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Abstract. We study theoretically the formation of convection patterns in a laterally extended planar
nematic layer heated from below, in the linear and weakly nonlinear regimes. By reformulating the viscous
coupling terms of the basic nematohydrodynamic equations, a simple interpretation of the flow effects on
the director dynamics can be proposed. A detailed linear analysis of the problem is presented. A systematic
method to investigate nonlinear mechanisms is developed, and exemplified by the study of the nonlinear
saturation in rolls. The extension of the roll amplitude equation with the envelope formalism is used to
characterize the dynamics of the roll modulations near threshold. Coupled envelope equations are shown
to describe the structure of the point defects in zig-zags observed experimentally. Finally the bifurcation
to the bimodal varicose is studied. The secondary wavevector in the bimodal appears to be selected by a
rotation of the director in the horizontal plane. Quantitative predictions concerning the amplitude of this
rotation are given.

PACS. 47.20.Ky Nonlinearity (including bifurcation theory) – 47.20.Bp Buoyancy-driven instability –
42.70.Dr Surface-tensio-driven instability

1 Introduction

As soon as the foundations of nematohydrodynamics,
the hydromechanics of nematic liquid crystals, have been
posed in the early 1970s [1], convection instabilities in
nematics have been intensely studied [2]. Nematics are
characterized by the existence of the director field n, the
mean orientation of the elongated molecules. n is the di-
rection of anisotropy of the (uniaxial) medium, and it
couples to the other fields like the velocity. These prop-
erties entail a rich variety of effects and the possibility
for new instabilities as compared with isotropic fluids.
Therefore, new models for the study of the transition to
spatio-temporal complexity in extended dynamical sys-
tems are at hand. From a theoretical point of view, be-
cause of the high order of nonlinearity of the nemato-
hydrodynamic equations, a systematic extraction of the
mechanisms which control the dynamics is challenging.

In the so-called planar geometry a layer of nematic
is sandwiched between two horizontal plates where the
director is fixed in a horizontal direction x̂. Since the
rotational symmetry is broken new scenarios of transi-
tions are expected. Up to now, the electroconvective in-
stability, driven by an ac electric field, has been intensely
studied, since conveniently ultra-thin layers (of thickness
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d ' 50 µm) can be used. The characteristic times are very
small (. 1 s), and very large aspect ratios can be reached.
This “extended geometry” offers an interesting model for
the study of the transition to spatio-temporal complexity
in anisotropic systems, and indeed a rich phenomenology
has been developed (see for instance [3] or [4]), in par-
allel to theoretical models which now describe a lot of
features of the weakly nonlinear (WNL) regime near
threshold [2]. On the contrary, the thermoconvective in-
stability, where the basic instability mechanism (and the
corresponding theory) is simpler, has only been the ob-
ject of few experimental studies [5,6], and consequently of
much fewer theoretical efforts. Since the primary works
of Dubois-Violette [7], it is only rather recently that
a systematic WNL study of this system has been per-
formed [8]. Now, we have realized new experiments in the
“director-dominated regime”, at low values of the director-
stabilizing magnetic fields H = Hx̂. These experiments
have shown that, when the applied thermal gradient is
increased, a cascade of structures develops (see [9] and
the second part of this article [10]). It appeared therefore
interesting to refine the theoretical analysis of [8], where
only the first step of the cascade was modeled.

In this theoretical paper, we first introduce in Section 2
the nematohydrodynamic equations of the problem, which
are highly nonlinear because of the couplings between the
director field n, the velocity field v and the tempera-
ture field T . A simplifying reformulation of the viscous
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terms is proposed. Section 3 is devoted to a detailed three-
dimensional linear analysis of the thermoconvection in-
stability. We give approximate analytic formulae for the
neutral modes, which determine to lowest order the roll
structures in the WNL regime, and for the neutral sur-
face. The selection of the critical mode is discussed, in
particular in order to understand the observed experi-
mental tendency towards oblique rolls at low magnetic
fields [10]. Finally, an approximate analytical expression
for the linear growth rate is given, which allows us to
define semi-quantitatively the director-dominated regime.
We turn in Section 4 to the study of the nonlinear prop-
erties of the system. For this purpose, we use the WNL
methods treating the nonlinear terms of the equations as
perturbations [11]. The eigenmodes of the linearized evo-
lution operator of largest growth rate, the active modes,
are used as a basis for an expansion of the solutions. Af-
ter an adiabatic elimination of the passive modes of very
negative growth rate, one is left with amplitude equations
which govern the time evolution of the active modes am-
plitudes. It is explained here in detail how these methods
can allow for a systematic study of nonlinear mechanisms,
starting in Section 4 with the nonlinear saturation in rolls.
In Section 5, the extension of amplitude equations with the
envelope formalism [12] is presented, which can explain the
very slow dynamics of the roll modulations near thresh-
old observed experimentally. Section 6 presents some re-
sults for the localized zig-zag competition, and Section 7
a detailed study of the bimodal varicose secondary bifur-
cation of oblique rolls. We give in particular numerical
predictions concerning a crucial in-plane rotation of the
director. The results presented here may extend immedi-
ately to other systems of the same symmetry, whereas the
methods exemplified in this paper (especially the method
of investigation of nonlinear mechanisms) may be applied
to any other system in the low amplitude regime.

Appendix A introduces the nematics for which we have
done calculations, and recalls their material parameters.
Appendix B gives the physical interpretation of the veloc-
ity potentials, and Appendix C some informations about
the Galerkin method used to treat the vertical dependence
of the fields.

2 Basic dimensionless equations, symmetries

2.1 Basic dimensionless equations

The director evolution equation reads in the formulation
of Leslie [1]

γ1n× ṅ = n× (h + hv) (2.1)

where the dot stands for the material derivative ∂t + v · ∇.
The static molecular field h is the sum of elastic and mag-
netic terms:

h = hd + hmagn. (2.2)

The elastic terms derive from the elastic free energy den-
sity fd:

(hd)i = −
∂fd

∂ni
+ ∂j

∂fd

∂(∂jni)
(2.3)

with

fd =
1

2
[ k11(∇ · n)2 + k22(n · ∇ × n)2 + k33(n×∇× n)2 ].

The k11, k22, k33 terms are associated with splay, twist
and bend distortions of the director field respectively. For
usual nematics k22 < k11 < k33 , so k11 is used as a scaling
of the elastic constants (Tab. 1). The magnetic term is

hmagn = µ0χa(H · n)H. (2.4)

Since the magnetic susceptibility χa is typically positive,
the director tends to align in the direction of the mag-
netic field. A planar magnetic field H = Hx̂ is therefore
used in planar convection in order to increase progressively
the damping of the director field. Finally, hv contains all
the viscous coupling terms, usually expressed in terms of
the symmetric part A and the antisymmetric part Ω of
the gradient of velocity tensor D (Dij = ∂vi/∂xj), as

hv = γ1Ω · n− γ2A · n. (2.5)

In (2.5) the viscosities γ1, γ2 are related to the viscosities
α2, α3 by the relations

γ1 = −α2 + α3 , γ2 = α2 + α3.

So hv can be reformulated in terms of D only,

hv = −α2D · n− α3 n ·D, (2.6)

which separates the α2 and α3 contributions. As shown in
Table 2 of Appendix A, for usual nematics |α3| � |α2|, so
one may neglect the α3 contribution in (2.6). This proved
to only slightly influence the linear and nonlinear proper-
ties studied hereafter. Since α2 < 0, the coupling v → n
can thus be approximated in planar convection by

hsimp
v ' |α2| D · n = |α2| lim

δl→0

1

δl

[
v(x + δln)− v(x)

]
.

(2.7)

If we suppose that the velocity field is held fixed, we see
with (2.1, 2.7) that the director tends to reorient in order
to minimize n×(D ·n), i.e. the director-transverse velocity
gradients.

The velocity evolution equation reads, under the as-
sumption of incompressibility:

v̇ = ρ−1(fvol −∇p) + divρ−1(σd + σv) (2.8)

where ρ is the fluid density, fvol the bulk force, p the pres-
sure, and the divergence of the stress tensor σ = σd + σv

is given by [13]
(divσ)i := ∂jσij .
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Table 1. Definitions of the dimensionless units in terms of the basic wavevector of the vertical profiles q = π/d, where d is the
thickness of the layer.

Quantity Scaling Interpretation of the scaling unit

elastic constant kii = k11 k
′
ii splay elastic constant

viscosity αi = (α4/2) α′i isotropic viscosity
heat conductivity κi = κ⊥ κ

′
i conductivity perpendicular to the director

length l = q−1 l′ inverse wavevector of the vertical profiles
time t = (κ⊥q

2)−1 t′ vertical thermal diffusion time
temperature θ = (νaκ⊥ q

3)/(αg) θ′

magnetic field H = q
√
k11/(µ0χa) h Fréederickz field HF

The elastic stress tensor σd derives from the elastic free
energy density fd (2.3) according to

σdij = −
∂fd

∂(∂jnk)
∂ink. (2.9)

This gives rise to terms in (∇n)2 which do not intervene in
the linear problem. The viscous stress tensor σv is usually
expressed as

σv = α4A+ α1n⊗ n(n ·A · n) + α2N⊗ n + α3n⊗N

+ α5(n ·A)⊗ n + α6n⊗ (n · A).

(2.10)

In practice in (2.10) A has to be expanded as A =
1
2 (D +DT ), whereas N, the rotation of the director rela-
tively to the fluid, has to be expanded as N = ṅ−Ω · n.
Thus only certain combinations of the anisotropic viscosi-
ties α1, ..., α6 appear in front of the components of D. In
order to shorten the notations, it is convenient to intro-
duce new viscosities

γ3 : =
−α3 − α6

2
, γ4 :=

α5 − α2

2
,

γ5 : =
−α5 − α2

2
=
α3 − α6

2
(2.11)

with which (2.10) reduces to

σv = α4A+ α1n⊗ n(n ·D · n) + α2ṅ⊗ n + α3n⊗ ṅ

− γ3n⊗ (n ·D) + γ4(D · n)⊗ n

− γ5[(n ·D)⊗ n + n⊗ (D · n)].

(2.12)

Note that the equivalence between the two definitions of
γ5 in (2.11) results from the Parodi relation [14]. In σv the
α4 term gives rise to a classical νa∆v term in (2.8), with
νa = α4/(2ρ); therefore the isotropic viscosity α4/2 is a
natural scaling of the viscosities (Tab. 1). The effective
Miesowicz viscosities νa, νb, νc [1], defined, in the simple
shear flow v = sxẑ, as the ratio ν = σvzx/(ρs) for different
director orientations, become simple with these notations:

(a) if the director is perpendicular to the plane of the flow,
n = ŷ:

ν = νa

(b) if the director is parallel to the velocity field, n = ẑ:

ν = νa(1− γ′3) =: νb

(c) if the director is in the plane of the flow, but perpen-
dicular to the velocity field, n = x̂:

ν = νa(1 + γ′4) =: νc.

For usual nematics the coefficients γ′3 = 2γ3/α4,
γ′4 = 2γ4/α4 are positive, therefore νb < νa < νc.

The heat equation reads

Ṫ = κ⊥{∆T + κ′a∇ · [(n · ∇T )n]} (2.13)

where κ′a = κ‖/κ⊥ − 1 quantifies the dimensionless
anisotropy of heat diffusivity.

In order to get rid of numerous π factors in the an-
alytic calculations, our scaling conventions are different
from those of [8], but instead follow the choice made for
electroconvection in [2]. With these conventions (Tab. 1),
the basic wavevector of the z profiles, q = π/d, which is
also the scaling of the horizontal wavevectors q (typically
the rolls are square-like, i.e. of period 2d), is now 1. The
main control parameter is

R′ =
αg

νaκ⊥ q4

∆Tapp

d

where ∆Tapp is the difference of temperature between the
lower and upper plates enclosing the nematic. The relation
to the Rayleigh number R defined in [8] is:

R′ = π−4R. (2.14)

The temperature field is written as the superposition of
the applied gradient and a perturbation field θ: T ′ =
T ′0−R

′z′+ θ′. Under the classical Boussinesq approxima-
tions, all parameters are considered as temperature inde-
pendent, except the density in the bulk force fvol = −ρgẑ
in (2.8): ρ = ρ0[1 − α(T − T0)], where α is the thermal-
expansion coefficient of the fluid. Omitting the primes for
the dimensionless quantities, we obtain

F n× ṅ = n×
(
hd + h2nxx̂ + F (1 + α32) D · n

+ Fα32 n ·D
)

(2.15)

1

Pr
v̇ = ∆v + θẑ +∇p+ div

(
−
α2

F
σd + σv

)
(2.16)

θ̇ = ∆θ +Rvz + κa∇ · [(−Rnz + n · ∇θ)n] (2.17)
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where in hd, σ
d, σv the dimensionless elastic constants and

viscosities must be used. We have introduced the small
parameter α32 = α3/α2 , and

Pr =
viscous diffusivity

thermal diffusivity
=
νa

κ⊥

F =
thermal diffusivity

orientational diffusivity
=
κ⊥γ1

k11
· (2.18)

Typically these numbers are quite large; see Appendix A
for some numerical values. In all equations, we eliminate
nx as nx = 1− 1

2 (n2
y +n2

z). This insures up to cubic order

the normalization condition n2 = 1. With the use of the
velocity potentials f and g (Appendix B), the local state
vector of the fluid reads finally

V = (θ, ny, nz, f, g). (2.19)

As long as nx > 0, the director equations (2.15), which
are of the form n×S = 0, are equivalent to ẑ · (n×S) = 0
and −ŷ · (n × S) = 0, which constitute our ny and nz
equations. The f and g equations are obtained like in [8].
The basic equations of the problem (2.15-2.17) then take
the form

D · ∂tV = LR · V +N2(V, V ) +N3(V, V, V ) + h.o.t.
(2.20)

where D,LR are linear, N2, N3 nonlinear differential
operators.

2.2 Symmetries

The translational invariance in the horizontal plane im-
plies that the linear eigenmodes of the evolution oper-
ator are horizontal Fourier modes in which the vertical
dependence of the fields can be factorized. Thus the roll
modes are characterized by their horizontal wavevector
q = qx̂ + pŷ, and by their vertical dependence in z. In
the planar layer geometry, there is no more rotational
symmetry in the horizontal plane, but the reflection S:
ŷ 7→ −ŷ is still a global symmetry. Therefore we distin-
guish as usual the normal rolls (NR) q 6= 0, p = 0 from
the oblique rolls (OR) q 6= 0, p 6= 0 and the parallel rolls
(PR) q = 0, p 6= 0 [2]. S is spontaneously broken only in
the OR case, where the full roll solutions of (2.20) can be
split in two families, the “zigs” of wavevector such that
q, p > 0, and the “zags” of wavevector such that q > 0,
p < 0. A Fourier component of a zig roll solution can be
changed into the corresponding Fourier component of a
zag roll solution according to the rule

(θ, ny, nz, f, g) exp(iq · r) −→

(θ,−ny, nz, f,−g) exp(iS(q) · r). (2.21)

The vertical dependence of the linear eigenmodes is either
of the type +, such that θ(z), nz(z), f(z) are even, ny(z),
g(z) are odd under the reflection with respect to the mid-
plane of the layer z 7→ −z, or of the type −, such that

θ(z), nz(z), f(z) are odd, ny(z), g(z) are even. The equa-
tions (2.20) have the important “Boussinesq-like” symme-
try property

sym[N2(a, b)] = − sym(a) sym(b)

sym[N3(a, b, c)] = + sym(a) sym(b) sym(c) (2.22)

where sym(a) = ±1 according to the type of the mode a.

3 Linear properties

We apply the Galerkin method, of rapid convergence, to
treat the vertical dependence of the fields (see [8] and Ap-
pendix C). The linear active modes are of the + type.
They are written V1 = V1(q;R) + c.c., where V1(q;R) is
the Galerkin solution of

σ(q;R) D · V1(q;R) = LR · V1(q;R). (3.1)

With a minimal order of truncation of the Galerkin ex-
pansion, nmax = 2,

V1(q;R) =(
θ̃S1(z), ñyS2(z), i ñzS1(z), f̃C1(z), g̃S2(z)

)
exp(iq ·r),

(3.2)

and the problem (3.1) can be solved analytically for the
neutral modes of zero growth rate σ(q;R) = 0. We will
deduce from this the neutral surface in the (q, R) space,
defined by

σ(q;R) = 0 ⇐⇒ R = R0(q). (3.3)

In (3.2), Sn, Cn(z) are basis functions which fulfill the
boundary conditions (Appendix C); r = xx̂ + yŷ is the
horizontal position in the layer. We detail the calculations
in order to introduce progressively all the coefficients in-
volved and to analyze the structure of the velocity and
director fields in rolls; additionally, all the linear mecha-
nisms favoring OR at threshold (in particular at very low
magnetic fields) will be discussed.

3.1 Neutral modes and neutral surface

The Galerkin Equations used for the calculations are given
in Appendix C. From the g equation (C.5) one obtains
that in OR (qp 6= 0) the flow does not stay in the (q, ẑ)
plane, since a small v‖ component (see Eq. (B.4)) exists:

g̃ = qp
(γ3(q2 + 4)− α1q

2) 〈C1| − S′2〉

Vgg
f̃ (3.4)

with

Vgg = νcq
4 + νbp

4 + (νb + νc + α1)q2p2 + 4(q2 + νbp
2).

(3.5)
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Solving the f equation (C.4) then shows that the temper-
ature modulation θ drives the flow through the buoyancy
force:

f̃ =
q2 〈C1|S1〉

Vgf Vff
θ̃ (3.6)

with

Vff = (νbq
2 + p2)λ4

1 + [q2((νb + νc)q
2 + 2p2) + α1q

4]

× 〈C1| − C
′′
1 〉+ q4(νcq

2 + p2), (3.7)

Vgf = 1− (qp)2 (γ3(q2 + 4)− α1q
2)2 〈C1| − S′2〉

2

Vff Vgg
· (3.8)

In the effective viscosities Vgg and Vff , the contributions
of νa = 1, νb = 1 − γ3, and νc = 1 + γ4 are mixed de-
pending on the orientation of the wavevector q, i.e. on
the geometry of the corresponding flows. In equation 3.6,
Vgf < 1 indicates a reduction of the effective viscosity in
OR due to the excursion of the flow off the (q, ẑ) plane
(3.4), which selects a kind of optimal combinations of the
viscosities νa, νb, νc. The elimination of ny from the di-
rector equations (C.2, C.3) then shows that the director
rotates off the (x, z) plane only in OR:

ñy = −
F 〈S2|C′1〉

Kgzy Kyy
qp f̃ (3.9)

with

Kyy = k33q
2 + k11p

2 + 4k22 + h2, (3.10)

Kzz = k33q
2 + k22p

2 + k11 + h2, (3.11)

Kgzy =
1− (k11 − k22)2 〈S2|S

′
1〉

2
p2/(KzzKyy)

1− q2(γ3(q2 + 4) − α1q2)/Vgg + (k11 − k22)I1q2/Kzz

(3.12)

and I1 = 〈S1|C1〉 〈S2|S′1〉 / 〈S2|C′1〉. One also obtains that
the nz modulation results from the shear-induced orien-
tational torque in ∂xvz = iqq2f :

ñz =
F 〈S1|C1〉

KgyzKyzKzz
qq2 f̃ (3.13)

with

Kyz =
1− (k11 − k22)2 〈S2|S′1〉

2
p2/(KzzKyy)

1 + (k11 − k22)I2p2/(q2Kyy)
, (3.14)

Kgyz = 1 +
(k11 − k22) I2q

2p2(γ3(q2 + 4)− α1q
2)

VggKyy q2
,

(3.15)

and I2 = 〈S2|S′1〉 〈S2|C′1〉 / 〈S1|C1〉. The factor Kyz,
smaller than 1 as soon as p 6= 0, appears as a lowering
of the effective elastic constant Kzz in (3.13) due to the
director rotation (3.9). The factor Kgyz, slightly larger
than 1 when p 6= 0, expresses an increase of the ef-
fective elastic constant Kzz resulting from the couplings
g → ny → nz. This effect is nevertheless generally over-
comed by the previous one, since we observe the hierarchy

1−Kyz � Kgyz−1 > 0. Finally, the value of R = R0(q;h)
follows from the heat equation (C.6) expressing the
balance between the heat-diffusion damping, character-
ized by an effective heat-diffusivity

K = (1 + κa) q2 + p2 + 1 = κ‖q
2 + p2 + 1, (3.16)

and the enhancement of heat modulations by the convec-
tive transport (term Rvz = Rq2f) and by the heat fo-
cusing (term −Rκa∂xnz). The splitting of R0(q;h) into
a isotropic and anisotropic factors, found in [5] within a
simplified one-dimensional model, still holds within our
three-dimensional model [15]:

R0(q;h) = Riso
0 (q) Foc(q;h) (3.17)

where

Riso
0 (q) =

K Vgf Vff

q4 〈S1|C1〉
2 (3.18)

expresses the isotropic heat-convection mechanism, and
the “focusing factor”

Foc(q;h) =

(
1 +

Fκaq
2

KgyzKyzKzz

)−1

(3.19)

expresses the anisotropic convection mechanism. Because
of the factor q2 in the denominator of Foc(q;h), this fo-
cusing occurs only for rolls with q 6= 0, i.e. with a “normal
component”.

3.2 Selection of the critical mode

All the effects controlling the selection of the critical
wavevector qc(h), which yields the minimum Rc(h) of
R0(q;h), can be extracted from the formula (3.17).

In the high magnetic field limit, one finds critical PR.
Indeed, since Kyy and Kzz −→ ∞, the director field is
frozen (ny = nz = 0): Foc(q;h) = 1 and R0(q;h) reduces
to Riso

0 (q). The instability mechanism is then the same as
the isotropic thermoconvection mechanism, for which one
does obtain to lowest Galerkin order the same expression
as (3.18) for the neutral surface, but of course with κ‖ = 1
in K, and γ5 = νb − 1 = νc − 1 = α1 = 0 in Vgf and Vff .
Here the remaining anisotropic effects favor PR:

(E1) the q−dependence of K equation (3.16) indicates
(since 1 < κ‖) that the temperature modulation in
PR, therefore perpendicularly to the director, is less
damped than in NR;

(E2) the q−dependence of Vff equation (3.7) indicates
(since νb ' νa = 1 � νc) that the viscous damping
in PR is weaker than in NR. Indeed in PR the flow is
in geometry a, whereas in NR the flow is in geometry
c close to the mid-plane of the layer.

Therefore one obtains as for isotropic thermoconvec-
tion [16]:

Rc(h =∞) = Riso
c = 17.74,

qc(h =∞) = qiso
c ŷ = 0.9860 ŷ. (3.20)
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The increase of the “isotropic” threshold for the NR case
can be estimated by computing

Riso
0 (qiso

c x̂)

Riso
c

= (1 + 0.49κa) (1 + 0.25γ4 − 0.75γ3 + 0.14α1)

which shows clearly the role of the anisotropic heat diffu-
sivities and viscosities.

In the case of intermediate magnetic fields, typically
10 . h . 20, one finds critical NR. In effect, the
q−dependence in the director damping constants Kyy and
Kzz, due to the orientational elasticity, is then totally
overcomed by the magnetic torque: Kyy ' Kzz ' h2.
Consequently Kgyz ' Kyz ' 1 up to terms of order h−2,
and

Foc(q;h) '

(
1 +

Fκaq
2

h2

)−1

.

The threshold of NR is strongly reduced by this factor,
since F ' 800. Indeed in NR the shear-inducing of the
director modulation (term ∂xvz in the nz equation) and
the heat-focusing (term Rκa∂xnz in the heat equation)
are in this regime more efficient (cf. ∂x ∝ q). Between
these NR at intermediate magnetic fields and the PR at
high magnetic fields, a continuous evolution of qc occurs,
with critical OR between the Lifshitz points hL1 and hL2.
This scenario has been first predicted (but only partially
explained) in [8]. It has been confirmed experimentally
in [6] with the nematic liquid crystal 5CB.

At low magnetic fields, a tendency towards OR exists.
Indeed, the wavevector dependence of the effective elastic
constants is no more suppressed by the magnetic torque,
and the anisotropy of orientational elasticity comes into
play, which favors OR:

(E3) the q−dependence of Kzz equation (3.11) indicates
(since k22 < k33) a relief of bend by twist in the nz
distortion in OR;

(E4) the lowering of the effective elastic constant on nz by
the factor Kyz < 1 equation (3.14) indicates (since
Kyz − 1 ∝ (k22 − k11) < 0) an indirect relaxation
of splay by twist, through the introduction of a ny
distortion.

Of course these effects combine with the effects respon-
sible for the transition towards OR at high magnetic fields,
i.e. the effects (E1), (E2) and

(E5) the lowering of the effective viscosity on f by the
factor Vgf < 1 equation (3.8) indicates (since Vgf −
1 ∝ −γ2

3) a reduction of the viscous damping in OR
by the introduction of the “anomalous” (parallel to
the axis of the rolls) velocity component (3.4).

For 5CB and MBBA critical NR are still found at low
h, but the anisotropic effects (E1–E5) favoring OR lead to
a very small curvature of the reduced threshold surface

ε0(q) :=
R0(q)

Rc
− 1 (3.21)

in the y direction. This can be demonstrated by comparing
the coherence lengths ξxx and ξyy such that

ε0(qc +Qx̂ + P ŷ) ' ξ2
xxQ

2 + ξ2
yyP

2 (3.22)

for small Q and P . For 5CB for instance one finds ξxx =
1.59 � ξyy = 0.46 at h = 0, and we will see in Section
5 that this flatness implies a very slow dynamics of the
zig-zag modulations.

The effects (E1–E5) become more important if the
mean temperature of the nematic material is decreased,
since then k33/k22, k11−k22, κ‖, νc and γ2

3 usually increase.
Thus, for a “very anisotropic” nematic material at low
temperature these anisotropic effects might favor OR at
threshold. Indeed, with some reasonable parameters for
N4 at 20 oC, one finds a Lifshitz point hL0 OR → NR at
very low h: hL0 = 0.5 with the full parameters of Table 3
of Appendix A; hL0 = 0.8 if we assume α32 = 0 and use
our analytic formula for R0(q;h). However, the tendency
towards OR is weak, since the reduced NR threshold is
only slightly positive: ε0(|qc|x̂) ' 3×10−4 at h = 0. Thus
the surface ε0(q) remains very flat in the y direction, and
this explains why a very small change in the parameters
(like setting α32 = 0 instead of −0.023) drastically mod-
ifies the position of qc, even if the values of R0(q;h) are
only slightly modified (by less than 1%). In other words,
we are still close to the Lifshitz point at h = 0 (indeed,
arg qc = 10◦ with the full N4 parameters, 16◦ if we set
α32 = 0) and therefore this OR selection might be difficult
to evidence experimentally (see the discussion of Sect. 5).
The evidence for a Lifshitz point at very low h would
definitely be clearer with a nematic even more anisotropic
than N4, but we do not know such a nematic for which
reliable measurements of the parameters are available.

Nevertheless, we note that each of the effects enumer-
ated above is important to explain the slight preference
for OR in N4 (in [8], only the effects (E1) and (E3) were
evoked). Indeed, if any of these effects is suppressed, by
dropping the corresponding anisotropic terms in the linear
equations, the OR domain vanishes.

Finally, the viscosity α1, which is difficult to measure
experimentally (it is know only for MBBA and 5CB), plays
also a role in the selection of qc. Usually α1 is negative
and the main consequence is a decrease of the effective vis-
cosity for NR because of the term α1q

4 in Vff (Eq. (3.7)).
Large negative value of α1 favors therefore NR: if one as-
sumes e.g. α1 = −0.11 instead of 0 for N4, the OR domain
at low h vanishes.

3.3 Linear dynamics

The growth rate σ(qc;R) of the critical mode can be ex-
panded, for small values of the reduced control param-
eter ε = R/Rc − 1, as σ(qc;R) ' ε/τ where τ is the
characteristic time of the instability. An analytical approx-
imate expression for τ can be found in the low-magnetic
field regime within the lowest-order Galerkin expansion.
Then, in the usual NR case, ny = g = 0, and only
the linear equations (C.3) for nz, (C.6) for θ, and (C.4) for
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f have to be solved for σ. The hierarchy of their damping
constants, Kzz/F � K � PrVff , indicates that we are
at low magnetic fields in a “director-dominated regime”
(DDR): the director is by far the weakest damped field.
Thus an adiabatic elimination of the temperature and ve-
locity fields is possible: σθ̃ and σf̃ can be neglected in
Equations (C.6, C.4) respectively (however one must keep
the term ∝ α2σñz in the l.h.s. of the f Eq. (C.4)). This
leads to

τ ' τd :=
F

Kzz

[
1− Foc(qc;h)− γ1

q2
c K

Riso
0 (qc)

]
(3.23)

where Kzz and K are taken at q = qc. The relative dis-
tance δτ = |τ − τd|/τ between this renormalized direc-
tor relaxation time τd and the exact characteristic time
τ can be considered as a quantitative test of the DDR.
Indeed δτ is very small at small h: e.g. for 5CB, δτ < 0.01
for 0 ≤ h ≤ 5. This indicates that here, the temperature
and velocity fields can indeed be treated adiabatically, and
that one is in the DDR. For N4, δτ also stays smaller than
0.01 for 0 ≤ h ≤ 5, even in the OR regime: the criterion
δτ � 1 to characterize the DDR seems to be general. It
was used experimentally in [9] since it is much simpler to
measure the characteristic time of the instability than the
relative amplitudes ñz/θ̃ or ñz/f̃ , which should be very

large in the DDR. Of course, when h increases, ñz/θ̃ and

ñz/f̃ decrease, whereas δτ increases, indicating that at
higher h one is no more in the DDR. For instance, for
5CB, δτ ' 0.05 at h = 10, and δτ ' 0.15 at h = 15 1.

We will need a general expansion of the growth rate
σ(q; ε) of the active roll-modes. It is expressed as

σ(q; ε) '
ε− ε0(q)

τq
(3.24)

where τq is a wavevector-dependent characteristic time,
such that τqc = τ . This expansion gives σ values exact to
1% for −0.1 ≤ ε ≤ 0.5 in a very large wavevector domain
defined by |q − qc| < 0.5, |p| < 0.8, which contains all the
active mode wavevectors (see Fig. 5a).

4 Nonlinear roll solutions

In this section we present the first systematic study of the
nonlinear saturation in rolls, based on the WNL scheme
introduced for instance in [2,8,11]. For this purpose, pre-
cise definitions of the tools and the modes intervening in
the amplitude equation for rolls are first set.

4.1 Amplitude equation for rolls

In order to obtain amplitude equations where the
nonlinear coefficients do not depend of ε, we use modes

1 When h→∞, one enters in fact a “temperature-dominated
regime” since τd becomes smaller than τ therm = 1/K =
1/((qiso

c )2 + 1) = 0.51, which gives the asymptotic value of
τ when h→∞.

at fixed R, here the neutral modes V1(q) := V1(q;R0(q)),
instead of the full eigenmodes. The starting point of the
method is to insert a roll ansatz in the basic equations:

V = A V1(q) +A V1(−q) + V2, (4.1)

and to adiabatically eliminate the second harmonics:

V2 = |A|2 V2(q,−q) + [A2 V2(q,q) + c.c.] (4.2)

where we distinguish the homogeneous second harmonics

V2(q,−q) = −L−1
Rc
·N2

(
V1(q)|V1(−q)

)
=
(
θ̃HS2(z), ñHy S1(z), 0, 0, 0

)
(4.3)

from the inhomogeneous second harmonics

V2(q,q) = −L−1
Rc
·N2

(
V1(q), V1(q)

)
=
(
θ̃IS2(z), ñIyS1(z), ñIzS2(z),

f̃ IC2(z), g̃IS1(z)
)

exp(2iq · r). (4.4)

These modes are, according to the rule (2.22), of opposite
z−symmetry than the linear roll modes (3.2); from now
on we only write the leading Galerkin modes in the state
vectors like (4.3, 4.4). The notations

N2(a|b) = N2(a, b) +N2(b, a)

N3(a|a|b) = N3(a, a, b) +N3(a, b, a) +N3(b, a, a)

N3(a|b|c) = N3(a, b, c) +N3(a, c, b) +N3(b, a, c)

+N3(c, a, b) +N3(b, c, a) +N3(c, b, a) (4.5)

are also used.
The next step of the method requires a scalar product

in V space (using the z-functional product (C.1)):

〈U(z) exp(iq · r), T (z) exp(iq′ · r)〉

= δ(q− q′)
(〈
Uθ|Tθ

〉
+
〈
Uny |Tny

〉
+
〈
Unz |Tnz

〉
+
〈
Uf |Tf

〉
+
〈
Ug|Tg

〉 )
(4.6)

the definition of the adjoint linear operator L†R, by
〈U,L · V 〉 =

〈
L† · U, V

〉
, and of the adjoint neutral modes,

the solutions of

L†R0(q) · U1(q) = 0

normalized such that

〈U1(q), D · V1(q′)〉 = δ(q− q′).

The projection of (2.20) on U1(q) gives then to lowest
order

∂tA = σ(q;R)A − gq |A|
2 A. (4.7)
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There, the growth rate is defined by σ(q;R) =
〈U1(q), LR · V1(q)〉, which yields at small ε the same val-
ues as in (3.1), and the saturation coefficient gq reads

gq = −〈U1(q), Tq〉

where Tq = N2(V1(q)|V2(q,−q))

+N2(V1(−q)|V2(q,q))

+N3(V1(q)|V1(q)|V1(−q)). (4.8)

A physical normalization of the roll modes in the su-
percritical case gq > 0 is such that one finally obtains

A =
√
ε− ε0(q) when the growth rate is given by (3.24).

It is:

U ′1(q) =
√
τq gq U1(q), V ′1(q) =

1
√
τq gq

V1(q). (4.9)

Changing to these new roll modes, or equivalently defin-
ing a new amplitude according to A′ =

√
τq gqA (and

omitting the primes), yields now:

τq∂tA = (ε− ε0(q)) A− |A|2 A. (4.10)

4.2 Study of the nonlinear saturation

The saturation coefficient gq takes, like every coefficients
of a WNL amplitude equation, the form of a sum equa-
tions (4.8, 4.6). Thus the contribution of each nonlinear
term in the basic equations (2.20) and of each nonlinear
coupling in Tq is explicitly known. For instance, labeling
all the quadratic and cubic terms in the heat equation
with the indices k and l, the contribution

〈
Uθ|Tθ

〉
from

the heat equation to gq can be split as

Tθ =
∑
k

(
N2θk(V1(q)|V2(q,−q)) +N2θk(V1(−q)|V2(q,q))

)
+
∑
l

N3θl(V1(q)|V1(q)|V1(−q)).

(4.11)

Plotting these contributions versus the indices will yield
a diagram such that the sum of all contributions is equal
to gq, and the relative importance of each contribution
can immediately be judged. In order to reduce the length
of the diagrams, contributions that cancel for symmetry
reasons are not to be plotted [17].

If one performs this analysis on the saturation coef-
ficient of the PR at very high h, where the convection
mechanism is the isotropic one, the problem is greatly sim-
plified since the director field plays no role (ny = nz = 0
in PR) and there is no vertical vorticity (g = 0). Only 7
nonlinearities in T contribute to gq and a very simple dia-
gram is obtained, in which a sharp peak dominates all the
other contributions by at least a factor of 10. This peak is
the contribution of N2θ(V1(q), V2(q,−q)) coming from the
advection term −vz∂zθ. Since the temperature field in the
homogeneous second harmonics V2(q,−q) (Eq. (4.3)) is
also generated by advection terms (now −(vx∂x + vz∂z)θ
coupling V1(q) and V1(−q)), the saturation in isotropic

-0.015

-0.010

-0.005

0.000

0.005

0.010

P1 P2

P3

P4

N1

� nz f

Fig. 1. Diagram of the 58 nontrivial contributions to the
saturation coefficient gq = +0.0041 for normal rolls at h = 0
and the nematic 5CB. The first range of indices, on the
horizontal axis, pertains to the contributions due to Tθ in equa-
tions (4.8, 4.6) the second range to the contributions due to
Tnz , and the third to the contributions due to Tf (for normal
rolls Tny = Tg = 0). Inside each range, the ticks indicate the
separation between the contributions of the quadratic and cu-
bic terms (see e.g. Eq. (4.11)). The most important saturating
(anti-saturating) contributions are indicated with the labels P1
to P4 (N1).

thermoconvection is therefore a two-step procedure en-
tirely controlled by the heat advection (additional effects
may come into play at small Prandtl number, but here we
assume Pr & 400). An interpretation of this mechanism
is that advection tends to homogenize all fields, and so
always participate in the saturation of a pattern-forming
instability. But this saturation by the heat advection is
weak. This, together with the fact that the characteristic
time is small, implies that the physically normalized roll
modes (4.9) in this regime show large temperature and
velocity modulations:

V1(qiso
c ŷ;h =∞)

=
(

15 S1(z), 0, 0, 1.7 C1(z), 0
)

exp(iqiso
c y)

θ ny nz f g

(4.12)

where in the lower row the fields in the state vector V
have been recalled (see Eq. (2.19)).

On the contrary, at h = 0 the saturation is much
stronger: gq increases by a factor 430 between h = ∞
and h = 0 for 5CB, chosen hereafter as a typical nematic.
In order to understand this change, we constructed the
diagram for gqc at h = 0 in Figure 1. It contains now
58 contributions since nz 6= 0 in NR. This large number
is generic: nonlinear nematohydrodynamics implies the in-
teraction of a large number of modes via a large number of
coupling terms, and therefore in general not only one but
several different nonlinear mechanisms control the value
of a nonlinear coefficient. Here the more important satu-
rating terms, which appear to impose the positive value
of gq, can be distinguished as follows (labels in Fig. 1):

(P1) the contribution of N3θ(V1(q)|V1(q)|V1(−q)) due to
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1
2Rκa∂xn

3
z. This term is a correction to the heat-

focusing term −κaR∂xnz. It indicates a simple ge-
ometrical effect of diminution of the heat-focusing
when the director becomes vertical;

(P2) the contribution of N3nz(V1(q)|V1(q)|V1(−q)) due
to 1

2 (2k33 − k11)n2
z(∂

2
znz). It corresponds to a non-

linear elastic damping of the nz distortion in rolls;
(P3) the contribution of N3nz(V1(q)|V1(q)|V1(−q)) due

to −F (∂xvz)n
2
z. This α2 term is a correction to the

shear term ∂xvz in the nz equation. It indicates that
if the director rotates, the director-transverse shear,
i.e. the excitation of the nz distortion by the flow,
is diminished;

(P4) the contribution of N3f (V1(q)|V1(q)|V1(−q)) due to
the source term (α1 + γ3 + γ4)∂z[(∂zvx)n2

z] in the
evolution equation for vx. This indicates an increase
of the effective viscosity for the horizontal flows in
the rolls, since, as soon as the director is raised, one
leaves the lowest viscosity geometry b for these flows.

In the negative, anti-saturating terms, a very dominant
contribution can be identified (Fig. 1):

(N1) the contribution of N3nz(V1(q)|V1(q)|V1(−q)) due
to −F (∂zvx)n2

z . This α2 term indicates that when
the director is raised, it becomes sensitive to the
horizontal flows, which orient the director in the
same direction as do the vertical flows at linear or-
der.

The balance between all these effects can only be com-
puted numerically, but the common feature between them
is that they have a geometrical origin: they are due to
nonlinearities generated either by the insertion of the
director-normalization condition nx = 1 − 1

2 (n2
y + n2

z)
in the equations, or by the expansion of D · n
in (2.15). This geometrical origin implies that these
mechanisms are very efficient; for instance for (P1)
it is clear that if the director is completely raised
(nz = 1) no more heat focusing can occur! Conse-
quently, gq is large at h = 0, and this fact, together
with the linear properties specific to the DDR (large
characteristic times – relative scales of the fields in the
linear modes: θ̃, f̃ � ñz), makes possible that convection
develops with temperature and velocity modulations ap-
proximately 500 times smaller than in the isotropic case:
now the physically normalized critical roll-mode is

V1(qcx̂;h = 0)

=
(

0.030 S1(z), 0, 0.91i S1(z), 0.0029 C1(z), 0
)

exp(iqcx)

θ ny nz f g

(4.13)

to be compared with (4.12). As we shall see in Section 2.2,
this restricts the available experimental methods for the
characterization of the convective structures, where strong
modulations are only obtained in the nz field:

nz = −Z1(q)
√
ε− ε0(q) sin(q · r) S1(z) + h.o.t.

with Z1(q) = 2ñ′z =
2

√
τq gq

(4.14)

according to equations (4.1, 3.2, 4.9, 4.10) (assuming a
pre-normalization of V1(q) such that ñz = 1). In fact, ex-
perimentally the wavevector q of the rolls changes with
increasing ε, moving progressively from qcx̂ at thresh-
old to qf = qf x̂ + pf ŷ = qc(1.06x̂ + 0.15ŷ) (Eq. (4.3)
of [10]) before the bimodal instability. The nz amplitude
Z1(q) (Eq. (4.14)) should then evolve accordingly. Dur-
ing this evolution of q, τq decreases only by 9%, i.e.
the contribution of the 1/

√
τq factor to Z1(q) is roughly

constant. On the other hand, gq strongly increases as q
increases. Indeed, we computed for 5CB at h = 0 that
Z1(qcx̂) = 1.82, Z1(qf x̂) = 1.69, Z1(qf x̂ + pf ŷ) = 1.64:
first an increase of q by only 6% leads to a decrease by
7.3% of Z1, and second going from 0 to finite p decreases
only slightly, by 2.8%, the value of Z1. From a diagram as
in Figure 1 we found that the main effect of the increase of
q is a strong increase of the contributions (P1) and (P4) to
gq. This is understandable because these contributions are
driven by gradients along x, i.e. they contain an explicit
factor q.

The study of the saturation coefficient can also be per-
formed in the subcritical regime 4.5 < h < 25 where gq

becomes negative, a regime predicted in [8] and tenta-
tively explained by some anti-saturating nonlinear mag-
netic terms in the nz equation. We have found that these
terms do contribute to change the sign of gq, but only as
a secondary effect, since the contribution (N1) above is
of much larger absolute value at intermediate h [18]. The
subcritical bifurcation thus appears to be more linked to
the fact that the cubic nonlinearities implying the velocity
field, which are globally anti-saturating, become more im-
portant at intermediate h.

5 Slow dynamics of the roll modulations

The dynamics of a wave-packet

V =

∫
V(qc)

dqA(q)V1(q) + c.c.+ h.o.t.

' A(r)V1(qc) + c.c.+ h.o.t. (5.1)

with the slowly varying envelope

A(r) =

∫
V(qc)

dqA(q) exp(i(q− qc) · r) (5.2)

can be described by the following extension of the ampli-
tude equation (4.10) (see [2,8,11,12]):

τ∂tA(r)

= εA(r)− ε0(qc + x̂i∂x + ŷi∂y)A(r) − |A(r)|2A(r).
(5.3)

We will now show that this lowest order envelope equation
allows a first evaluation of the relaxation times of the roll
modulations, which nearly diverge in the DDR.

For simplicity, we focus on the possible modulations
of the critical rolls, given by the solution A(r) =

√
ε
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of (5.3). Because of the cubic term |A(r)|2A(r) in (5.3), a
general long-wavelength perturbation is characterized by
a modulation wavevector s and two small amplitudes a±
(hereafter assumed real):

A(r) =
√
ε+ a+ exp(is · r) + a− exp(−is · r). (5.4)

To lowest order, (5.3) gives

τ∂ta+ = −(ε0(qc + s) + ε) a+ − εa−
τ∂ta− = −(ε0(qc − s) + ε) a− − εa+.

Since ε0(qc + s) and ε0(qc− s) are close to each other, the
most dangerous perturbation corresponds to a+ ' −a−,
and yields a growth rate

τσlw = −
ε0(qc + s) + ε0(qc − s)

2

+

√
ε2 +

(ε0(qc + s)− ε0(qc − s)

2

)2

− ε.

In the case of critical NR and to lowest order, the reduced
thresholds ε0(qc ± s) are equal, and consequently

τσlw = −ε0(qc ± s). (5.5)

In the general case, assuming for instance ε0(qc + s) ≤
ε0(qc − s), one gets immediately for the corresponding
relaxation time τlw = −1/σlw:

τ

ε0(qc − s)
≤ τlw ≤

τ

ε0(qc + s)
·

Because ε0(qc + s) is minimal at s = 0, and in finite-size
experiments the smallest possible wavevector is the inverse
δq of the aspect ratio (see Eq. (2.2) of [10]), one obtains
for the maximum relaxation time of roll modulations:

max τlw '
τ

min
|s|=δq

ε0(qc + s)
· (5.6)

This yields typically very long times at h = 0 for the zig-
zag modulations, e.g. for 5CB with equation 3.22, ξyy =
0.46 and δq = 0.038 for our experimental cell 3:

τlw '
18 minutes

3 10−4
' 40 days!

We will show in Section 3 of [10] that experimental mea-
surements of the decay rate of undulated rolls at finite h
agree well with the estimation (5.5); this agreement shows
that the higher order corrections to (5.3) can really be ne-
glected at very small ε. At h = 0, the extremely large value
of τlw then explains why the undulated rolls observed
experimentally at threshold appear as “metastable” (see
Sect. 3 of [10]).

We also expect from our results of Section 3.2 and from
(5.6) that for a liquid crystal such that N4 a clear selection
of OR might not be observable even at h = 0, since the
modulations in the y direction will still show a very slow
dynamics.

0

Q

P

q

p
zig

zag

a:

b:

x̂’

ŷ’

Fig. 2. (a) Geometry of the reduced threshold surface ε0(q) for
nematic convection in the oblique roll case, when ε0(q) cancels
in two symmetric points qc (upper point) and S(qc) (lower
point). A non connex level line of ε0(q) is shown (thick line).
The low values of ε0(q) are obtained only for wavevectors of
modulus close to 1 (thin line: circle |q| = 1). Consequently
when Q = q − qc and P = p − pc together increase, ε0(q) is
increased, as indicated by the positive correction 2aξxxξyyQP
in (6.2). (b) Sketch of the level lines of |A| (continuous line)
and B (dashed line) in point-defect solutions of (6.3) in the
case of anisotropic diffusion (a > 0).

6 Localized competition between zig and zag
roll modes

The nucleation of zig rolls in point defects of zag rolls
described in Section 4.1 of [10], and shown on Figure 8a
of [10], had not been modeled up to now. This effect has
some similarities with localized effects studied by Coullet
et al. in nonlinear waves [19], in Rayleigh-Bénard convec-
tion [20] or in mixing layers [21]. The competition between
two symmetric variants (like the zig and the zag) has only
been studied to our knowledge in [19]. There the situation
is different from ours since the primary bifurcation is of
the Hopf type, and this induces advection terms in the
amplitude equations (of the type c∂xA). Consequently, in
the exclusion regime (when the two variants exclude each
other, i.e. when g2 > 1, see below), no nucleation effects
were predicted. We will show that things differ in our case
of a primary stationary bifurcation.

Assuming that the zig-zags are obtained readily at
threshold, we use the lowest-order envelope equations
model [22], which governs the dynamics of the superposi-
tion

V ' [A(r)V1(qc) + c.c.] + [B(r)V1(S(qc)) + c.c.] + h.o.t.
(6.1)

where A and B are respectively the envelope of the zig and
the zag. Like in (5.3), an expansion of ε0(qc +Qx̂ + P ŷ)
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a b

Fig. 3. (a) Zig point-defect observed in a simulation of cou-
pled amplitude equations of the type (6.3), but where we have
reintroduced the coherence lengths ξxx and ξyy in order to re-
produce the experimental situation. The values of the param-
eters are ξxx = 0.48, ξyy = 0.17, a = 0.30, g2 = 1.34, ε = 0.05.
In the core of the zig point-defect (center of the image where
A = 0), |B| is maximum, and one observes some zag-like rolls.
The “effective” core of the dislocation, where the local fields
cancel, appears to the right of the point A = 0. (b) Point defect
observed in a simulation of a unique amplitude equation of the
type (5.3) where the growth rate presents two symmetric max-
ima associated with the zig and the zag (see text). The defect
of zig is strongly dissymetric, and the nucleation of the zag has
developed spontaneously, with the same phase coherence as in
the experiments.

is required, now

ε0(qc +Qx̂ + P ŷ) ' ξ2
xxQ

2 + ξ2
yyP

2 + 2aξxxξyyQP

(6.2)

with a a coefficient of anisotropy. This coefficient is
positive for OR in nematic convection, since the modu-
lus of the wavevector should always stay close to 1 (see
Fig. 2a for an explanation of the sign of a). Rescaling the
horizontal coordinates x and y by ξxx and ξyy, one ob-
tains [22]:

τ∂tA(r) = (ε+ ∂2
x + ∂2

y + 2a∂x∂y) A(r)

− |A(r)|2A(r)− g2|B(r)|2A(r)

τ∂tB(r) = (ε+ ∂2
x + ∂2

y − 2a∂x∂y) B(r)

− |B(r)|2B(r) − g2|A(r)|2B(r). (6.3)

We have performed numerical simulations of (6.3) in the
exclusion regime g2 > 1, where the spatially homogeneous,
stationary stable solutions are either A =

√
ε, B = 0 (pure

zig) or A = 0, B =
√
ε (pure zag). When the exclusion is

not too strong, i.e. when the nonlinear competition coeffi-
cient g2 is below some critical value gc2(a) (but still > 1),
some nucleation effects develop.

We use a finite-difference code, on grids of various sizes
(from 64×64 to 256×256) in order to test the robustness
of the results. All simulations are started with an approx-
imate solution for a point defect of A:

A(r) =
√
ε tanh

(√ ε

2
|r|
)

exp(i arg r) (6.4)
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Fig. 4. As a function of the coefficient of anisotropy a, criti-
cal value of the nonlinear coupling coefficient g2 between the
zig and the zag rolls (see Eq. (6.3)) under which a nucleation
develops in point defects.

where the center of the coordinates is the center of the
grid, and with some noise for B. The boundary conditions
are ∇A = 0, in order to prevent the defect from moving
to the sides, and B = 0. A stationary solution is always
obtained after a certain time. For g2 > gc2(a), in the final
point-defect solution B has everywhere relaxed to zero,
whereas A has only slightly varied from the simple ansatz
(6.4). On the contrary, for g2 < gc2(a), a small bump of B
has developed, centered at the core of the defect, where
A = 0. Inside this bump, the phase of B is homogeneous,
but arbitrary. Note also that in the core of the defect |A|
has decreased as compared with a solution at higher g2,
of course due to the presence of B. The profiles of |A| and
|B| look like in the Figure 4 of [19], but now the asymp-
totic value of |B| far from the defect is zero and not a
constant. If we reconstruct the field n2

z(r) from (6.1), with
an adequate choice of phase (B real negative), we obtain
as a typical result the image of Figure 3a, which shows
great similarities with the experimental defects (compare
with Fig. 8a of [10]).

If g2 approaches 1 from above, the area where |B| is
nonzero and |A| is decreased increases. In fact, when g2 =
1, the asymptotic values of the amplitude must reach the
bimodal values |A| = |B| =

√
ε/2.

The dependence of gc2 on a (Fig. 4) can be understood
as follows: a characterizes the anisotropic diffusion of A(r)
and B(r), which is preferential in symmetric directions for
A and B. Indeed, if we introduce a new orthonormal coor-
dinate system (x′, y′) such that x̂′ points in the direction
of the bisector of x̂ and ŷ, the diffusion terms in (6.3)
become:

τ∂tA(r) = [ε+ (1 + a)∂2
x′ + (1− a)∂2

y′ ] A(r),

τ∂tB(r) = [ε+ (1− a)∂2
x′ + (1 + a)∂2

y′ ] B(r).

Since a > 0, A diffuses preferentially in the direction
x̂′, whereas B diffuses preferentially in the direction S(x̂′).
Typically, the level lines of |A| will therefore be ellipses



276 The European Physical Journal B

a b c

0.5 1 1.5 2 2.5

-1

0.5

0

0.5

1

q

k

2q-k

2q+k

2k+q

2k-q
0.5 1

-0.5

0

0.5

1

0.5 1

-0.5

0

0.5

1

Fig. 5. (a) Geometry in Fourier space of the bimodal varicose calculated for 5CB at h = 0 and for a representative oblique-roll
wavevector q = qf = 1.07qc(x̂ cos 8◦+ŷ sin 8◦) (Eq. (4.3) of [10]). The dual wavevector k is shown, together with the wavevectors
of the cubic combinations of the basic modes in (7.1) which have the z−symmetry of the linear active modes. These modes are
inactive because their wavevectors lie outside the active region, determined by the level lines 0.06, 0.12, ..., 0.36 of ε0(k). Note
that the active region is roughly centered around the circle |k| = qc (dashed line). (b) In the active area (the level line 0.36 of
ε0(k) has been reproduced), level lines 1 (thick line), 0,−1 (thin lines) of the bimodal coupling coefficient gqk. c: resulting level
lines 0.194, 0.205, 0.22, 0.24, 0.30 (thin lines) and +∞ (thick line) of εV (q; k) in the same area.

of long axis along x̂′, whereas the level lines of |B| will be
ellipses of long axis along S(x̂′). The eccentricity of these
ellipses increasing with a, larger a values imply that B
will encounter in the direction S(x̂′) larger |A| values, i.e.
that the effective damping of B by A will be stronger (see
Fig. 2b for a sketch of this mechanism). To nevertheless
allow for a nucleation of B in the core of a defect of A,
gc2(a) should therefore be smaller at higher a (Fig. 4).

Note that a systematic calculation of the coefficients
in (6.3) from the basic equations (with a method analo-
gous to the one exposed in Sect. 4) gives typically, at low
h, 1.5 . g2 . 2.0: one finds too large g2 values for the
nucleation. This result, together with the fact that only
properly chosen phase shifts between A and B are needed
to reconstruct the experimental defects, indicates that the
real situation is more complex than the one described by
the model (6.3). Nevertheless, as shown in Figure 3b, the
nucleation effects also develop in simulations of a single
envelope equation containing the two zig-zag modes (an
equation like (5.3), but where ε0(q) presents two minima
at qcx̂±pcŷ). Therefore these nucleation effects appear to
be rather generic.

7 Secondary bifurcation from oblique rolls
to bimodal varicose

Bimodal secondary instabilities in planar nematic convec-
tion have been observed for a long time in electroconvec-
tion [23] and were also reported to occur in thermocon-
vection at very low [9,10] or intermediate h [6]. For their
modeling, we derive as in Section 4.1 the corresponding

amplitude equations, using as a basic ansatz

V = A V1(q) +A V1(−q) +B V1(k) +B V1(−k) + V2.
(7.1)

There q is a typical zig wavevector; the case of a zag fol-
lows immediately by application of S: ŷ 7→ −ŷ. The mode
q is assumed to be stable against long-wavelength pertur-
bations, as observed in the experiments, and confirmed by
recent fully nonlinear calculations [24]. k is a secondary
wavevector which might be the dual of q (see the defini-
tions in [9] and Eq. (7.5) below). The second harmonics
read now

V2 = |A|2 V2(q,−q) + [A2 V2(q,q) + c.c.]

+ [AB V2(q,k) +AB V2(−q,k) + c.c.] +O(B2)
(7.2)

with definitions analogous to (4.3, 4.4). As shown in
Figure 5a, the wavevectors q and k are typically far apart.
Consequently, the mode at 2q − k, obtained by combi-
nations of active modes in cubic order, and therefore of
the z−symmetry of the active modes (cf. Eq. (2.22)), is
inactive. Here is an important difference with the case
of a long-wavelength varicose instability at onset, where
s = k − q is small, and therefore the structure is a “tri-
modal” {q,q+s,q−s} or {q,k, 2q−k} of the type (5.4).
In our “bimodal” case, the active amplitude equations are
only obtained by projection of (2.20) on U1(q) and U1(k)
respectively:

τq∂tA = ε A− |A|2A− gkq|B|
2A,

τk∂tB = (ε− ε0(k))B − |B|2B − gqk|A|
2B. (7.3)

We have neglected in the equation for A the contribution
of the linear threshold ε0(q), since the primary mode in
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the bimodal is always rather close to qc . The relevant
nonlinear coefficient is gqk, which measures the feedback
exerted by the modes contained in (7.1) on the mode k:

gqk = − τk 〈U1(k), Tqk〉

where

Tqk = N2(V1(−q)|V2(q,k))

+N2(V1(q)|V2(−q,k))

+N2(V2(q,−q)|V1(k))

+N3(V1(q)|V1(−q)|V1(k)). (7.4)

The OR q solution of (7.3), A =
√
ε, B = 0, loses stability

against fluctuations of B, i.e. against a bimodal varicose
(q; k), only if gqk < 1, and for ε then larger than

εV (q; k) =
ε0(k)

1− gqk
· (7.5)

The active mode k which minimizes this secondary thresh-
old is the dual of q. In the case of a primary supercrit-
ical instability, the comparison of (7.4) with (4.8) shows
that gqk → 2 when k → q, i.e. that nearby wavevectors
always exclude each others. On the other hand, for all ne-
matic parameters, when k moves away from q in the zag
region, gqk reaches strongly negative values which favor
the bimodal instability (see Fig. 5b for the example of
5CB). The position of the dual mode is then selected by a
balance between the nonlinear interaction factor (1 −
gqk)−1, which favors k far from q, and the linear “cost”
ε0(k) of the mode k, which favors k close to q (in par-
ticular, preferentially |k| ' |q|). The calculations must
be performed at a value of ε close to the value of the
resulting bimodal threshold to be valid [25]; we used to
fix ε at ε0(q). For 5CB at h = 0 and the primary zig
mode q = qf (Sect. 4.3 of [10]), experimental measure-
ments (see Eq. (4.8) and Fig. 9b of [10]) have shown
that the corresponding dual mode is given by |k| '
0.9|q|, arg k ' −55◦, and that the threshold for homo-
geneous bimodal varicose is εV ' 0.28. From our cal-
culations a semi-quantitative agreement is obtained with
|k| = 0.80|q|, argk = −31◦, εV = 0.19. Still at h = 0 we
find for MBBA at |q| = 1.07qc, arg q = 10◦ (cf. Eq. (4.3)
of [10]), |k| = 0.79|q|, argk = −33◦, εV = 0.25, which
agree qualitatively with the experimental measurements
(Eq. (4.8) of [10]), and εV ' 0.38. Finally for N4 at q = qc
we predict |k| = 0.99|q|, argk = −41◦, εV = 0.12.

In order to find the origin of the bimodal varicose in-
stability, the diagram for gqk (7.4) can be constructed
(Fig. 2 of [26]), which is complex since many contribu-
tions appear to control the value of gqk. In particular,
the same cubic nonlinearities as those implied in the sat-
uration, −F (∂xvz + ∂zvx)n2

z (cf. the contributions (P3)
and (N1) of Sect. 4.2), now coupling V1(q), V1(−q) and
V1(k), are important. This can be explained by the fact
that replacing one V1(q) by V1(k) in (P3) or (N1) leads
to a contribution in gqk analog to the corresponding con-
tribution in gq, since k is not so far from q. Thus, self-
saturating or anti-saturating effects typically also con-
tribute to damp or excite other wavevectors in the bimodal

x^

y^

^z

n

zig y
(q  > 0) zag y

(q  < 0)

Fig. 6. Sketch of the rotation of the director in oblique rolls
expressed by the component ñHy S1(z) of the horizontally ho-
mogeneous second harmonics V2(q,−q). ñHy is negative for a
zig and positive for a zag: the director rotates in the direction
of the axis of the rolls.

secondary instability. Some quadratic nonlinearities give
also important contributions to gqk, e.g. advection terms
in N2nz (V1(q)|V2(−q,k)). They are difficult to interpret
since the second harmonics V2(−q,k) has a complicated
structure. However, a reduction of the complexity can be
achieved by forming the difference δgqk = gqk − gqS(k),
which is negative and thus expresses that zag duals are
preferred to zig duals. This shows [26] that two terms only
select the symmetry (zig or zag) of the dual mode: the
term in N2θ(V2(q,−q), V1(k)):

−Rκa∂y(nynz) = +Rκañ
H
y (q) kyñz(k) S2

1(z) exp(ik · r)

(7.6)

and the α2 term in N2nz (V2(q,−q), V1(k)):

Fny ∂yvz = FñHy (q) i kyk
2 f̃(k) S1(z)C1(z) exp(ik · r)

(7.7)

where we have used (4.3, 3.2).
In order to understand the corresponding mechanisms,

we first study the quadratic effect expressed by ñHy . The
nonzero amplitude of the ny field in V2(q,−q) expresses
a rotation of the director in the horizontal plane, homo-
geneous in x, y, and with a z-profile in S1(z) = cos z such
that the rotation is maximal at the mid-plane of the layer.
This rotation must occur in symmetric directions for the
zig and the zag because of the rule (2.21) (cf. Fig. 6). Since
the temperature and the director fields are not coupled for
horizontally homogeneous distortions, (4.3) gives directly

ñHy =
F

k22

∑
l

〈
S1|N2nyl(V1(q)|V1(−q))

〉
(7.8)

where the nonlinear terms in the ny equation are labeled
with an index l. The corresponding diagram, calculated
for 5CB and the typical zig wavevector (Eq. (4.3) of [10])
(Fig. 7), shows that 3 nonlinearities in the ny equation
impose the negative value of ñHy in zigs:

(H1) the advection term −Fvz∂zny;
(H2) the α2 term −F (∂xv

f
x)ny, where only the f part of

vx (Eq. (B.1)) must be considered;
(H3) the α2 term F (∂zv

f
y )nz, where only the f part of vy

(Eq. (B.1)) must be considered.
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Fig. 7. Diagram of the 18 contributions (7.8) to ñHy = −1.17
in the zig mode at q = qf (Eq. (4.3) of [10]) in 5CB. The
most important contributions are indicated with the labels H1
to H3.

The fact that advection plays a role is not surprising,
since it tends to homogenize spatially the fields. However,
the sign of ñHy (q) seems to be controlled mostly by the
α2 terms (H2) and (H3) (Fig. 7), in agreement with the
general interpretation of the α2 effects on the director dy-
namics given in Section 2.1. Indeed, the simplest way to
minimize the director-transverse velocity gradients in a
roll structure is to rotate the director towards the axis of
the rolls: in this direction there are no more velocity gradi-
ents because of the translational invariance. More quanti-
tatively, one can approximate at small p = q·ŷ, |p| . 0.16,
ñHy (q) by a linear expansion in p, because of the symmetry

rule ñHy (q) = −ñHy (S(q)). Thus the homogeneous part of
the director field in the WNL oblique roll solutions (4.1)
can be approximated at small p by

ny = Y1(q) p (ε− ε0(q)) S1(z) (7.9)

where q = q · x̂, and at h = 0:

Y1(qc) = −8.2 , Y1(1.06qc) = −7.1 for MBBA,

Y1(qc) = −10.2 , Y1(1.06qc) = −8.3 for 5CB,

Y1(qc) = −13.6 , Y1(1.06qc) = −12.8 for N4. (7.10)

Note that for qc < q < 1.06qc, a linear expansion of Y1(q)
is valid. The amplitude Y1 decreases with increasing q
mainly because of the decrease of the convective ampli-
tude Z1 studied in Section 4.2. Indeed, one expects from
(7.8, 4.9, 4.14) that ñHy , Y1 ∝ (Z1)2. Note finally that N4
is the nematic where a stronger rotation occurs, because
of its high anisotropy (Appendix A).

We can now understand the mechanism expressed by
(7.7) for instance as sketched in Figure 8: the rotation of
the director in the −ŷ direction inside OR zig makes the
director sensitive to the vertical shear along ŷ, and thus a
fluctuation of vertical velocity of wavevector k nonlinearly
enhances the corresponding nz mode of wavevector k. In
fact, term (7.7) is a correction to the shear term ∂xvz in
the nz equation, which is one of the terms responsible of
the anisotropic convection mechanism. Equivalently, (7.6)
expresses that a nz fluctuation of wavevector k nonlin-
early enhances the corresponding temperature mode of
wavevector k. This term (7.6) is also a correction to a lin-
ear term responsible of the convection mechanism, namely

down flow

x^

y^

k

up f. down f.q

n
z^

Fig. 8. Sketch of one of the mechanisms selecting the dual
wavevector in the bimodal varicose, expressed by the coupling
term (7.7) between the homogeneous ny component due to the
presence of a zig q mode (↔ rotated director) and a vertical
velocity k mode, with k zag (↔ up and down flows). In the
left roll, ny(q) and ∂yvz(k) negative induce a positive nz com-
ponent; in the right roll, ny(q) and ∂yvz(k) opposed to each
other induce a negative nz component. This nz(k) mode is in
phase with the one induced by the linear instability mechanism
for the k mode (by the ∂xvz term in the nz equation).

the heat-focusing term −Rκa∂xnz in the heat equation.
Therefore these two mechanisms can be explained as fol-
lows: if the average director orientation has changed, and
if one still injects some energy in the system by increasing
ε, a new mode roughly parallel to the new direction of the
director will be excited by the focusing mechanism.

We conclude by reviewing other features of the model
(7.3). If one assumes a bifurcation to zig-zags at thresh-
old, and if gqcS(qc) < 1, then the dual of qc must be
S(qc), since ε0(S(qc)) = 0 implies according to (7.5)
that εV (qc;S(qc)) = 0 is minimal. From the principle
that close wavevectors exclude each other, one expects
that gqcS(qc) can become smaller than 1 only when the zig
and zag modes are far apart, i.e. when the angle arg qc is
close to 45◦. Indeed, one finds for 5CB, in the upper super-
critical region h > 25, where arg qc(h) increases from 11◦

to 90◦, that gqcS(qc) < 1 from h = 25 (where the vicinity
of the subcritical region narrows the WNL domain) but
only up to h = 30. At higher h, arg qc(h) is larger than
60◦, qc and −S(qc) become close and exclude each other.
Indeed, experiments in thermoconvection at high h have
shown a bimodal at threshold only for 25 . h . 30 [6].
Finally, the simple structure of (7.3) allows to calculate
analytically the amplitudes in the bimodal varicose:

|A| =
√
ε− r gkq (ε− εV )

|B| =
√
r (ε− εV ) (7.11)

where r = (1−gqk)/(1−gqkgkq) is positive in the interest-
ing cases. These solutions are stable against perturbations
in δA and δB of (7.3). Thus we confirm some measure-
ments of the pinching amplitude in the bimodal varicose,
which gave access directly to |B/A|, and showed a law of
the type |B/A| ∼

√
ε− εV near the transition (see [23],

and also the beginning of Sect. 4.3 of [10]).
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8 Conclusion

A common feature of almost all the mechanisms put into
evidence here (mechanisms (E2-E5) of Sect. 3.2, (P2-P4,
N1) of Sect. 4.2, (7.7) and (H1-H3) of Sect. 7) is that
they do not imply any coupling terms with the scalar
field driving the convection (here the temperature field,
in electroconvection it would be the charge density). In-
stead, these mechanisms always imply director effects,
and more precisely in most of the cases hydrodynami-
cal couplings between the director and the velocity fields.
Therefore these mechanisms should develop identically in
thermo- and electroconvection in the “director-dominated
regimes” where the damping of the director field is very
weak. We believe that this explains the high degree of
similarity between these two systems. Also, our results
prove the general importance of the α2 viscous torque in
planar convection in the nonlinear regime, and the rele-
vance of our interpretation of Section 2 for this torque.

There are of course limitations to the results presented
here, and certain extensions should be performed. First,
the nucleation scenario in point defects has to be re-
fined. In particular, we have not addressed the compe-
tition between the zig mode and modes close to its dual,
which drives the interesting pre-transitional effects shown
in Figure 8b of [10]. This is not a straightforward exten-
sion, since an expansion of the growth rate near the dual
wavevector would lead in direct space to anti-diffusion
terms. Second, we have found that, in WNL oblique rolls
solutions, the contribution of ñHy in the second harmon-
ics V2(q,−q) (4.3) usually overcomes the contribution of
ñy in the roll mode V1(q) (3.2) at rather small ε val-
ues, ε < εV . Thus the second harmonics do not appear
to be a small perturbation of the roll mode: the WNL
scheme used here probably neglects important effects. An
extension of this WNL scheme in order to include ny ef-
fects up to cubic order should be performed. We note that
such an extension has already been presented for the case
of homeotropic electroconvection, where the homogeneous
ny mode appears obviously as a zero-mode [27]. In the pla-
nar case, such an extension would probably allow for the
study of other ny effects than those responsible for the bi-
modal varicose: we think of the recently discovered abnor-
mal rolls [28], but also of the bimodal oscillations, which
cannot be described by the model (7.3). Third, it would
be interesting to include in this extended WNL scheme
the study of the long-wavelength secondary instabilities of
rolls, for which the results of the standard WNL scheme
seem to be unreliable, according to our experiments and
the work of [8,24].

Finally, the method of investigation of nonlinear mech-
anisms from the study of amplitude equation coefficients
developed here might provide one starting point for under-
standing nonlinear phenomena. Indeed, this method could
be applied to any other dynamical system where the basic
“microscopic” equations are known.
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Appendix A: Material parameters

The nematics for which systematic measurements of the
material parameters exist are to our knowledge:

1. MBBA = N-(p-methoxybenzylidene)-p-butylaniline,
which presents a nematic phase between TS = 22 oC
and TNI = 46 oC. Its anisotropic viscosities have been
measured in [29,30], and its other material parameters
in [31].

2. 5CB = 4-n-pentyl-4’-cyanobiphenyl, which presents a
nematic phase between TS = 25 oC and TNI =
35.2 oC. Its material constants have been compiled by
Ahlers in [2].

3. N4 = Merck Phase-4, which presents a nematic phase
between TS = 16 oC and TNI = 74.8 oC. Its
anisotropic viscosities have been measured in [29,30].

4. N5 = Merck Phase-5, which presents a nematic phase
between TS = 5.15 oC and TNI = 73.8 oC. Its
anisotropic viscosities have been measured in [32].

In order to support our approximation (2.7) for the
coupling v → n, Table 2 displays the average and ex-
tremal values of the ratio α3/α2. The dimensionless model
parameters used in the calculations are in Table 3. We
considered as standard nematic materials at room tem-
perature MBBA and 5CB at 27 oC, used in [10]; and as
a more anisotropic nematic N4 at 20 oC, with which new
experiments are starting at Orsay. Indeed N4 shows a ne-
matic phase covering a wide temperature range, and the
anisotropy of a nematic typically increases when one de-
creases the temperature deep inside the nematic phase.
For N4, we assumed reasonable values for the unknown
parameters Pr, F, κ′a, k

′
22, k

′
33 and α′1, guided by the corre-

spondence between these parameters and the anisotropic
viscosities observed for MBBA and 5CB [33].

Table 2. Average and extremal values of the modulus of the
ratio α32 = α3/α2 based on the measurements of the viscosities
of the liquid crystals (l.c.) MBBA, 5CB, N4, N5 as a function
of the temperature. We have specified the value of the reduced
temperature T ′ := T − TNI , in degrees Celsius, at which the
maximum value of α32 was measured.

l.c. 〈|α32|〉 max |α32|

MBBA 0.04 0.09 (T ′ = −2)
5CB 0.06 0.06 (T ′ = −1.2)
N4 0.05 0.14 (T ′ = −0.8)
N5 0.04 0.12 (T ′ = −0.8)
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Table 3. Dimensionless parameters used for the nematic liquid crystals MBBA, 5CB and N4.

l.c. Pr F κ′a k′11 k′22 k′33 α′1 α′2 α′3 α′4 γ′3 γ′4 γ′5

MBBA 395 1371 0.656 1 0.623 1.290 -0.438 -2.590 -0.036 2 0.412 2.215 0.376
5CB 440 790 0.663 1 0.634 1.303 -0.184 -2.343 -0.132 2 0.353 2.119 0.222
N4 450 900 0.99 1 0.503 1.495 0 -3.967 0.093 2 0.466 3.408 0.559

Appendix B: Velocity potentials

The velocity potentials used in the layer geometry were
first introduced for the study of isotropic thermoconvec-
tion in [34]. For roll-modes of horizontal dependence in
exp(iq · r), the assumed incompressibility of the fluid
(∇ · v = 0) and the definition of the vertical vorticity
Ωz = ∂xvy − ∂yvx allow for expressing the horizontal ve-
locity in terms of vz and Ωz:

vx = iq ∂zf + ip g , vy = ip ∂zf − iq g, (B.1)

with

f = q−2 vz , g = q−2Ωz . (B.2)

Another interpretation of these potentials is that, in such
a roll structure, f controls the horizontal velocity perpen-
dicular to the axis of the rolls:

v⊥ =
q

|q|
· v = i|q| ∂zf , (B.3)

and g the horizontal velocity parallel to the axis of the
rolls:

v‖ =
(
ẑ×

q

|q|

)
· v = −i|q|g. (B.4)

Note that this “anomalous” velocity component cancels
for the thermoconvection of isotropic fluids.

Appendix C: Galerkin technique
- linear Galerkin equations

In the Galerkin technique the vertical dependence of the
fields (see Sect. 2.2) is expanded in terms of test functions
satisfying the boundary conditions at z = ±π/2 due to
our scaling conventions. The fields ny, nz, g and θ are ex-
panded on the sine basis Sn(z) = sin(n(z+π/2)), whereas
f is expanded on the Chandrasekhar basis of functions. It
is defined here as the solution of

∂4
zCn = λ4

nCn and Cn(z) = ∂zCn(z) = 0 for z = ±π/2.

This gives, for the first Chandrasekhar functions,

C1(z) =
1
√

2

( cosh(λ1z)

cosh(λ1π/2)
−

cos(λ1z)

cos(λ1π/2)

)
with λ1 = 1.50562,

C2(z) =
1
√

2

( sinh(λ2z)

sinh(λ2π/2)
−

sin(λ2z)

sin(λ2π/2)

)
with λ2 = 2.49975.

The projected equations are obtained with the scalar
product

〈φ|φ′〉 =
2

π

∫ z=π/2

z=−π/2
φ(z)φ′(z)dz, (C.1)

whose normalization has been chosen such that 〈Sn|Sn′〉 =
〈Cn|Cn′〉 = δn,n′ . All the scalar products can be easily cal-
culated, so we do not give their values, but only choose the
signs of the functions inside the scalar products such that
they are all positive numbers. The series are truncated
at a cutoff nmax; e.g. θ =

∑nmax

n=1 θn(r)Sn(z). In practice,
nmax = 4 gives good numerical results, of an accuracy of
' 0.1% as compared to exact calculations with very high
nmax, and is used for all our calculations except in Section
3. There nmax = 2 is used to allow for analytic calcula-
tions; note that this is the minimal value of nmax because
of the z−symmetry properties discussed in Section 2.2.
The accuracy is then reduced to only a few %.

The full linear equations of the problem can be found
in [8]. After projections of the ny, nz, f , g and θ equations
on S2, S1, C1, S2 and S1 respectively, one obtains for
the linear modes (3.2) within the lowest-order Galerkin
approximation:

Fσñy = −Kyy ñy + ip(k11 − k22) 〈S2|S
′
1〉 ñz

− Fqp 〈S2|C
′
1〉 f̃ + Fq2g̃, (C.2)

Fσñz = −Kzz ñz + ip(k22 − k11) 〈S1| − S
′
2〉 ñy

+ Fiqq2 〈S1|C1〉 f̃ , (C.3)

Pr−1q2(q2 + 〈C1| − C
′′
1 〉)σf̃

+ iq(α3 − α2q
2) 〈C1|S1〉σñz + γ2qp 〈C1|S

′
2〉σñy

= −Vff f̃ + qp (γ3(q2 + 4)− α1q
2) 〈C1| − S

′
2〉 g̃

+ q2 〈C1|S1〉 θ̃ (C.4)

Pr−1q2σg̃ + iα3p 〈S2|S
′
1〉σñz + (α2q

2 − α3p
2)σñy

= −Vgg g̃ + qp (γ3(q2 + 4)− α1q
2) 〈C1| − S

′
2〉 f̃ , (C.5)

σθ̃ = −K θ̃ +R 〈S1|C1〉q
2f̃ −Rκaiqñz, (C.6)

with the constants defined in Section 3.1. For simplicity
we have assumed here and in Section 3.1 that α32 = 0 in
the director equations. This does not change the value of
the linear threshold Rc (Sect. 3.2) by more than 1% for
all the nematics mentioned in Appendix A.
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