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Abstract. We study experimentally the evolution of thermoconvection in a laterally extended planar ne-
matic layer, at zero or weak stabilizing magnetic field. As the applied thermal gradient is increased, a
cascade of symmetry breakings occurs, towards structures of increasing spatial complexity, and ultimately
towards oscillating states. The patterns are characterized optically, and simple models for the distortion
of the vertical (out of plane) component of the director field are proposed.

PACS. 47.54.+r Pattern selection; pattern formation – 47.20.Bp Buoyancy-driven instability –
42.70.Df Surface-tension-driven instability

1 Introduction

We present here experimental results on the thermocon-
vection of a planar nematic layer, and we compare them
with the theoretical models of the first part [1] and of [2].
Thermoconvection of a planar nematic layer is a model
system for pattern formation in anisotropic geometry. It
is obtained by heating from below a horizontal layer of ne-
matic liquid crystal with planar anchoring boundary con-
ditions: the director n is set in a horizontal direction x̂ at
the plates. Previous experimental studies have been done
in [3,4], but only rather small aspect ratios were achieved
(Γ = width/thickness . 15). This renders the comparison
with the existing nonlinear theories [1,2] questionable. In
effect, these theories consider the layer to be infinitely ex-
tended in the horizontal plane, in order to use Fourier-
space techniques. Also, in the most recent experiments [4]
a fairly large stabilizing magnetic field H = Hx̂ was ap-
plied, which progressively “freezes” the director field in
the x̂ direction. Thus, since the first studies of the lin-
ear properties of the system [3] no systematic experiments
have been performed in the intrinsic regime of the null or
small magnetic fields H. In this regime, the director is by
far the weakest damped field, and should therefore control
the dynamics of the system: this is a “director-dominated
regime” (DDR) [5]. In this paper we investigate precisely
the nonlinear evolution of planar thermoconvection in the
DDR.

In Section 2 the experimental setup and methods are
described. The properties of the system near threshold
are discussed in Section 3. Sections 4 and 5 are concerned
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with the evolution of the system in the nonlinear regime,
when the reduced control parameter ε = ∆T/∆Tc − 1
(∆Tc = threshold value of the applied temperature differ-
ence ∆T ) is adiabatically increased. We describe in Sec-
tion 4 the cascade of (quasi) stationary structures found
in a first ε range. In particular, a detailed study of the
main convective amplitude is performed (Sect. 4.2), which
shows clearly the limits of the weakly nonlinear models.
We present in Section 5 the subsequent structures, which
are oscillating. The whole cascade is shown in Figure 15,
which summarizes our main results.

The spatio-temporal structures have been character-
ized by optical studies of the director field [6]. We give
simple models for the distortion of the vertical component
nz of the director, assuming to leading order:

nz(r, z) = nz(r) cos(z) (1.1)

where r = xx̂ + yŷ is the horizontal position, and the
lengths are scaled as in [1] in units of d/π, where d is the
layer thickness (then the layer extends between z = −π/2
and π/2). The models given for nz(r) also contain only
the leading order, and introduce amplitudes in the spirit
of the envelope approach [7]. These models will allow for
a good reconstitution of the experimental patterns.

2 Experimental setup and methods

2.1 Experimental setup

An important difference between classical thermoconvec-
tion (i.e. thermoconvection in isotropic fluids, or thermo-
convection in a planar nematic at very large planar mag-
netic field) and DDR nematic thermoconvection is the fact
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Fig. 1. Schematic diagram of the experimental setup, which consists of two thermal bath enclosing a horizontal convection cell
(g is the earth gravity field). Typically, the width of the cell is ' 10 cm, and its thickness is d ' 1.3 mm. The cell is filled with
nematic liquid crystal aligned in the direction x̂ at the plates. These plates are either sapphire or glass (see text). The whole
arrangement permits observation in transmitted light. It is placed in the air-gap of a large electromagnet (not shown), which
applies a planar magnetic field H parallel to x̂.

that the temperature and velocity modulations are in the
latter case quite small (see Eq. (4.13) of [1]). Consequently,
the standard heat-flux measurements techniques should be
rather inadequate in this system. Moreover, mixing a large
number of small particles in the nematic without strongly
perturbing the convective structures is almost impossible
because of the small thickness of the cells. Thus the stan-
dard velocimetry techniques should also be barely appli-
cable there. For these reasons, and because the director
field n is expected to play the most important role in
the instabilities, one would rather prefer to have access to
n. This is possible with optical methods, which are eas-
ier to develop in transmitted light than in reflected light
as in the standard setup for thermoconvection. We there-
fore chose to realize a symmetric and totally transparent
setup. The use of transmitted light also diminished the
loss of intensity due to the scattering in the nematic. The
nematic layer is sandwiched between two glass or sapphire
plates in contact with thermal baths, themselves enclosed
by glass plates (Fig. 1). This allowed us to develop new
optical methods [6] using linearly polarized light: either
the “extraordinary light” polarized along x̂, or the “ordi-
nary light” polarized along ŷ. The images shown hereafter
were taken from above with a CCD camera equiped with a
macrophoto objective, and digitized on a grid of 512×512
pixels in 256 gray levels on a Personal Computer. Their
numerical Fourier transform was also used to characterize
accurately the patterns.

Each thermal bath was permanently fed by flowing
water coming from two Lauda RC 6 temperature reg-
ulators, which presented a stability of ± 0.015 oC. The
applied thermal difference ∆T was measured against the
external sides of the plates enclosing the convection cell

by two Pt resistors. This showed that the same stability
of ± 0.015 oC was reached for ∆T . A limitation of the
RC 6 temperature regulators is that the smallest change
of temperature that they can achieve is of the order of
0.05 oC. This value defined our experimental resolution in
ε (Fig. 4b):

δε =
0.05 oC

∆Tc
· (2.1)

Three different cells were realized: cell 1 was square (of
100 mm side) and with glass plates (BK10 from Schott);
cells 2 and 3 were cylindrical (of radius 90 mm) and with
sapphire plates (from Rubis SA). A Vyton seal ensured
the tightness, and the thickness d of the cells was con-
trolled by a Delrin spacer. Locking screws tightening the
upper and lower part of the cell were used to press the two
internal transparent plates onto the spacer and the seal,
such that the seal was completely flatten out. For cell 1,
d = 1.00± 0.04 mm, for cell 2, d = 1.30± 0.01 mm and for
cell 3, d = 1.520± 0.001 mm, as tested by interferometry.
Thus we reached the largest aspect ratios obtained so far
in nematic thermoconvection, i.e. taking into account the
width of the seal and spacer:

Γ =
width of the fluid layer

d
= 87.5 for cell 1,

63 for cell 2,

53 for cell 3.

The corresponding small parameter is the smallest
wavevector δq attainable in the experiments, i.e. with
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lengths in units of d/π:

δq =
d

π

2π

λmax
=
d

π

2π

Γd
=

2

Γ
= 0.023 for cell 1,

0.032 for cell 2,

0.038 for cell 3. (2.2)

The quality of the thermal boundary conditions at the
plates (ideally T = const.) is defined by the ratio (ideally
∞):

r =
heat conductivity of the plates

heat conductivity of the nematic

' 9 for cell 1,

270 for cells 2 and 3.

There, we have used as a typical value for the heat conduc-
tivity of the nematics 0.15 Wm−1K−1 (see the references
in Appendix A of [1]), whereas the values of the heat con-
ductivities of the plates were obtained from the makers.
A first important result of our experiments is that the se-
quence of transitions in the nonlinear regime was the same
in all cells. It shows firstly that the shape of the cell has
a little influence on the convection structures, as it is ex-
pected in the large aspect-ratio limit. Secondly, it proves
that the thermal boundary conditions play a minor role in
our case, i.e. that the fine details of the temperature field
have no influence on the dynamics: this confirms that the
dynamics is dominated by the director field.

The planar anchoring was realized by coating the in-
ternal surface of the plates with a polymer (ZLI 2650 from
Merck), curing, and rubbing using a specific device. The
unidirectionality was rather good, as can be inferred from
the zig-zag structures at H = 0 shown in Figure 2: the
axis of symmetry of the zig-zags, which is given by the
anchoring direction, is well defined. The whole cells were
made of non-magnetic materials, and placed in the air-
gap of a large electromagnet. Its polar heads have been
reshaped so as to ensure a good uniformity of the mag-
netic field over the space of the cell, where it varied of less
than ± 0.7%.

We used the nematic materials (Appendix A of [1])
MBBA, which was synthesized in our laboratory; and
5CB, which we obtained from Merck. We used successively
both nematics in every cells, at a working temperature
of 27 oC (i.e. well inside the nematic phase). We always
observed the same sequence of transitions in the nonlin-
ear regime. Most of our quantitative measurements have
been performed in cell 3 with 5CB, which showed a bet-
ter chemical stability than MBBA. Typical values of the
characteristic Fréederickz field are the one calculated for
cell 3:

BF = µ0HF =
π

d

√
k11
χa
µ0

= 47.3 G for MBBA,

46.5 G for 5CB.

In the following, we will use for the planar magnetic field
H = Hx̂ the reduced variable h := H/HF.

x̂

ŷ

ẑ

S(q)

q

S(q)

Fig. 2. Zig-zag structure in 5CB in cell 3, at H = 0, ε = 0.06.
The structure is observed from above in extraordinary light:
the bright “caustic” lines indicate the centers and edges of
the rolls (an edge-detection filter has been used to enhance the
contrast). Three roll domains are visible, where the wavevector
of the rolls is either q or its symmetric S(q) under S: ŷ 7→ −ŷ.
The direction of symmetry x̂ is defined only by the planar
anchoring, since there is no magnetic field applied.

2.2 Experimental procedure for the control parameter
ramps

Our experiments were typically done by slowly increas-
ing the control parameter ε (“ε-ramp”). To prepare such
a ramp, we keep the system during one hour at null ther-
mal gradient ∆T = 0 (i.e. ε = −1) and under a strong
planar magnetic field h ' 20. Thus all director relaxation
times are reduced to a few seconds, whereas the horizon-
tal relaxation times of the temperature and velocity fields
(which are much longer, up to ≈ 2000 s in cell 2) are also
largely overstepped. This ensures that the previous direc-
tor, temperature and velocity modulations relax totally.

The main experimental difficulty stems from the very
long characteristic times τ of the system (see Sect. 3 and
Fig. 4a). One has to choose a compromise for the veloc-
ity of the ε-ramps made by increasing ε by steps equal to
the experimental resolution δε (2.1). These ramps must
be performed in a reasonable interval of time (less than a
few weeks), during which the overall stability of the sys-
tem can be insured. On the other hand, these ramps must
be slow enough to insure that the first threshold and the
thresholds of the transitions in the nonlinear regime are
measured with an accuracy of the order of δε. One must
be sure that no instabilities are overlooked between two
ε steps. If the threshold ε0 of a transition has just been
passed, the amplitude of the corresponding perturbation,
which starts from a very small “noise” value, must reach
a value large enough such that the perturbation becomes
visible before the next ε step. Since the growth rate of the
perturbation is typically in aτ−1 (ε − ε0) ' aτ−1δε, an
amplification by a factor e2 will be realized in an interval
δt given by δt ' 2τ/(a δε). Assuming a of order 1, we
chose as a minimum waiting time between two ε steps:

δt = 2
τ

δε
· (2.3)
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With this choice, we already have δt(h = 0) = 9 hours
(Fig. 4b), which is a rather long time. Our ε-ramps were
then started as follows:

− for the first ramp at a given h, since ∆Tc(h) is not
yet measured, we start the ramp at ∆T ' 0.85 ∆Tc
using the theoretical value for ∆Tc. We then increase
∆T by steps of 0.05 oC, waiting a time δt after each
step. If no director modulation in extraordinary light
(where the optical sensitivity is higher) is observed af-
ter this interval, we further increase ∆T . This gives us
the threshold with a precision of 0.05 oC;

− when ∆Tc(h) is known, we start directly the ramp at
ε ' 0, and increase ε of δε after the interval δt if the
convection does not develop.

We are then “at threshold”, i.e. at 0 < ε < δε. When a
stationary structure is reached (within an interval of a few
δt, see Sect. 3), the ramp is carried on exactly the same
way:

− after increasing ε by δε, we wait for a time δt;
− if no structural change has occurred (not taking into

account the increase of the convective amplitude), we
increase ε further;

− otherwise we wait until a new stationary structure, or
a permanent regime (we test it on an interval of a few
δt), is reached.

With some slower ε-ramps, we checked that the tran-
sition thresholds are the same (with an accuracy ± δε),
whereas with faster ramps some thresholds were shifted
(of more than 2δε): thus this procedure seemed rather op-
timal. Nevertheless, we did not test with slower ramps for
all h and for all transitions.

3 The normal rolls and the dynamics of their
undulations at threshold

Firstly, we compared in our sapphire cells the experimen-
tal threshold values ∆Tc with the theoretical values

∆Tc =
νaκ⊥π

4

αgd3
Rc

where Rc is a dimensionless threshold [1]. A good agree-
ment with a mean error < 4% (see e.g. the first line
in Fig. 15) is obtained provided that the thermal ex-
pansion coefficients α are taken to be αMBBA = 1.1 ×
10−3 K−1, α5CB = 1.0 × 10−3 K−1. The value for
MBBA is consistent with the former estimation αMBBA '
10−3 − 10−4 K−1 [3,8]. The value for 5CB matches the
measurement α5CB = 9.1 10−4 K−1 ± 10% made in [9].

We observe at threshold roll patterns (Fig. 5) with a
mean wavevector (barycenter of the main Fourier spot)
q0 = qcx̂ of the normal roll (NR) type: the rolls have
globally their axis normal to the anchoring direction x̂, as
predicted by the linear theory. Observations in ordinary
light, where the contrast is proportional to n2

z(r) [6], show
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Fig. 3. The normal roll wavevector qc for 5CB in cell 3. The
experimental points are compared with the values predicted by
the linear theory (solid line). qc has been scaled in units of π/d
where d is the layer thickness (see Table 1 of [1]).
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Fig. 4. (a) The characteristic time τ of the instability for 5CB
in cell 3, compared with the predictions of the linear theory
(solid line). (b) The minimum time δt between two ε steps
during the control parameter ramps, as deduced from the lin-
ear theory with equation (2.3). Inset: ε resolution from equa-
tion (2.1).

that NR can be described in a first approximation by a
local director field:

nz(r) = A sin q0 · r. (3.1)

Our measured values of qc agree (within ± 4%)
with the predictions of the linear theory for the criti-
cal wavevector (Fig. 3). We also studied the exponential
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a:  t = 3 δt b:  t = 5 δt c:  t = 7 δt d:  t = 13 δt e:  t = 21 δt

Fig. 5. Evolution of convection patterns after a step from below to above threshold (ε ' 0.01) at t = 0, with 5CB in cell 3 at
h = 1.5. For this value of the reduced magnetic field, one has δt = 7.5 h, and the last image was taken one week after applying
the step. The patterns are observed in extraordinary light.

b ε = 0.27

q0

q0 + s’

q0 + S(s’)

a ε = 0.18

q0

Fig. 6. Transition (a) undulated rolls→ (b) zig-zag structures,
with 5CB in cell 3 at h = 1.75, observed in extraordinary
light. Below each image is represented its main Fourier spot
numerically computed. The surrounded pixel q0 is the mean
wavevector of the initial structure, i.e. the barycenter of the
(a)-Fourier spot. A pixel height is of the order of δq defined in
(2.2).

relaxation of the rolls after a step now to below the thresh-
old, with the optical technique developed in [6] to measure
A in (3.1).

The deduced characteristic times (Fig. 4a) agree rather
well with the predictions of the linear theory. Thus it is
justified to use these predictions in order to define δε and
δt(h), as was done in Section 2.

In fact, whereas at high magnetic field h & 1.75 a NR
pattern is always obtained as soon as the amplitude has
saturated, the situation is more intricate for smaller fields.
A representative example of the development of convec-
tion at not too small magnetic fields h & 1, after a step
from below to just above threshold (0 < ε < δε), is shown
in Figure 5. Though the NR consistent with theory are

finally obtained (Fig. 5e), one observes a very long relax-
ation process via undulated rolls (UR). The generation of
UR can be understood from an inspection of Figures 5a,
b, c. In Figure 5a, NR nucleate spontaneously at differ-
ent places with uncorrelated phases, since specific lateral
boundary conditions are not used to set the roll phase
(indeed the lateral walls, in all the cells of various shapes,
appeared to have no influence on the convection rolls at
threshold). The roll domains of Figure 5a then connect
through an undulation in Figures 5b and c; obviously the
UR have been induced by the natural inhomogeneities in
the development of convection. These UR can be modeled,
in a idealized homogeneous case, by the superposition

nz(r) = A sin q0 · r

+ a(t) [sin(q0 + s) · r − sin(q0 − s) · r] (3.2)

with a(t)� A, s = pŷ. This superposition leads to a nz(r)
profile in A sin(qcx)+ 2a(t) cos(qcx) sin(py) typical of UR.
This simplified model can also be justified by the fact that
the main Fourier spot of UR presents a large extension
along ŷ, and is roughly symmetric under the application of
S : y 7→ −y (Fig. 6a). In practice the wavevector s in (3.2)
is only defined as the barycenter of the half-Fourier spot in
the region y > 0; this wavevector s appears to be selected
(in a complicated manner) by the overall geometry and the
extension of the original phase domains. The hypothesis
A = const. in (3.2) is confirmed by the fact that the optical
contrast of the rolls does not change from Figures 5c to
5e, i.e. that the saturation of the amplitude has occurred.
The secondary amplitude a(t) can then be extracted from
a Fourier transform of the patterns. It shows typically an
exponential decay: the UR are transient. In the case of
Figure 5, we measure in this way for the UR relaxation
time τUR ' 9 δt. Theoretically, the UR (3.2) correspond
exactly to the pattern (Eqs. (5.1, 5.4) of [1]) expected at
the onset of a long-wavelength zig-zag instability, and for
which a relaxation time (see Eq. (5.5) of [1] and Eq. (3.3)
below) has been calculated in the framework of the lowest-
order amplitude equation. At h = 1.5, from the theoretical
values δε = 0.03, ξyy = 0.45, and with p = 0.1 as an
estimate of the wavevector of the UR of Figures 5b, c
(value deduced from the Fourier transform), we get τUR =
τ(h)/(ξ2

yy(h) p2) ' 8 δt. There is an agreement between
the experimental and theoretical UR relaxation time, and
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a ε = 0.23 b ε = 0.30

Fig. 7. With 5CB in cell 3 at h = 1.0: (a) Typical
pattern at the onset of the long-wavelength instability
of the normal rolls, in extraordinary light. The curva-
ture lines, which make here an angle of 80◦ with ŷ,
disappear at the lateral edges of the cylindrical cell.
The white line sketches the possibly associated large
scale flows (see text). (b) Zoom on the subsequent zig-
zag structure in ordinary light, which gives access to
n2
z.

a: ε=0.18 b: ε=0.33

Fig. 8. Nucleation effects in the core of oblique roll
dislocations, with 5CB in cell 3 at h = 0.75. The im-
ages show, in extraordinary light, a zig (top) and a zag
(bottom) domains separated by a domain wall. (a) At
low ε, a small lens of zig nucleates to the right of the
core of the dislocation of zag present in the bottom
part of the cell. (b) At higher ε, the bimodal varicose
nucleates around the same dislocation. On the top
right of the image there is a portion of the symmetric
deformation field of a dislocation of zag (the core of
this dislocation is out of frame).

this even provides a new method of measurement of the
coherence length ξyy, according to:

τUR =
τ(h)

ξ2
yy(h) p2

=⇒ ξyy(h) =
1

p

√
τ(h)

τUR
· (3.3)

As shown in Section 5 of [1] , τUR is expected to reach
very large values at h = 0, where τ(h) is the largest. Ex-
perimentally, we observe at small magnetic fields h . 1
the same type of dynamics as in Figures 5a, b, c after
a step to above threshold, but then the system stays in
an undulated state for very long times. We estimate for
5CB at h = 1, after another relaxation process of 10 days,
that ξyy(h), which is predicted by the linear theory to
stay constantly equal to 0.46 for h ≤ 1.4, in fact decays
slightly around h = 1, downto values ≤ 0.40. The coher-
ence length ξyy(h) could even decay more at lower h, but
then the τUR are too long to be measured. Thus at low
h a tendency towards oblique rolls (OR), of wavevector
q = qx̂ + pŷ with p 6= 0, as in the two modulation modes
in (3.2), exists. This tendency is confirmed by the fact that
our measured values of qc are systematically smaller than
the ones predicted by the linear theory (Fig. 3). In effect,
if one approaches a Lifshitz point NR→ OR, where ξyy(h)
vanishes, qc(h) should then strongly decrease: see e.g. the
limit h→ 36− in Figure 1a of [2].

We note finally that if at very low h a Lifshitz point
existed, higher order terms would have to be included in
the development of ε0(q0 + pŷ) in equation (5.5) of [1],

and the UR relaxation times would now become

τUR =
τ(h)

ξ2
yy(h) p2 + ξ4

yyyy(h) p4
·

The linear theory gives for 5CB, at h = 0, ξ4
yyyy ' 0.39

versus 0.22 for ξ2
yy. So in our cases, for the small p of

UR (p . 0.2), the term in p4 should be at most of the
order of a few percent of the term in p2. If the term
in p4 would only be there, i.e. if we assume a Lifshitz
point at h = 0 for instance, the situation regarding UR
would be singular. Then the lateral phase diffusion time
in the y direction would scale in Γ 4, giving, for cell 3,
max τUR = τ(0)/(ξ4

yyyy(0) δq4) ' 40 years. Thus the τUR
nearly diverge to the right of a Lifshitz point, whereas
to its left UR are known to be possibly metastable [10].
This renders quite difficult the study of the existence of a
Lifshitz point in thermoconvection at low h. In fact, the
existence of a Lifshitz point around h ' 0.5 was suggested
by earlier experiments with MBBA [11]. Further experi-
mental studies, probably easier in cells of smaller aspect
ratio where the phase-diffusion times are smaller (Γ ' 20
should be a good compromise), would be needed to con-
clude on this point.

4 Cascade of structures

When ε is adiabatically increased in the nonlinear regime,
in a first range 0 < ε . εHOPF that will be defined here-
after, we observe a cascade of transitions between quasi-
stationary structures.
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Fig. 9. (a) Typical evolution of the amplitude A of the nz distortion (3.1) in roll structures. In the weakly nonlinear domain
A(ε) < 0.75, ε < εlim, fits of the form A(ε) = Z1c

√
ε shown in dotted (h = 0.5) and dashed lines (h = 1.75) are consistent with

the experimental data. (b) Experimental limit εlim of the weakly nonlinear domain A(ε) < 0.75 (filled circles). Also plotted are
the thresholds εUZ of the undulation-zig-zag instability (white diamonds), εZZ of the zig-zag structures (white squares), εVH
of the bimodal varicose (white circles). The lines are guides for the eye.

4.1 Transition to zig-zags

Starting at high h with NR, we observe during the ε-ramps
that some undulations become visible when ε is of the
order of a secondary threshold εUZ . This corresponds to
a continuous spreading of the main Fourier spot in the ŷ
direction, which can be quantified as follows. We define the
extension of the Fourier spots along x̂ and ŷ respectively
as:

∆q =
√
〈(q − 〈q〉)2〉 ,

∆p =
√
〈(p− 〈p〉)2〉

where the average designates as usual an integral weighted
by the square of the Fourier intensity; another discrete
average on the harmonics of the basic mode is also used
for a better precision. The ratio e(ε) = ∆q(ε)/∆p(ε) can
then be monitored as a function of ε. Typically, in a first
low ε range, we observe that e(ε) fluctuates around an
average value: e.g. e(ε) ' 1.1 ± 0.2 for one set of mea-
surement in 5CB at h = 1.5 (and in cell 3). The fluctua-
tions indicate no clear tendency, and the pattern in real
space corresponds to “almost perfect” NR. Then, there is
a second range in ε where a steep increase of e(ε) occurs.
For instance, for the measurements in 5CB at h = 1.5,
e(0.13) ' 1.3, e(0.17) ' 2.4, e(0.24) ' 3.0 . This cor-
responds in real space to the development of the undula-
tions, and the threshold εUZ can be defined as the cross-
over between these two regimes. After this bifurcation,
the model (3.2) (with a non-decaying a(t)) must now be
used to describe the structures in the homogeneous ideal
case. This bifurcation corresponds to a long-wavelength
zig-zag instability of the NR; “undulation zig-zag instabil-
ity” would in fact be a better name to describe the pattern
obtained at onset.

The thresholds εUZ (Fig. 9b) decrease with decreasing
h. Starting the ε-ramp at small h with UR (Fig. 6a), we
observe that when ε becomes of the order of εUZ , the undu-
lations already present at threshold start to amplify, and

often that new undulations are created, but two regimes
can hardly be defined from the study of the extension
of the Fourier spots e(ε). On the one hand our finite ε
resolution renders it difficult to measure several e(ε) val-
ues before reaching strongly UR, and on the other hand
the measured values show an increase with ε beginning
roughly at the first threshold. Thus in the low h region a
secondary threshold εUZ is difficult to define.

The thresholds εUZ (Fig. 9b) are of the order of the
secondary thresholds predicted in [2], but we find a dif-
ferent symmetry of the modulation wavevector s. In [2],
the bifurcation was rather predicted to be of the “skewed
varicose type”, i.e. with an angle arg(s) between x̂ and
s of the order of 45◦ instead of 90◦. Recent calculations
would show that the weakly nonlinear theory is insufficient
to predict the bifurcation type [12]. We, in fact, observed
in some experiments an initial angle arg(s), which is also
the angle between the curvature lines associated with the
undulations and ŷ 1, of 80◦ instead of 90◦ (Fig. 7a). Thus
a slightly skewed long-wavelength instability cannot be
excluded. In Figure 7a, where the major part of cell 3 is
visible, we can also observe some finite size effects on the
long-wavelength instability. A loop of curvature is visible,
which avoids the lateral walls of the cell. It suggests that
large scale horizontal flows, sketched in Figure 7a, and
which should avoid the lateral walls, could play an active
role in the instability as predicted in [13] for the case of
electroconvection. To evaluate this possibility, we made
some preliminary studies of the trajectories of dust par-
ticles in the structures. We tracked the particles using a
microscope objective, but the large thicknesses of the cells
rendered the observations difficult, whereas on the other
hand the periods were very long (typically 90 minutes, a
time related to the low values of the velocity amplitudes

1 Indeed (3.2) gives nz(r) = A sin(qcx)+2a cos(qcx) sin(s ·r),
from which the curvature lines appear to be the locus of the
points where s · r = (n+ 1/2)π.
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Fig. 10. Values of Z1c(h) deduced from the fits of A(ε) in the
weakly nonlinear domain as in Figure 9a. They are consistent
with the predictions of the weakly nonlinear theory (see text).

calculated in equation (4.13) of [1]). Thus we could not
reach to a definitive conclusion about this point.

When ε is further increased, the undulations straighten
and form acute angles. This straightening corresponds to
the development of higher harmonics (s′ = ms) of the ini-
tial modulation wavevector s, and indeed the extension
of the main Fourier spot along ŷ increases. Naming s′

the modulation wavevector which presents the maximal
Fourier intensity, we observe the existence of a rather re-
producible ε threshold where s′ and its symmetric under
S: ŷ 7→ −ŷ get far enough such that the main Fourier
spot splits into two spots. This splitting can be defined
by monitoring the Fourier intensity Iq(ε) along the axis
p = 0, which decays steeply downto a noise value when it
occurs. One Fourier spot is then centered around

q = q0 + s′ = |q|(x̂ cos θ + ŷ sin θ) with θ > 0 (4.1)

for the “zig”, and the other around S(q) = q0 + S(s′) for
the “zag” (Fig. 6b). This splitting defines a threshold of
zig-zag structures εZZ , for which we find experimentally
that θ ' 4◦. The reflection S is a global symmetry of the
system, which has been broken in the whole transition
process from NR to these zig-zag structures, through the
intermediary undulated roll state. Indeed one observes in
real space the coexistence of domains with the zig or the
zag wavevector, separated by curvature lines, which are
domain walls. These zig-zag structures persist over very
long times (& 30 δt), with only very slow displacements
of the domain walls (by typically one roll spacing over
δt): the selected OR of wavevector q and S(q) may be
regarded as stable, in contradiction with the weakly non-
linear theory [2], but in agreement with recent fully non-
linear calculations [12]. We never observed an evolution to
a monodomain either zig or zag (over times up to 30 δt).
In ordinary light, the OR appear just like tilted NR: see
Figure 7b, where the intensity profiles perpendicularly to
the rolls are in sin2 q · r as for NR. Thus the nz distortion
in zig-zag structures can be approximated by

nz(r) = A(r) sin q · r + B(r) sinS(q) · r. (4.2)

In a zig domain for instance,B = 0, and the constant value
of A is determined only by the values of the wavevector q

and ε, as will be shown in the next subsection. We have
also introduced in (4.2) amplitudes depending on r, in
order to allow for the description of inhomogeneous struc-
tures. For instance, a nucleation effect occurs in the core
of OR dislocations, as shown in Figure 8a. A lens of the zig
nucleates inside a dislocation of zag (and vice versa). The
lens of zig tends to be static, i.e. not to grow. This effect
can be interpreted by the fact that in the core of a de-
fect of zag, the zag amplitude is weaker, and consequently
the damping of the zig by nonlinear competition with
the zag is weaker. Since the zig is linearly excited, it can
thus develop in a small region around the core of the zag
dislocation. This is found from the lowest-order coupled
amplitude equations model provided that the nonlinear
competition coefficient g2 between zig and zag is not too
strong (Sect. 6 of [1]). Also, the fact that locally in the
domain walls between zig and zags the amplitude nz(r)
is higher (Fig. 7b) can be accounted for by the model
(Eq. (6.3) of [1]), under the condition g2 < 3. This can be
shown by numerical simulations of equation (6.3) of [1]
connecting zig and zag domains through a wall paral-
lel to x̂. Then the amplitudes A and B depend only
on y. For g2 < 3, the zig and zag amplitudes intersect
at |A|, |B| > 0.5

√
ε, implying a local peak of nz (4.2)

inside the wall, whereas, for g2 > 3, they intersect at
|A|, |B| = 0.5

√
ε, and there is no peak of nz inside the

wall. Similar effects concerning domain walls were in fact
reported in [14], but without precise definitions of the lim-
its in the coupling coefficients.

As ε is further increased, the wavevector q of zig rolls,
which can still be written under the form (4.1), presents
an evolution because of complex long-wavelength selection
processes. Both |s′| and θ increase. Moreover, s′ slightly
rotates when ε increases, so that the angle arg(s′) decays
to ' 70◦ at higher ε. Finally, at the threshold of the ho-
mogeneous bimodal varicose (see Sect. 4.3), which is the
upper limit of the stable OR domain, q (4.1) has evolved
to qf such that, for 5CB,

|qf |/qc = 1.07± 0.02 , θf = arg qf = 8◦ ± 1◦. (4.3)

For MBBA |qf |/qc is of the same magnitude whereas θf =
10◦ ± 2◦.

4.2 Evolution of the main convective amplitude in roll
structures

In NR, in UR far from the curvature lines, or in OR far
from the domain walls, there exist locally a well-defined
wavevector q and amplitude A such that the nz distortion
reads to lowest order nz(r) = A sin q · r. In the so-called
weakly nonlinear regime, and according to the standard
weakly nonlinear theories, homogeneous rolls should be
unambiguously characterized by this wavevector and by
this amplitude; we therefore name A the “main convective
amplitude”. From a Fourier transform of the roll patch, we
can measure q, and from our optical methods (Eq. (8) in
Ref. [6]), we can measure A from the angles of aperture of
the caustic cusps. Our finite ε resolution, and the fact that
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Fig. 11. Bimodal varicose structures. (a) With MBBA
in cell 1, at h = 0.8, ε = 0.32, observed in extraordinary
light. As compared with the initial oblique roll struc-
ture, the center lines are almost not changed, i.e. they
remain almost straight. On the other hand, the edge lines
(marked by the ticks below and above the image) show
a periodic pinching. (b) With 5CB in cell 3, at h = 1.75,
ε = 0.69, observed in ordinary light. The direct lattice
basis vectors are shown by the thin lines. The reciprocal
lattice basis vectors, which are also the wavevectors of the
roll modes in the bimodal, are shown by the thicker lines.
In the lower part the bimodal varicose is constructed on
the zig q and its dual k, and in the upper part on the zag
S(q) and its dual S(k).

our optical methods are only accurate for not too small
A, forbid a study of the bifurcation scenario near the first
threshold (ε = 0): we can only check that no hysteresis ap-
pears within our experimental resolution δε. On the other
hand, we can measure A during our ramps in ε, up to the
varicose threshold εVH (see Sect. 4.3), where our method
of measurement breaks down. Two series of measurements
of A(ε), at representative values of the reduced magnetic
field h, are shown in Figure 9a. They are performed in the
case of 5CB in cell 3, to which we restrict now.

In order to interpret these measurements, let us first
propose a definition of the weakly nonlinear domain. Since
the system is in the DDR, a criterion of small amplitude
of the director distortion,

ε < εlim ⇐⇒ A(ε) < 0.75, (4.4)

seems reasonable. Experimentally, we could only measure
εlim for h values larger than 0.75, because for smaller h
the amplitude A does not reach 0.75 before the varicose
instability (Fig. 9b). As h is increased, we observe a very
strong decrease of εlim. We can relate εlim to the predic-
tions of the weakly nonlinear theory, which give for the
amplitude of the nz distortion (Eq. (4.14) of [1]):

A(ε) = Z1(q(ε))
√
ε. (4.5)

There, the shift ε0(q) of the threshold for q 6= q0 has
been neglected since one has always ε0(q) . 0.015 which
is small as compared with our ε resolution. For h & 1.5, q
does not vary in the weakly nonlinear domain, so Z1(q(ε))
in (4.5) should be constant, equal to Z1c := Z1(qcx̂). On
the other hand, for h . 1.5, the transition to zig-zag struc-
tures occurs inside the weakly nonlinear domain (Fig. 9b),
and simultaneously the wavevector evolves from qcx̂ to qf
(4.3) inside this domain. Nevertheless, we checked, with
the Galerkin method exposed in Section 4.1 of [1], in-
cluding 4 vertical modes, that during this evolution Z1(q)
should only slightly decrease, by 9% at h = 0, 10% at
h = 0.5, 13% at h = 1.5. Neglecting these rather small
corrections, one expects A(ε) ' Z1c

√
ε in the weakly non-

linear domain A < 0.75. This is consistent with all our
experimental datas, as show for instance the fits in Fig-
ure 9a. We can even extract from these fits the values

of Z1c, which roughly agree with the predictions of the
weakly nonlinear theory (Fig. 10). By comparison of (4.4,
4.5) with equation (4.14) of [1], we obtain

εlim =
9

16
(Z1c)

−2 =
9

64
τ gqc , (4.6)

i.e. that εlim measures the nonlinear saturation coefficient
gqc . The decrease of εlim with h appears therefore to be
connected with a tendency towards a subcritical bifurca-
tion around h = 4, which is clear from Figures 9b and 10.
The fact that gqc should become negative around h = 4
was predicted in [2] (see also the end of Sect. 4.2 of [1]). We
performed some experiments at h = 4, where we may leave
the Boussinesq conditions since, at this high magnetic field
value, ∆Tc ' 5.5 oC. We still found no hysteresis within
our experimental resolution. But, surprisingly, we found
that A(ε) does not reach 0.75 before we observe, around
ε = 0.04, some peculiar symmetry breaking on the rolls,
where one roll becomes larger and the other one thinner.
This effect could be related to a slight tilt of the cell over
the horizontal plane, which is somehow amplified at high
magnetic field. Further studies with a thicker cell would
be needed in this high h region.

Even for h . 3.5, we observed some anomalous be-
havior in the amplitude variations A(ε) that cannot be
explained by the standard weakly nonlinear theory. We
systematically found at high ε that A almost does not in-
crease (curve h = 1.75, Fig. 9a) or can even decrease after
a positive ε step (last point at h = 0.5, Fig. 9a). This
can be heuristically understood, at least for the curve at
h = 1.75, by the fact that the director component nz is
definitely not an extensive physical variable: it should ver-
ify nz < 1 from the normalization condition n2 = 1. Thus
it is certain that A should stay smaller than 1, i.e. that
the structure of the convection rolls must change before A
reaches 1. What happens is not clear from the optical pat-
terns, which show no special effects when the amplitude
plateau or the decrease is observed.
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Fig. 12. Oscillations in a bimodal varicose
structure, of the zag type, with MBBA in
cell 3 at h = 0, ε = 0.5. Here one half pe-
riod of oscillations is shown. The left column
shows three experimental images (in extraor-
dinary light) of the same portion of the cell (of
width ' 10 rolls), separated by an interval of
1.3 τ (h) = 30 min. The middle column shows
a numerical reconstitution of the level lines of
n2
z(r), with the bimodal varicose (BV) model
nz(r) = A sin(q·r)+B sin(k·r) (4.7). The basis
wavevectors q and k are shown in the last col-
umn, whereas the direct lattice basis vectors a
and b are shown on the first image of the sec-
ond column. A good reconstitution of the right
part of the pattern is observed. From the top
to the down row, we used B/A ' 0.25, 1, 1.6
respectively. We sketched these amplitude os-
cillations by varying correspondingly the thick-
ness of the wavevectors in the last column.

4.3 Transition to bimodal varicose

In the absence of any defect, a oblique roll domain un-
dergoes, when ε gets larger than a threshold εVH , a new
bifurcation characterized in extraordinary light by the de-
velopment of a pinching of the edge lines of the rolls with
a secondary period (Fig. 11a). The resulting structure,
which was first found in electroconvection [15], has been
called varicose by analogy with similar patterns found
in Rayleigh-Bénard convection [16]. The “VH” in εVH
stands thus for “varicose, homogeneous”. In ordinary light
(Fig. 11b), we checked that the nz field of this structure
can be written as the superposition:

nz(r) = A sin q · r + B sin k · r (4.7)

where A and B are resp. amplitudes. This proves that
this structure is a bimodal, and, in order to avoid possi-
ble confusions with the long-wavelength skewed-varicose
structure, described rather by a “trimodal” of the type
(3.2), we name it the bimodal varicose. The geometri-
cal appearance of the bimodal varicose in extraordinary
light can also be understood from (4.7), assuming that
the edge lines are given by the locus of the points where
nz(r) = 0. This is reasonable since above these lines the
rays are not deflected. The “pinching”, defined as the
maximum distance l between the new edge lines and the
former ones (when B was equal to 0), can be deduced
as l = |a|/(2π) arcsin(B/A), where a is the direct lattice
basis vector reciprocal to q (Fig. 11b). Since the pinching l
increases smoothly with ε, the transition to homogeneous
bimodal varicose seems to be a forward bifurcation, as it
was observed in electroconvection (where l(ε) has been ac-
curately measured, see Fig. 2 of [15]). Finally, the bimodal
model can be confirmed by studies of the trajectories of
particles, and comparison with numerical simulations of
these trajectories assuming a bimodal velocity field (Ap-
pendix A).

In (4.7), k is a new wavevector named the dual of q,
since it should depend unambiguously of q [5]. We mea-
sured for MBBA and 5CB, 0 ≤ h ≤ 2, and at εVH , that
the variant of bimodal varicose constructed on the zig has
a first wavevector given by (4.1, 4.3) and a dual wavevec-
tor:

k = |k|(x̂ cosφ+ ŷ sinφ)

with |k|/|q| = 0.9± 0.05, φ = −55◦ ± 5◦. (4.8)

The transition to bimodal varicose is qualitatively well de-
scribed by the weakly nonlinear model developed in Sec-
tion 7 of [1]: the dual mode deduced from the model is
found in the zag region, far from the zag; the increase of
εVH (= εV in [1]) with h at very low h is found; the law
B/A ∝

√
ε− εVH can be derived. Nevertheless, the theo-

retical values of φ = arg k and of the threshold εVH are
too small (by a factor of ' 0.6 at h = 0), presumably
because of higher order effects not included in the weakly
nonlinear analysis.

An interesting aspect of the transition to bimodal vari-
cose is that, whenever a defect is present in an oblique
roll structure, it always nucleates the bimodal, as soon as
ε gets larger than a critical threshold εV L (L stands for a
“localized” varicose). In Figure 8b one sees a bimodal vari-
cose lens close to the core of an oblique-rolls dislocation,
in a specific region which depends only on the topological
charge of the dislocation. The second period is the same as
in the bimodal varicose, but the amplitude of the pinching
decreases strongly outside of the core of the dislocation.
The lens is static, i.e. its area grows only when ε is fur-
ther increased. These pretransitional localized effects are
probably linked to localized nonlinear competition effects
analogous to the one studied in Section 6 of [1], but not
to a subcritical bifurcation. Indeed it is known that, even
if a secondary bifurcation is supercritical in the homoge-
neous case, the nonlinear competition in defects of the
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primary structure can lead to a localized nucleation of the
bifurcated structure (this was shown for instance for the
pairing process in mixing layers [17]; see also the conclu-
sion of [1]). Note finally that, as for the zig-zag structures,
the bimodal varicose structures never evolve to a mon-
odomain: one observes, as in Figure 11b, several domains
where the primary wavevector in the bimodal is either zig
or zag.

5 Oscillations in bimodal structures

When ε is adiabatically increased above εVH , in a first ε
domain εV H < ε < εHOPF , the only effect is an increase
of B/A, i.e. of the pinching l in the bimodal varicose do-
mains. The pattern remains quasi-stationary, except for
the very slow dynamics of the domain walls. This station-
arity breaks down at higher ε. Indeed, after some step of
ε, around a “threshold” value εHOPF which seems to de-
pend on the precise pattern in the cell, some oscillations
appear inside the bimodal varicose domains. This can be
seen in Figure 12, which shows the time evolution of a
bimodal varicose zag domain at fixed ε > εHOPF . In the
whole area imaged, the bimodal varicose is based on the
zag q and its dual k, and can be well reconstructed by
the model (4.7), but with amplitudes A and B now de-
pending on the time t and the position r. The dependence
on t consists in a periodic switching between the primary
roll mode in the bimodal and its dual roll mode: B/A(t)
oscillates, with a period T ' 5.2τ = 2 h in the case of
Figure 12. Indeed, in the right part of the image, one can
see from the numerical reconstitution of columns 2 and
3 of Figure 12 that: at t = 0, B/A ' 0.25, the zag rolls
dominate and are slightly modulated by the dual rolls; at
t = 1.3τ = T/4, B/A ' 1, the superposition of the two
modes with the same power leads to a bimodal with closed
cells; at t = 2.6τ = T/2, B/A ' 1.6, the dual rolls domi-
nate and are slightly modulated by the zag rolls. Of course
at t = 3T/4, the pattern obtained is the same as the one
at t = T/4, and so on. There is also a space−dependence
(in r) of the phase of this oscillation, such that in Fig-
ure 12 for instance the left part of the pattern oscillates in
advance as compared with the right part, the delay being
of the order of 1.3τ . Indeed at t = 1.3τ one can observe on
the left of the image dual rolls which appear on the right
of the image only at t = 2.6τ . Finally, we observe that
the amplitude of the oscillations is also not homogeneous
in space. In some experiments we even observe, close to
εHOPF , that the oscillations develop only in some areas
of the cells, whereas in other areas the bimodals stay sta-
tionary. Consequently, a general model for oscillations in
a bimodal varicose domain would be in a first approach:

nz(r, t) = A(r, t) sin q · r + B(r, t) sin k · r

with A(r, t) ' A0

(
1 + a(r) cos(ωt+ φ(r))

)
,

B(r, t) ' B0

(
1− b(r) cos(ωt+ φ(r))

)
(5.1)
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Fig. 13. Representation of the evolution, with increasing ε,
of the basic wavevectors in the bimodal varicose. There ex-
ists a threshold εSYM where q and S(k), k and S(q) come to
coincide. The bimodals then become symmetric.

where ω = 2π/T . The spatial variations of the ampli-
tudes a, b and the phase φ appear to depend strongly on
the location of the domain walls between zig and zag bi-
modals, and on the presence of point defects. We never ob-
served a total phase coherence: the oscillations were never
homogeneous in space, even inside a single bimodal do-
main without defects. This is for instance the case in Fig-
ure 12, where no defect separates the left from the right
part of the pattern. Nevertheless, a careful examination
of the patterns in Figure 12 shows that the bimodal vari-
cose structure is not perfect, in that the underlying lattice
presents some distortions: a curvature of the lines parallel
to the sum of the direct lattice vectors a + b is visible.
This distortion of the bimodal lattice could be modeled
by introducing in (5.1) a r−dependence of the wavevec-
tors q and k . It is then reasonable to assume that these
distortions of the bimodal structure couple to the phase of
the oscillations, and are partly responsible for the phase
inhomogeneities.

When ε is increased above εHOPF , the number of do-
mains of oscillating bimodal varicose based on either zig or
zag increases, together with the number of point defects.
Thus, a pattern of rather high spatio-temporal complex-
ity is obtained, with smaller and smaller domains. The
direct calculation of the reciprocal lattices of these oscil-
lating bimodal varicose structures shows that the under-
lying wavevectors q and k rotate with increasing ε: q goes
away from the x axis, whereas k comes closer to the x axis
(Fig. 13). There exists therefore a last “threshold” εSYM
where q comes to coincide with S(k) and k comes to coin-
cide with S(q). Above this threshold, the oscillations occur
now in symmetric bimodals, as shown in Figure 14. Note
that the rotation of the wavevectors sketched in Figure 13
is not rigid. Typically arg k decreases from roughly 55◦

at εVH to roughly 30◦ at εSYM , whereas arg q decreases
from roughly −8◦ at εVH to roughly −30◦ at εSYM . Fi-
nally, this wavevector evolution might be discontinuous,
since the last transition from unsymmetric to symmetric
oscillating bimodals is spatially inhomogeneous: thus the
coincidence of all wavevectors could be associated with a
subcritical bifurcation.
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t=0: t=τ : t=2τ : t=3τ : t=4τ :

Fig. 14. Half period of oscillations in a symmetric bimodal structure, with MBBA in cell 3 at h = 0, ε = 1.4. The images are
separated by an interval of τ (h) = 22.5 min. In the first image, at t = 0, the zag rolls dominate, whereas in the last image, at
t = 4τ = T/2, the zig rolls dominate.

The transition towards a symmetric bimodal state
occurs far above the onset of the bimodal oscillations
only for MBBA, where εSYM indeed appears to be
larger than εHOPF : at h = 0, we measured εHOPF =
0.5 ± 0.12, εSYM = 1.3 ± 0.3. In 5CB, the situation
turns out to be more intricate, since we found, at h = 0,
εSYM ' εHOPF = 0.7 ± 0.12: in some experiments the
bimodals become symmetric inside the stationary range,
and in other experiments the oscillations develop in un-
symmetric bimodals before the coincidence of the zag and
the zig dual. Also, in 5CB, the oscillations are more lo-
calized than in MBBA, and very often the coexistence of
stationary and oscillating patches is observed. This may
be due to differences in the material parameters of MBBA
and 5CB: in this highly nonlinear regime, the bifurcation
thresholds are probably very sensitive to small differences
in these parameters. Note finally that the oscillations ap-
parently present a large but finite period at εHOPF , and
that this period T slightly increases with increasing ε. For
instance for MBBA at h = 0, T/τ = 5.5± 0.5 at εHOPF ,
T/τ = 8± 0.5 at εSYM ; for 5CB at h = 0, T/τ = 15± 0.7
at εHOPF ' εSYM .

Bifurcations towards oscillating bimodal states have
been evidenced experimentally long ago in electroconvec-
tion [18,19]. These papers have described the symmetric
bimodal case, but recently oscillations in a unsymmetric
bimodal varicose have also been reported [20]. Therefore
the last two steps analyzed in this Section seem to be
generic for planar nematic convection. Note also that a
coupling between distortions of the bimodal lattice and
the oscillations has been evidenced in [21]. In this case
the bimodal was symmetric, and only Eckhauss-like dis-
tortions appeared to be important. In our case, the cur-
vature of the bimodal seems to play also an important
role.

6 Conclusion

The transition towards spatio-temporal complexity in pla-
nar nematic thermoconvection in the director-dominated
regime develops, as the control parameter∆T is increased,
through a cascade of spatio-temporal structures. The first
part of this cascade, at rather low ∆T , consists in a se-

quence of quasi-stationary structures:

normal rolls
↓

undulated rolls
↓

oblique rolls
↓

bimodal varicose.

The very long characteristic times at low magnetic field h
render the separation between transient and (meta)stable
undulated rolls almost impossible, so that a clear defini-
tion of the first step of the cascade at low h is difficult to
give. Correlatively, the very slow dynamics of the curva-
ture lines in the undulated rolls, or of the domain walls in
the oblique rolls and the bimodal varicose, induces a very
slow time-dependence. At higher ∆T , a Hopf bifurcation
is observed, together with an evolution of the wavevectors
in the bimodal varicose:

(quasi stationary) bimodal varicose
↓

oscillating bimodal varicose
↓

oscillating symmetric bimodal.

These two last bifurcations are inhomogeneous and
“pattern-dependent”.

We have given the measurements of the thresholds
εUZ , εZZ and εV H of the bifurcations towards undulated
rolls, zig-zags ( = oblique rolls) and bimodal varicose for
5CB in [5]. On the other hand, the “thresholds” εHOPF
and εSYM of the bifurcations towards oscillating bimodals
and symmetric bimodals are not as clearly defined. Also,
it must be noted that up to now no theoretical expla-
nation of these highly nonlinear oscillating regimes ex-
ist. Therefore, we will conclude this article by giving a
tentative diagram of bifurcations only (Fig. 15), which
mainly relies on the results obtained for MBBA (the di-
agram for 5CB is analogous, except for the fact that the
lines εHOPF and εSYM are very close). This tentative dia-
gram Figure 15 is similar to the diagram evidenced in pla-
nar nematic electroconvection at low frequency [20]. This
proves that the cascade of spatio-temporal structures pre-
sented here is generic for planar nematic convection in the
director-dominated regime, i.e. independent of the basic
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Fig. 15. Tentative diagram of bifurcations for MBBA in cell 3. The open circles show the experimental measurements of the
convection threshold. The continuous line ε = 0 is the theoretical convection threshold obtained after fitting of the thermal
expansion coefficient α (see Sect. 3). The dotted lines shown are only reasonable guesses for the other bifurcation “lines” in the
nonlinear regime. Indeed, the experimental uncertainties on the position of these lines increase strongly with the order of the
bifurcation: whereas the uncertainties on the first threshold (ε = 0) were only of ± 0.05 oC, the last line (ε ' εSYM) is only
determined to a precision of ± 0.2 oC. We had no room to show the undulated rolls domain, which consists in a narrow band
of width ' 0.1 oC below the line ε ' εZZ .

convective mechanism. In particular, the existence of the
oscillations in thermoconvection proves that they do not
originate from ac effects, as was (erroneously) speculated
in electroconvection. This conclusion should motivate new
theoretical works addressing, from the basic nematohydro-
dynamic equations, the modeling of the Hopf bifurcation
in bimodal structures.

The simplicity of the basic structures identified here
above should not hide the fact that the real patterns are
always inhomogeneous in space, and that a rather com-
plex spatio-temporal dynamics results from this inhomo-
geneity. For instance some nucleation effects are associ-
ated with the point-defects, and the coupling between the
bimodal distortions and the phase dynamics of the oscilla-
tions in the last structures apparently entails new effects
that remain to be studied.

Finally, it seems now important to develop optical
techniques that could allow for the observation of the ny
distortion. In effect, the techniques that we have used are
rather insensitive to ny [6] because of the Mauguin prin-
ciple of adiabatic rotation of light polarization [22]. We
plan new experiments in this direction, which could test
the structure of the homogeneous ny field in oblique rolls
predicted in [1].

We thank A. Belaidi for discussions about experiments in
electroconvection. This work was supported by the Direc-
tion des Recherches et Études Techniques under contract
DGA/DRET/94136.
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Fig. 16. Flow structure and out-of-plane director field in the bimodal varicose, as predicted from the lowest-order theoretical
model. For increasing values of the ratio B/A of the amplitudes of the zig and its dual, the left column shows: with the black
circles (squares), the maxima (minima) of the temperature field (A.2); with the continuous (dashed) thin lines, the level lines of
the nz field (A.1) for positive (negative) isovalues; with the thick lines, some fluid trajectories. On the first image B/A = 0.45,
the direct lattice basis vectors a and b are shown. The right column shows again the maxima and minima of temperature,
together with the lines nz(r) = 0. It also shows with the arrows the horizontal vorticity in the mid-plane of the layer (A.5).

Appendix A: Fluid trajectories in the bimodal
varicose

In this appendix, we present a theoretical characteriza-
tion of the local fields in the bimodal varicose, and more
specifically a Lagrangian description of the velocity field.
We will compare with experimental observations of the
trajectories in the bimodal varicose in electroconvection
[15], where these observations are more easy to perform
than in thermoconvection (see the discussion of Sect. 4.1).
In order to be coherent with the phase choice made in Sec-
tion 3 of [1], we define now the amplitudes in the bimodal
varicose by

nz(r) = −(A sin q · r + B sin k · r), (A.1)

where we assume A,B ≥ 0. We also introduce
Aθ = θ̃(q)/|ñz(q)| A, Bθ = θ̃(k)/|ñz(k)| B, Af =

f̃(q)/|ñz(q)| A, Bf = f̃(k)/|ñz(k)| B. Because of the form
equation (3.2) of [1] of the linear roll modes, the temper-
ature, horizontal and vertical velocity fields should be to
leading order

θ(r, z) = (Aθ cos q · r + Bθ cos k · r) S1(z), (A.2)

vh(r, z) = −(Af q sin q · r + Bf k sin k · r) C′1(z), (A.3)

vz(r, z) = (Af q2 cos q · r + Bf k2 cos k · r) C1(z). (A.4)

Note that S1(z) = cos(z) with the boundaries at z =
± π/2 due to our scaling conventions, that C1(z) is also
close to a pure cosine, but with horizontal tangents at
z = ± π/2, and that C′1(z) is close to S2(z) = − sin(2z).
We neglect hereafter the contributions of the velocity po-
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tential g to the horizontal velocity field. In effect g induces,
in the two roll systems, an odd v‖ component rather small
as compared with the (odd) v⊥ component kept in (A.3),
since, from (B.3, B.4) of [1] and to lowest order:

〈
v‖(q)

v⊥(q)
〉z = −

g̃(q)

f̃(q)

1

π

∫ z=π/2

z=−π/2

S2(z)

C′1(z)
dz ' −0.89

g̃(q)

f̃(q)
·

For 5CB for instance, and all active wavevectors q, we
expect from (3.4) of [1] that |g̃(q)/f̃(q)| < 0.22, so that
|v‖(q)/v⊥(q)| . 0.20� 1.

From (A.2), we see that the warm and cold lines in rolls
reduce to warm and cold points in the bimodal varicose,
since θ(r, 0) admits now maxima and minima at

rwarm = na +mb , rcold =
(1

2
+ n

)
a +

(1

2
+m

)
b

for all integers n,m. At these points, the horizontal veloc-
ity (A.3) cancels, and the vertical velocity presents also
maxima and minima. These points corresponds to sources
and sinks, and are shown by the black circles and squares
in Figure 16. The left column of this figure shows, for
B/A = 0.45, the level lines of nz(r), and the projection
on the horizontal plane of some fluid trajectories obtained
by numerical integration of dr/dt + ẑdz/dt = vh(r, z) +
ẑvz(r, z). These trajectories are always closed. The com-
putations have been performed for 5CB and the typical
wavevectors (4.3, 4.8); then Bθ/Aθ = 1.2B/A,Bf/Af =
1.7B/A. These sources and sinks were observed in electro-
convection (Fig. 3 of [15]). For visualization, it is interest-
ing to plot also (right column of Fig. 16) the horizontal
vorticity field in the mid-plane of the layer:

Ωh(r) = −AΩ b sin q · r + BΩ a sin k · r (A.5)

where AΩ = |q|/|b|(q2C1(0) − C′′1 (0))Af , BΩ =
|k|/|a|(k2C1(0) − C′′1 (0))Bf . Note that the prefactors
|q|/|b| and |k|/|a| are equal (by definition of the reciprocal
lattice), and that, for the typical wavevectors (4.3, 4.8),
BΩ/AΩ = 0.9Bf/Af = 1.5B/A. When B/A is increased,
a progressive transition from the rolls of wavevector q
(i.e. of axis parallel to b) to the rolls of wavevector k
(i.e. of axis parallel to a) occurs. This transition happens
in the following way for the horizontal vorticity: when
A � B, Ωh is oriented along ± b for all r; when B/A
increases, Ωh rotates smoothly, from b to −a or −b to a
in the core of the varicose cells, from b to a or −b to −a
in the pinched regions; finally, when B � A, Ωh is now
oriented along ± a. This evolution was described in [15];
in fact Figure 3 there focuses on the specific symmetric
case k = S(q). Note the existence of two lattices of points

where Ωh cancels:

r+ =
(1

2
+ n

)
a +mb , r− = na +

(1

2
+m

)
b

for all integers n,m. Around these singular points of
the horizontal vorticity, the trajectories form “cross-like”
structures which are reminiscent of stagnation points , as
mentioned in [15]. In fact, at these points the horizontal
velocity does cancel, but the vertical velocity only can-
cels in the case of a fully symmetric bimodal (A = B and
k = S(q)).
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