad) and
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trilinear forms (NV cub), involved in the ordinary differential equations for the functions

fk,ℓ, are given in Appendix A.

4.2. Modification of the mean flow

The interaction of the fundamental mode Af1,1 with its complex conjugate produces a

mean flow correction proportional to |A|2, i.e., |A|2 u0,2, where u0,2 = Df0,2. Actually,

this modification of the mean flow cannot be calculated using the vorticity equation

(2.31), since, in this x-independent case, the linear operator implied is not invertible.

Instead, one has to consider the streamwise mean momentum equation. In the situation

of a fixed axial pressure gradient, it reduces to:

〈

∂

∂y
(uv)

〉

x

=

〈

∂

∂y
τ1,xy

〉

x

+

〈

∂

∂y
τ2,xy

〉

x

, (4.7)

where 〈.〉x =
α

2π

∫ 2π/α

0

(.)dx. Using (2.25) , (2.27) and (2.22), it can be shown after some

algebra, that u02 satisfies the following equation:

1

Re
D (µtDu0,2) = −iαD

(

f1,1Df
∗
1,1 − f∗1,1Df1,1

)

− 2

Re
D

[

γ̇b
xy

∂µ

∂Γ

∣

∣

∣

∣

b

(

3 | G1f1,1 |2 + 4α2|Df1,1 |2
)

]

− 4

Re
D

[

γ̇b
xy Γb

∂2µ

∂Γ2

∣

∣

∣

∣

b

| G1f1,1 |2
]

. (4.8)

with the boundary and parity conditions

u0,2 = 0 at y = 1 and Du0,2 = 0 at y = 0 (4.9)

4.3. Generation of the first harmonic of the fundamental mode

The interaction of the fundamental with itself, through the quadratic nonlinear terms

of the perturbations equation, produces first harmonic term, f2,2A
2E2. At order k = 2,

ℓ = 2, the perturbation equation (2.31) combined with (4.2)-(4.5) reduces to:

L2 f2,2 = NI (f1,1, f1,1) +NV quad (f1,1, f1,1) . (4.10)
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The boundary and parity conditions read

f2,2 = Df2,2 = 0 at y = 1 and f2,2 = D2f2,2 = 0 at y = 0. (4.11)

4.4. Calculation of the cubic Landau constant

The cubic Landau constant g1 appears in the problem k = 1, ℓ = 3. This problem

represents the feedback at order O(A3) on the fundamental mode through the nonlinear

interactions of the fundamental with the first harmonic and with the modification of the

mean flow. It reads:

L1f1,3 = −g1 S1 f1,1 + NI (f0,2|f1,1) +NV quad (f0,2|f1,1)

+ NI (f2,2|f−1,1) +NV quad (f2,2|f−1,1)

+ NV cub (f1,1, f1,1|f−1,1) , (4.12)

where f−k,ℓ = f∗k,ℓ. In the critical conditions, equation (4.12) has a non trivial solution if

the Fredholm solvability condition is satisfied, i.e., orthogonality of the inhomogeneous

part of the equation (4.12) to the null-space of the adjoint operator of L1, see §3.2. The

cubic Landau coefficient is then readily obtained,

g1 = gI
1 + gV

1 =
(

gI
10 + gI

12

)

+
(

gV
10 + gV

12 + gV
1−11

)

, (4.13)

with

gI
10 =

(

NI(f0,2|f1,1), f
†
1,1

)

(

S1f1,1, f
†
1,1

) , gV
10 =

(

NV quad(f0,2|f1,1), f
†
1,1

)

(

S1f1,1, f
†
1,1

) , (4.14)

gI
12 =

(

NI(f2,2, |f−1,1), f
†
1,1

)

(

S1f1,1, f
†
1,1

) , gV
12 =

(

NV quad(f2,2|f−1,1), f
†
1,1

)

(

S1f1,1, f
†
1,1

) , (4.15)

gV
1−11 =

(

NV cub(f1,1, f1,1|f−1,1), f
†
1,1

)

(

S1f1,1, f
†
1,1

) , (4.16)
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where gI
10 and gV

10 are the feedback of the mean flow correction onto the wave through

the nonlinear inertial and nonlinear viscous terms, gI
12 is the feedback of the harmonic

onto the wave, etc...

5. Results and discussion

5.1. Linear problem

A spectral collocation method based on Chebyshev polynomials is applied to determine

the eigenvalues c and the corresponding eigenfunctions. The differential equation (3.2)

combined with (3.3) is discretized on the Gauss-Lobatto grid. The resulting generalized

eigenvalue problem is solved using the QZ algorithm with Matlab. Spectra with increasing

collocation points (N = 50, 100, 150, 200, 300) were compared to determine the adequate

number (N + 1) of Chebyshev polynomials. It is found that, in order to keep the same

resolution accuracy (within five digits) of the least stable mode for all the situations

considered here, it is necessary to increase N as the shear-thinning behavior of the fluid

becomes more important. For instance, N = 200 for a Carreau fluid with nc = 0.1

and λ = 10, whilst N = 50 in the Newtonian case. Marginal stability curves and the

associated critical conditions are determined for different rheological parameters (nc, λ).

To determine the critical conditions, for a given rheological parameters, α and Re are

varied until ci 6 10−5. Numerical results have been already given in (Nouar et al. 2007).

When the Reynolds number is defined with the wall-shear viscosity

Recw = Rec/ (µb)w , (5.1)

the shear-thinning delays the linear instability as shown in Table 1. The results of Nouar

et al. (2007) are supplemented here by additional data for large values of λ and another

shear-thinning index nc. In figure 4, the critical Reynolds number Recw is depicted vs



Subcritical bifurcation of shear-thinning channel flows 21

nc λ Recw αc cc

1 0 5772.22 1.0206 2.640 10−1

0.7 10 9257.62 0.995 2.308 10−1

0.5 10 13849.66 1.009 2.070 10−1

0.3 10 23519.04 1.1043 1.810 10−1

0.5 1 13225.62 0.9333 2.004 10−1

0.5 100 13732.71 1.013 2.0861 10−1

Table 1. Critical Reynolds number Recw, critical wavenumber αc and critical wave speed cc

for various rheological parameters.

λ for different values of nc. The stabilizing effect of the shear-thinning is clearly illus-

trated. One has also to note, that the evolution of Recw v.s. the rheological parameters

is correlated to that of the degree of viscosity stratification at the wall, i.e.,
1

µb
|Dµb| at

y = 1 (see figure 3b). The evolution of the critical wavenumber with the shear-thinning

behavior has been described in (Nouar et al. 2007). At large λ and when nc is decreased,

the waves have a shorter wavelength, and also a lower phase speed (Table 1).

Remark

Note that, if the perturbation of the viscosity is not taken into account, i.e., one sets

µt = µb in (3.3), the stabilizing effect is much stronger. The critical Reynolds number is

2 to 3 times higher.

Some characteristics of the critical wave are shown in figure 5 for Newtonian and

Carreau fluids. For such fluids, the streamlines are more concentrated near the wall,

indicating the presence of steep velocity gradient and a large unaffected core region.
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Figure 4. (a) Critical Reynolds number defined with the wall shear viscosity as function of the

dimensionless characteristic time λ of the fluid for different values of nc. (b) Thickness of the

critical layer as function of nc for different λ: (1) λ = 0.5; (2) λ = 1; (3) λ = 10.

The slope of the separatrices (lines where the stream function vanishes) near the wall is

related to the energy exchange between the mean flow and the disturbance. It has been

shown (Plaut et al. 2008) that for the disturbance to extract energy from the basic flow

through the action of the Reynolds stress, the separatrices must slope against the mean

flow. The thickness δc of the critical layer, where the exchange of energy between the

perturbation and the base flow takes place, is represented as function of nc for different

λ, in figure 4(b). The critical layer becomes thinner when the shear-thinning effects

increase. The structure of the critical eigenfunctions is depicted in figure 6 for λ = 10

and different values of nc and in figure 7 for nc = 0.5 and different λ. Concerning the

critical eigenfunctions of the adjoint linear operator, they are given in Appendix B for

various values of the shear-thinning index.
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Figure 5. Iso-values of the streamfunction associated with the critical waves. (a) Newtonian

fluid; (b) Carreau fluid with λ = 10 and nc = 0.3: Continuous lines for positive values of ψ:

0.1 near the walls then with a step of 0.1 until 0.9. Dotted lines for negative values of ψ: −0.1

near the walls then with a step of −0.1 until −0.9. The thick lines are the separatrices where

the stream-function vanishes.
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Figure 6. (a) Real part, (b) imaginary part of the eigenfunctions associated to the critical

mode for λ = 10 and different values of the shear-thinning index nc: (1) nc = 1, Newtonian; (2)

nc = 0.7; (3) nc = 0.5; (4) nc = 0.3.

5.2. Energy equation

To analyze the importance of the viscosity perturbation on the critical Reynolds number,

it is useful to consider the Reynolds-Orr energy equation truncated at order |A|2,

1

2

d

dt

〈

u2
1 + v2

1

〉

xy
= − 1

Re
〈µb∇(v1) : ∇(v1)〉xy −

〈

u1v1
dUb

dy

〉

xy

+
1

Re

〈

(µb − µt) (γ̇xy)
2
〉

xy
(5.2)
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Figure 7. (a) Real part, (b) imaginary part of the eigenfunctions associated to the critical

mode for nc = 0.5 and different values of λ: (1) λ = 0, Newtonian; (2) λ = 1; (3) λ = 100.

where 〈.〉xy =

∫ 2π/α

0

∫ 1

0

(.)dydx, u1 and v1 are the streamwise and the wall-normal veloc-

ities of the fundamental mode. The first term in the right-hand-side, due to dissipation,

is always negative. The second term is positive, since the waves extract energy from the

basic shear flow, near the wall where the separatrices slope. The third term arises from

the viscosity perturbation. It is definite positive, because µb > µt for shear-thinning flu-

ids. It traduces a reduction of the viscous dissipation and may be viewed as an energy

source term. It increases when the difference between the effective and the tangent vis-

cosities, i.e. increases, with increasing shear-thinning effects. The onset of instability is

then found earlier than in the case where the viscosity perturbation is not taken into

account.

5.3. Modification of the mean flow

As for the linear problem, equation (4.8) with the associated boundary conditions (4.9) is

solved numerically using a spectral collocation method based on Chebyshev-polynomials.

Figure 8 shows the modification of the mean flow at order |A|2 for two sets of rheological

parameters, λ = 10 and different values of nc and nc = 0.5 and different values of
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Figure 8. Modification of the base flow. (a) λ = 10 and (1) nc = 1 Newtonian; (2) nc = 0.7;

(3) nc = 0.5; (4) nc = 0.3; (5) nc = 0.1, for this case, we have represented u0,2/20 rather than

u0,2. (b) nc = 0.5 and (1) λ = 0 Newtonian; (2) λ = 1; (3) λ = 10; (4) λ = 100.

λ. By comparison with the Newtonian case (curve 1), a remarkable difference is that

the fluid can be accelerated near the wall. It is always significantly decelerated in the

central zone. With increasing shear-thinning effects, the acceleration becomes stronger

and more confined near the wall. Canceling artificially the nonlinear viscous terms in

(4.8) allows to highlight the contribution of the inertial terms on the modification of the

mean flow and vice-versa, to highlight the contribution of the nonlinear viscous terms.

The results, shown in figure 9, prove that the interaction of the fundamental with its

complex conjugate through nonlinear viscous terms, accelerates the fluid in all the width

between the two plates (curves 4 in figure 9). In contrast, the inertial terms reduce the

flow rate as for a Newtonian fluid (curves 3 in figure 9).

In order to interpret these results, equation (4.7) is integrated once, and because of

the symmetry of u02 and f1,1 under y 7−→ −y, we obtain

1

Re
µtDu0,2 = 〈u1v1〉x − 〈τ2,xy〉x . (5.3)
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Figure 9. Modification of the base flow: (a) nc = 0.5 and λ = 10; (b) nc = 0.3 and λ = 10.

(1) Reference curve, Newtonian fluid; (2) Carreau fluid; (3) Carreau fluid with the nonlinear

inertial terms only; (4) Carreau fluid with the nonlinear viscous terms only.

The first term on the right-hand of the above equation can be related to the slope x′s of

the separatrices represented in figure 5b via the relation 〈u1v1〉x =
〈

v2
1

〉

x
x′s (Plaut et al.

2008). The numerical results show that 〈u1v1〉x is of the sign of −dUb/dy, and increases

in magnitude, in the critical layer, with increasing shear-thinning effects. Therefore, the

strong deceleration of the flow illustrated by the curves 3 in figures 9(a) and 9(b) can be

explained by the increase of the Reynolds-stress. The numerical results show also that

〈τ2,xy〉x, the viscous shear-stress arising from the interaction of the fundamental with its

complex conjugate, is positive and increases with increasing the shear-thinning effects.

This can explain the acceleration of the flow, induced by the nonlinear viscous terms,

illustrated by the curves 4 in figures 9(a) and 9(b). The term on left-hand side of (5.3),

i.e., (1/Re)µt (du02/dy) = τ1,xy involves the tangent viscosity µt < µb which amplifies

the accelerations and decelerations of the flow described above.

Alternatively, fixed flow rate conditions can be imposed. In this case, a correction P̃0,2 x to

the pressure field is introduced at order |A|2 such that the modified mean-flow correction
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ũ0,2 satisfies

〈ũ0,2 (y)〉y = 0. (5.4)

The streamwise component of the mean momentum equation at order |A|2 reads

d

dy
(uv)0,2 = −dP̃0,2

dx
+

1

Re

d

dy

[

µt
dũ0,2

dy

]

+
d

dy
(τ2xy)0,2 (5.5)

which, by comparison with (4.8) gives

ũ0,2(y) = u0,2(y) −Re
dP̃0,2

dx

∫ 1

y

ζ

µt
dζ with

dP̃0,2

dx
=

1

Re

∫ 1

0
u0,2(y)dy

∫ 1

0

∫ 1

y
(ζ/µt)dζdy

(5.6)

All the integrals are evaluated numerically using Clenshaw and Curtis method. The

mean flow correction ũ0,2 is shown in figure 10 for fixed λ and different values of nc.

With increasing shear-thinning effects, the flow is accelerated in a thin region adjacent

to the wall, followed by a deceleration and then a slight acceleration in a large region

around the axis. The fact that the mean pressure gradient dP̃0,2/dx is negative as it is

shown in the figure 10(b) signifies that at fixed flow rate, the transition to generalized

Tollmien-Schlichting waves is accompanied by an increase of the head loss. The figure

10(b) suggests also that there is an optimal values of the rheological parameters for which

the increase of the head loss is minimum and lower than in the Newtonian case.

5.4. First harmonic of the fundamental

Equation (4.10) with the associated boundary conditions (4.11) is solved using the same

numerical approach as in §5.3. The first harmonic of the fundamental which has half its

wavelength is displayed in figure 11 for a Carreau fluid with λ = 10 and nc = 0.3. The

real and the imaginary parts of f2,2 are shown in figure 12 for λ = 10 and different values

of nc. It is observed that shear-thinning induces a significant amplification of f2,2. To

determine the contribution of the inertial terms to the generation of the first harmonic,

the nonlinear viscous terms in the r.h.s. of equation (4.10) are canceled artificially, and
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Figure 10. (a) Modification of the base flow for fixed flow rate at λ = 10 and different nc: (1)

Reference curve obtained for Newtonian fluid and represented by the dashed line; (2) nc = 0.7;

(3) nc = 0.5; (4) nc = 0.3. (b) Correction to the mean pressure gradient versus nc at fixed flow

rate and λ = 10.

vice-versa to obtain the contribution of the quadratic nonlinearity arising from the vis-

cosity. The results are shown in figure 13. It appears that the first harmonic generated by

the nonlinear viscous terms is smaller and in opposite phase with that generated by the

quadratic nonlinear inertial terms. This reveals probably, that the mechanism of energy

exchange between the fundamental and its harmonic via the nonlinear inertial terms is

different compared to that via the nonlinear viscous terms.

5.5. Cubic Landau constant

The cubic coefficient g1, i.e., the first Landau constant in (4.5) is determined for differ-

ent critical sets (nc, λ,Re, α). The integrals in (4.14)-(4.16) are evaluated numerically by

means of Clenshaw and Curtis Method. In figure 14(a), we plot g1r = Re (g1) in terms of

λ for fixed values of nc. As one could expect, the sign of g1r is found positive indicating

a subcritical bifurcation. For fixed nc, g1r increases as the dimensionless characteristic

time λ increases and tends towards an asymptote. In the same way, for a given λ, g1r
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Figure 12. Real (a) and imaginary (b) parts of the first harmonic of the critical mode for

λ = 10 and different values of the shear-thinning index nc: (1) nc = 1 Newtonian case; (2)

nc = 0.7; (3) nc = 0.5; (4) nc = 0.3.

increases strongly as nc decreases. Thus shear-thinning effects, while tending to promote

stability on a linear basis, also tend to augment the subcritical character of the bifurca-

tion. Contributions of the different terms gI
10, g

I
12, g

V
10, ... (see equation 4.13) that control
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Figure 13. Real (a) and imaginary (b) parts of the first harmonic of the fundamental mode

at the critical condition for Carreau fluid with λ = 10 and nc = 0.3. (1) nc = 1 Newtonian case

as a reference curve; (2) Carreau fluid ; (3) Carreau fluid: contribution of the inertial terms; (4)

Carreau fluid: contribution of the nonlinearities arising from the viscous terms.

the value of g1r are given in tables 2 and 3 for fixed pressure gradient and fixed flow rate

respectively. The data show that with increasing shear-thinning effects, the feedback of

the harmonic onto the waves plays an important role in the subcritical bifurcation, whilst

in the Newtonian case gI
12 is negative and the subcritical nature of the bifurcation is due

to the feedback of the mean flow correction onto the wave (Reynolds & Potter 1967;

Plaut et al. 2008).

If the nonlinear viscous terms are canceled artificially in the disturbance equation (2.31),

higher values of g1r are found. This can be assessed by comparing curve (2) obtained

without nonlinear viscous terms and curve (3) in figure 14(b). For λ > 10, the relative

difference is about 20%. In contrast, if the nonlinear inertial terms are canceled in the

disturbance equation (2.31), g1r is negative and the bifurcation becomes supercritical

(see the curve 4 of figure 14. Hence, for shear-thinning fluids, the nonlinear variation of

µ with the shear-rate favors a supercritical bifurcation.
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Figure 14. (a) Real part of the Landau constant as function of λ and different values of nc,

under the fixed pressure-gradient condition. (1) Newtonian case nc = 1; (2) nc = 0.7; (3)

nc = 0.5; (4) nc = 0.3; (5) nc = 0.2. (b) Real part of the Landau constant versus λ for a given

shear-thinning index nc = 0.3. (1) Newtonian fluid, (2) Carreau fluid, (3) Only nonlinear inertial

terms are retained and (4) Only nonlinear viscous terms are retained; in this case the opposite

of g1r is shown

nc g1r gI
10 gV

10 gI
12 gV

12 gV
1−11

1 29.72 39.48 0 -9.76 0 0

0.7 74.16 78.71 -3.44 -9.85 6.19 2.55

0.5 206.437 168.830 -11.34 12.613 32.468 3.860

0.4 428.068 288.250 -24.854 77.590 78.214 8.859

0.3 1211.231 613.329 -66.187 384.93 251.372 27.772

0.2 6391.031 2076.469 -137.864 3010.636 1467.892 118.363

Table 2. Fixed pressure gradient condition. Real part of the first Landau constant and contribu-

tion of the nonlinear inertial and nonlinear viscous terms, for different values of the shear-thin-

ning index at λ = 10. For the Newtonian case, the value of g1r is in agreement with that given

by Reynolds & Potter (1967).
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nc g1r gI
10 gV

10 gI
12 gV

12 gV
1−11

1 30.95 40.73 0 -9.791 0 0

0.7 78.42 81.40 -2.59 -9.271 7.95 0.92

0.5 198.87 163.51 -12.78 12.27 25.85 10.02

0.4 409.76 278.15 -27.06 74.24 62.67 21.75

0.3 1162.59 592.45 -69.89 376.07 206.34 57.61

0.2 6082.85 1979.84 -285.24 2890.39 1258.07 239.75

Table 3. Same as table 2 but for fixed flow rate condition. For the Newtonian case, the value

of g1r is in agreement with that given by Fujimura (1989).

5.6. Threshold amplitude

Beside the Landau coefficient, the threshold amplitude, |Ac|, which limits the basin of

attraction of undisturbed parallel flow, is another important quantity in the nonlinear

stability analysis. It is obtained by setting dA/dt = 0 in (4.5): the linear growth rate

and its nonlinear correction balance. In the neighborhood of the critical conditions such

that (Rec −Re) /Rec = ǫ << 1, using Taylor expansion, αci can be written as α ci =

ǫ/τ0 + O(ǫ2), where the τ0 is a characteristic time. Hence, to lowest order in ǫ, the

threshold amplitude is

|Ac| =

√

ǫ

τ0 g1r
. (5.7)

One has to note that (dci/dǫ)ǫ=0 has to be evaluated for a given fluid and flow geometry

that is for a constant Λ = λ/ [Rec (1 − ǫ)]. Figure 15(a) shows the threshold amplitude

in the form |Ac| /
√
ǫ as a function of the shear-thinning index nc. The curve illustrates

that the flow becomes much more sensitive to small disturbances since the threshold
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Figure 15. Fixed pressure gradient condition. (a) Scaled threshold amplitude, beyond which

the flow is nonlinearly unstable, as function of nc at λ = 100. (b) Threshold kinetic energy as

a function of the shear-thinning index, nc at λ = 100.

amplitude significantly decreases as the shear-thinning effects increase, i.e., the flow

becomes relatively more nonlinearly unstable. The numerical results indicate also that

the characteristic time τ0 decreases. For instance, for a Newtonian fluid, we have τ0 =

103.1, in agreement with Herbert (1980), compared to 63.11 obtained for a Carreau fluid

with nc = 0.2 and λ = 100. One has to note that the numerical values of the Landau

constant and hence the values of Ac depend upon the normalization condition used for

the eigenfunctions in the linear theory. However, the physical velocity components, i.e.

the product of the amplitude with the eigenfunctions of the linear theory are independent

of the normalization. For instance, we can consider the threshold kinetic energy required

for a finite amplitude instability, defined by

ζ = 2 |Ac|2
∫ 1

0

[

|Df1,1|2 + α2
c |f1,1|2

]

dy. (5.8)

Figure 15(b) plots the threshold kinetic energy in the form ζ/ǫ as a function of the shear-

thinning index nc, for λ = 100. As it can be observed, the threshold kinetic energy de-

creases significantly as nc decreases, highlighting the destabilizing effect of shear-thinning

for finite amplitude perturbations.
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5.7. Validation by computing higher-order Landau constants

Figure 15 indicates that the threshold amplitude beyond which the flow is nonlinearly

unstable decreases with increasing shear-thinning effects. This result was obtained by

truncating the series (4.5) to the first Landau constant, at cubic order in A. For a sig-

nificant deviation from the critical condition, terms of higher order become large and

should be taken into account. Weakly nonlinear expansion was then carried out up to

seventh order in amplitude under fixed flow rate condition. For the sake of clarity, cal-

culation details are not given in the text, (see Appendix C). As in the Newtonian case,

for shear-thinning fluids, the real part of Landau constants are of alternating sign and

increase very fast. This increase is stronger with increasing shear-thinning effects as is

shown by the data in table 4. Figure 16 shows the evolution of the threshold amplitude

|Ac| versus the relative departure from the critical conditions, ǫ = (Rec −Re) /Rec, for

different values of the shear-thinning index. The results are presented at cubic, fifth and

seventh order in the amplitude expansion. At nc = 0.3, the three curves (cubic, fifth and

seventh order) are not distinguishable within plotting accuracy. At ǫ = −0.05, the relative

difference in |Ac| between the fifth and the seventh order is 0.6% for nc = 0.3 and 4.6%

for a Newtonian fluid. The threshold amplitude decreases with increasing shear-thinning

effects. This result is valid at least for a reasonable relative departure from the critical

conditions.

6. Conclusion

The present work focuses on the first principles understanding of the influence of

shear-thinning effects on the flow stability with respect to finite amplitude perturba-

tions. The fluid is supposed purely viscous. Hence, in presence of a perturbation u, it is

assumed that the viscosity instantaneously adjusts the shear rate of the perturbed flow
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nc g1r g2r g3r

1 30.95 −3.00 × 105 6.78 × 109

1′ 30.95 −3.00 × 105 6.39 × 109

0.7 78.42 −1.62 × 106 9.27 × 1010

0.5 198.87 −9.52 × 103 1.30 × 1012

0.3 1.17 × 103
−2.09 × 108 9.77 × 1013

Table 4. Real part of the Landau constants for different values of the shear-thinning index at

λ = 10. For the Newtonian case, the values of g1r, g2r and g3r are in good agreement with that

given by Fujimura (1989), for fixed flow rate condition, and reported here on the line 1′.
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Figure 16. Threshold amplitude vs ǫ = (Rec − Re)/Re for different values of the shear-thin-

ning index, under the condition of fixed flow rate. The truncation levels of the Stuart-Landau

equation are also provided: (dotted line) cubic order, (dashed line) fifth order, (continuous line)

seventh-order.

U b +u. Physically, this assumes that the characteristic time of the reorganization of the

internal structure is much smaller than the characteristic time of the perturbation. In

the case, where the reorganization time of the internal structure has to be considered, a
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thixotropic model for the viscosity has to be used. In such a model, the internal structure

is defined using a single parameter. The behaviour of this parameter is determined by

a phenomenological kinetic process. To our knowledge, even the linear stability analysis

of channel flows of thixotropic fluids has not yet been performed. One of the difficulties

arises from the fact that several thixotropic models are not structurally stable (Billing-

ham & Ferguson 1993).

Compared to the Newtonian case, an additional nonlinearity appears in the momentum

equations, via the rheological law of the fluid. This additional nonlinearity is not an-

alytical and thus more complex than the quadratic nonlinear inertial terms. A weakly

nonlinear analysis of the bifurcation to two-dimensional generalized Tollmien-Schlichting

waves is used as a first approach to take into account nonlinear effects. The amplitude

expansion method of Landau and Stuart is adopted. The Carreau model is used as a

typical rheological model of shear-thinning fluids. The main conclusions of the analysis

are: (i) At order |A|2, when a constant pressure drop is imposed, the nonlinear viscous

terms reduce the viscous dissipation and tend to accelerate the fluid while the nonlin-

ear inertial terms reduce the flow rate. These modifications of the mean flow increase

with increasing shear-thinning effects. (ii) The harmonic generated by the nonlinearity

µ (γ̇), is smaller and in opposite phase with that generated by the quadratic nonlinear

inertial terms. The modulus of the harmonic increases with increasing shear-thinning

effects. (iii) The real part of the cubic Landau constant g1r becomes large and positive

as nc decreases or as λ increases. Thus, shear-thinning effects, while tending to promote

stability on the basis of the linear theory (Chikkadi et al. 2005; Nouar et al. 2007), also

tend to increase highly the subcritical nature of the bifurcation. If the nonlinear viscous

terms are canceled artificially, higher values of g1r are found. In contrast, if the nonlinear

inertial terms are canceled, g1r is negative and the bifurcation becomes supercritical.



Subcritical bifurcation of shear-thinning channel flows 37

Beside the Landau constant, the threshold amplitude of the bifurcation which limits the

basin of attraction of the laminar flow was determined. Because of higher values of g1r,

the threshold amplitude decreases with increasing shear-thinning. This result was con-

firmed by computing higher order Landau constants.

In order to compute nonlinear waves far below onset, the technique used here will become

prohibitively tedious (see Appendix C) when higher order terms in Landau equation are

included. A fully numerical method, e.g., a continuation method based on Euler-Newton

and pseudo-spectral methods, would be quite useful for this purpose.

One Referee has drawn our attention to an interesting point. For sufficiently large am-

plitude of the primary wave, the mean velocity profile Ub + |Ap|2u0,2 may exhibit an

inflection point near the wall (see figure 8), that could lead to an instability through an

inviscid mechanism (Rayleigh and Fjortoft theorems). The numerical results show that

the critical amplitude above which an inflectional velocity profile is obtained decreases

with increasing shear-thinning effects. This critical amplitude is one order of magnitude

larger than the values given in figure 16. The study of such secondary instabilities and

of three-dimensional instabilities will be relevant.

It is worthy to note that in Rayleigh-Bénard convection of shear-thinning fluids, a ten-

dency towards subcritical bifurcations when shear-thinning effects are introduced has

been evidenced by Balmforth & Rust (2009); Albbalbaki & Khayat (2011). This ten-

dency is in line with our results, though the physical mechanisms of the instabilities are

different. It is probably a generic feature of instabilities in shear-thinning fluids.
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Appendix A. The linear (Lk), bilinear (NI and Nvquad) and trilinear

(Nvcub) involved in the differential equations for fk,ℓ

The ordinary differential equations for the function fk,ℓ, involve the following linear

(Lk), bilinear (NI and Nvquad) and trilinear forms (Nvcub):

Lk fk,ℓ = −i k α cc Sk fk,ℓ − i k α
(

D2Ub − Ub Sk

)

fk,ℓ

− 1

Re
µb S

2
k fk,ℓ −

1

Re

[

D2µb Gk + 2 (Dµb) Sk D
]

fk,ℓ

− 1

Re
Gk [(µt − µb) Gk fk,ℓ] . (A 1)

One can notice that the linear problem L1f1,1 = 0 is the Orr-Sommerfeld equation.

NI (fn,p, fm,q) = i nα fn,p SmDfm,q − i αmDfn,p Sm fm,q. (A 2)

NI (fn,p|fm,q) = NI (fn,p, fm,q) + NI (fm,q, fn,p) (A 3)

ReNV quad (fn,p, fm,q) = −8α2m (n+m) D

[

γ̇b
xy

∂µ

∂Γ

∣

∣

∣

∣

b

(Gn fn,p) (Dfm,q)

]

+ G(n+m)

[

3 γ̇b
xy

∂µ

∂Γ

∣

∣

∣

∣

b

(Gn fn,p) (Gm fm,q)

]

+ G(n+m)

[

2

(

Γ
∂2µ

∂Γ2

)

b

γ̇b
xy (Gnfn,p) (Gmfm,q)

]

+ G(n+m)

[

−4α2 nm γ̇b
xy

∂µ

∂Γ

∣

∣

∣

∣

b

(Dfn,p) (Dfm,q)

]

, (A 4)

NV quad (fn,p|fm,q) = NV quad (fn,p, fm,q) +NV quad (fm,q, fn,p) . (A 5)
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Figure 17. Real (a) and imaginary (b) parts of the eigenfunction of the adjoint linear operator

at λ = 10 and different shear-thinning index: (1) Newtonian, (2) nc = 0.7, (3) nc = 0.5 and (4)

nc = 0.3. (a) Real part and (b) imaginary part.

ReNV cub = (n+m+ k) αD

[

16nmk α3 ∂µ

∂Γ

∣

∣

∣

∣

b

(Dfn,p) (Dfm,q) (Dfk,ℓ)

]

+ (n+m+ k) αD

[

−4αk

(

∂µ

∂Γ
+ 2Γ

∂2µ

∂Γ2

)

b

(Gnfn,p) (Gmfm,q) (Dfk,ℓ)

]

+ G(n+m+k)

[

−4nmα2 ∂µ

∂Γ

∣

∣

∣

∣

b

(Dfn,p) (Dfm,q) (Gkfk,ℓ)

]

+ G(n+m+k)

[(

∂µ

∂Γ
+ 2Γ

∂2µ

∂Γ2

)

b

(Gnfn,p) (Gmfm,q) (Gkfk,ℓ)

]

+ G(n+m+k)

[

−8α2 nmΓb
∂2µ

∂Γ2

∣

∣

∣

∣

b

(Dfn,p) (Dfm,q) (Gkfk,ℓ)

]

+ G(n+m+k)

[

2Γb

(

∂2µ

∂Γ2
+

2

3
Γ
∂3µ

∂Γ3

)

b

(Gnfn,p) (Gmfm,q) (Gkfk,ℓ)

]

(A 6)

NV cub (fn,p, fm,q|fk,ℓ) = NV cub (fn,p, fm,q, fk,ℓ) +NV cub (fk,ℓ, fn,p, fm,q)

+ NV cub (fm,q, fk,ℓ, fn,p) (A 7)

Appendix B. Adjoint eigenmode

The eigenfunctions of the adjoint linear operator for different values of the shear index

nc are displayed in figure 17.
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Appendix C. Expansion to seventh-order

To evaluate the Landau constant up to seventh order in amplitude, viscosity of the

perturbed flow needs to be expanded, around the base flow, up to seventh order:

µ(Ψb + ψ) = µb + µ1 + µ2 + ...+ µ7 + .... (C 1)

with

µ4 =
2

3

∂4µ

∂Γ4

∣

∣

∣

∣

b
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γ̇b
xy

)4
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4
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2
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∣

b
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The deviatoric stresses of disturbed flow are written as:

τij (Ψb + ψ) = τij (Ψb) + τ1,ij + τ2,ij + ...+ τ7,ij + ..., (C 6)

where

τk,ij = µk−1 γ̇ij + µk γ̇
b
ij ; k > 2. (C 7)

At order k, the nonlinear viscous term in the perturbation equation (2.31) is therefore

Re NV k (ψ, ..., ψ) =
∂2

∂x∂y
[µk−1 (γ̇xx (ψ) − γ̇yy (ψ) ) ]

+

(

∂2

∂y2
− ∂2

∂x2

)

[µk−1γ̇xy (ψ) + µk γ̇xy (Ψb) ] . (C 8)

Finally, the method for obtaining the Landau constants gj is to impose the solvability

condition on the equation for f1,j (distortion of the fundamental mode). The normaliza-
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tion condition f1,j = 0 at y = 0 for j > 1 is used in order to guarantee the uniqueness of

solutions (Herbert 1983; Fujimura 1989).

REFERENCES

Albbalbaki, B. & Khayat, R.E. 2011 Pattern selection in the thermal convection of non-

newtonian fluids. J. Fluid Mech 668, 500–550.

Balmforth, N. J. & Rust, A. C. 2009 Weakly nonlinear viscoplastic convection. J. Non-

Newtonian Fluid Mech. 158, 36–45.

Billingham, J. & Ferguson, J. W. J. 1993 Laminar, unidirectional flow of a thixotropic fluid

in a circular pipe . J. Non-Newtonian Fluid Mech. 47, 21–55.

Bird, R., Amstrong, R. & Hassager, O. 1987 Dynamics of polymeric liquids. Wiley - Inter-

science, New York.

Carreau, J. P. 1972 Rheological equations from molecular network theories. J. Rheol. 16,

99–127.

Chikkadi, V., Sameen, A. & Govindarajan, R. 2005 Preventing transition to turbulence: A

viscosity stratification does not always help. Phys. Rev. Lett. 95, 264504.1–4.

Drazin, P. G. & Reid, W. H. 1995 Hydrodynamic stability. Cambridge University Press.

Ern, P., Charru, F. & Luchini, P. 2003 Stability analysis of a shear flow with strongly

stratified viscosity. J. Fluid Mech. 496, 295–312.

Fujimura, K. 1989 The equivalence between two perturbation methods in weakly nonlinear

stability theory for parallel shear flows. Proc. R. Soc. Lond. A 424, 373–392.

Govindarajan, R. 2002 Surprising effects of minor viscosity gradients. J. Indian Inst. Sci. 82,

121–127.

Govindarajan, R., L’Vov, V. S., Procaccia, I. & Sameen, A. 2003 Stabilization of hydro-

dynamic flows by small viscosity variations. Phys. Rev. E 67, 026310.1–11.

Govindarajan, R., L’vov, V. S. & Proccaccia, I. 2001 Retardation of the onset of turbu-

lence by minor viscosity contrasts. Phys. Rev. Lett. 87, 174501.1–4.

Herbert, T. 1980 Nonlinear stability of parallel flows by high-order amplitude expansions.

A.I.A.A. 18, 243–248.



42 A. Chekila, C. Nouar, E. Plaut and A. Nemdili

Herbert, T. 1983 On perturbation methods in nonlinear stability theory. J. Fluid Mech. 126,

167–186.

Nouar, C., Bottaro, A. & Brancher, J. P. 2007 Delaying transition to turbulence in channel

flow: Revisiting the stability of shear-thinning fluids. J. Fluid. Mech. 592, 177–194.

Nouar, C. & Frigaard, I. 2009 Stability of plane Couette-Poiseuille flow of shear-thinning

fluid. Phys. Fluids 21, 064104.1–13.

Phillips, G.O. & Williams, P.A. 2000 Handbook of hydrocollöıdes. Woodhead Publishing,
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