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Nonlinear dynamics of traveling waves in rotating Rayleigh-Beard convection:
Effects of the boundary conditions and of the topology
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Motivated by the experimental results of Liu and Edid®97, 1999, different models are developed to
analyze the weakly nonlinear dynamics of the traveling-wave sidewall modes appearing in rotating Rayleigh-
Benard convection. These models assume fully rigid boundary conditions for the velocity field. At the linear
level, this influences most strongly the critical frequencies: they appear to be proportional to the logarithm of
the Coriolis number, which is twice the inverse of the Ekman number. An annular flow domain is considered.
This multiply connected geometry is shown to lead generally to the existencalobal mean-flow mode
proportional to the average, over the azimuthal coordinate, of the square of the modulus of the envelope of the
waves. Because this mode feeds back on the active wave modes at cubic order, the resulting Ginzburg-Landau
envelope equation containsnanlocalterm. This new term, however, vanishes in the large-gap limit relevant
to the experiments of Liu and Ecke. As compared with previous theoretical work, the present models lead to
reduced discrepancies with the results of these experiments concerning the coefficients of the envelope equa-
tion. It is also shown that the new nonlocal effects may be realized experimentally in a small-gap annular
geometry if a small-Prandtl-number fluid is used, despite the fact that no regime of Benjamin-Feir instability
is predicted to occur.
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[. INTRODUCTION on the one hand by the fact that the regiese 0, where(1)
is expected to be quantitatively valid, is quite difficult to
Nonlinear waves are ubiquitous in nature: they appear ittain experimentally. On the other hand, the theoretical cal-
biological, chemical, mechanical or optical systems, whereulation of the coefficients of Eq1) from basic physical
they often play a crucial role. The simplest and most univermodels is very demanding. A recent and interesting tentative
sal model capable of describing some relevant features afomparison has focussed on ttnaveling-wave wall modes
their nonlinear dynamics is the Ginzburg-Landau envelopghat are obtained in thRayleigh-Beard convection of a ro-

equation tating layerof thicknessh (Fig. 1) when the rotation rat€)
) 5 ) ) is sufficiently large, see e.g., Reff5,6] and references
T(0 A+ v A) = (1+ico) A+ E7(1+icy) A therein. The propagation of the waves is due to the Coriolis
—y(1+ic)|A?A ) force, which dominates the viscous force as measured by the

Coriolis numbery=2h2Q/v, wherev is the kinematic vis-

for a quasiunidimensional system extended inxldérection. cosity of the fluid. In their remarkable experjments, Liu and
This equation for the slowly varying envelope=A(x,t) of Ecke [7,8] used water as fluid, corresponding to a Prandtl
the waves can be shown to hold rigorously wleen0 in the
case of a supercritical instabilitg, being the reduced dis-
tance to the onset of the instabiliff]. The dynamical fea-
tures described by Ed1) are quite rich. For instance, this
equation captures long-wavelength secondary instabilities
that may lead to an adjustment of the wave nunibef the
waves(Eckhaus instability; but also to spatiotemporal chaos

if the Benjamin-Feir-Newell criterion

1+c¢4c<0 (2

is fulfilled. In this later case, very different dynamics involv-
Ing spec_lflc localized structures are obtained de_per_1d|ng OBeen from above. Two isothermal horizontal disks separated at a
the precise values af; andc, see e.g., Ref.2]. This rich-  yigiancen sandwich a layer of fluid, which is contained by a circu-
ness of behaviors, and the fact that simple generalizations ¢4, ertical sidewall. The whole apparatus is mounted on a table
this equation appear to be also semiquantitatively valid fokstating at an angular velocit around the axis of the disks. The
“large” e in some casep3], explains the interest of physi- dashed circle shows a virtual internal sidewall, which should not
cists in Eq.(1), as is evident from numerous reviewsg., influence the wall modes at least for sufficiently large gégee
Ref. [4]). text). Right, geometry of models based on a Cartesian approxima-

However, systematic comparisons of experiments andion. Thus the sidewalls are unfolded to rectangles, and periodic
theories relying on Eq.1) are sparse. This can be explained boundary conditions are applied in tkelirection.

FIG. 1. Left, setup of the experiment of Liu and Edk&8| as
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TABLE I. The first line shows the critical Rayleigh number, wave number, and dimensionless fredseadec. 1)), the coefficients or
combinations of coefficients of the Ginzburg-Landau equatiommeasured experimentally by Liu and EdkteE) [8]. The Prandtl number
P=6.3 corresponds to water at 25 °C, and the Coriolis numfzeb48. These measurements are compared with the theoretical predictions
of Kuo and CrossKC) [9] (second ling¢ and of the present wortP) (third line). The discrepancies between the experiment and the theories
are given in terms of percentages.

R. ke [OR Vg T & (co—c)l7 y (co—0)/7

Expt. LE 20850 4.65 —22.0 2.65 0.03 0.179 4.2 0.74 20.4
Theor. KC 19500 - 6% 4.00 - 14%—24.0 - 9% 2.22-16% 0.026-13% 0.24-34% 14.4-242% 1.11-50% 19.2-6%
Theor. P 19660 - 6% 4.22-9% —22.4-2% 1.91-28% 0.025-16% 0.21-17% 6.40-52% 0.53-29% 19.7-3%

numberP, the ratio ofv to the thermal diffusivityx of the  to the slaved velocity field. This is valid, in fact, in a singly
fluid, of 6.3. These experiments motivated the theoreticatonnected domain such as that considered by R8f&0].
calculations of Kuo and Cro$8], Herrmann and Busgé&0], On the contrary, in a multiply connected domain such as the
Hecke and Saarlodd1]. All these authors neglected curva- annular domain considered in Rdfl1], according to the
ture effects and considered a Cartesian geometry. Becausepatential theory the Navier-Stokes equatiomat equivalent
wall mode is localized near a sidewall, it was suggested byo the vorticity equation. In order to insure the existence of
Hecke and Saarloos that an experiment in an annular geonthe pressure field, this vorticity equation has to be supple-
etry should lead basically to the same results, as long as theented with the azimuthal average of the azimuthal compo-
gap between the two sidewalls is large as compared with theent of the Navier-Stokes equatifpgee Eq(8) below]. This
penetration length of the wall modes. Thus Hecke and Saafglobal” equation does not enter into the calculation of
loos considered in Refl11] an annulus of finite aspect ratio modulated modes such as the linear modes relevant for the
I'=L,/h, wherey=0 andy=L, locate the two sidewalls. A primary instability; but it must be solved at the nonlinear
simpler semi-infinite geometry assumilg=+«< was con- level for the mean-flow independent &f This leads to a
sidered in Refs[9,10]. Only Kuo and Cross gave detailed distinction between the two types of modes introduced
predictions for the Ginzburg-Landau coefficients correspondabove, and to contributions to the slaved velocity field of the
ing to the experiments of Liu and Ecke. The comparisorform

shown in the first two lines of Table | is somehow disap-

pointing, especially concerning the coefficients and c; |ACGH [ PVhmi(Y,2) + A 2= [AXD [P ]Vist(Y, 2).

which characterize the frequency shifts due to variations of

first goal of the present work is to reduce this discrepancyion X, Vhms is the “homogeneous mean flow” ang; is the
through the development of new models where fully rigid “large-scale flow.” Since the terms proportional t&|* feed
boundary conditions are used for the velocity field, instead oback on the active modes at ord&f, one then obtains the
mixed conditions as in Ref§9—11]. Indeed, to allow semi- nonlocalenvelope equation

analytical calculations, rigid boundaries were assumed only

for the vertical sidewalls in Ref§9—11], while unphysical (G A+vg0xA) = (1+ico) A+ EX(1+ic,) FZA

stress-free horizontal boundaries were used. My more realis- . LTS

tic models require fully numerical calculations f)rlom the be- —y(1+ic)|APA—5(1+id)[A]PA.

ginning, based on the Fourier-Galerkin scheme presented in 3)
Appendix A, but lead to results closer to the experiments, as
shown in the third line of Table I. This new phenomenon[12], established for a two-

Another more fundamental motivation of this work con- dimensional model in Ref15], is studied here for the first
cerns the form of the envelope equation in connection witdime in a fully three-dimensional model. In particular, it will
the topology of the flow domain. At the nonlinear level, the be shown that, in the limit of a large aspect rdfie- +« of
envelope formalism requires an adiabatic elimination of thghe annular geometry considered, the nonlocal term in Eg.
slaved modes of order of magnitud®. Among those, a (3) does vanish, i.e., Eq1) is recovered.
mean-flow mode can be excited|i&|? does not depend on The different models considered will be presented in Sec.
the azimuthal coordinate or large-scale flow modes due to Il and the linear results in Sec. Ill. Section IV will establish
slow variations of|A|? in x. Usually, these two types of envelope equatiort3). The large-gap limit relevant to the
modes are calculated through the vorticity equation, i.e., théxperiments of Liu and Ecke will be discussed in Sec. V, and
curl of the Navier-Stokes equation; this scheme is very conthe small-gap case in Sec. VI.
venient, since it permits a straightforward elimination of the
pressure field. Hence these two types of modes give rise toll. MATHEMATICAL DESCRIPTION OF THE MODELS

the same type of contribution i i o
Using the cell heighh as length scale, the flow domain is

defined byxe R, ye[0[I'], ze[—1/2,1/7 with a finite pe-
|AX, )| 2Vmi(Y,2) riod L in thex direction(Fig. 1). Following Refs[8—11], the
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regime of not too large rotation rates is considered, where th&/hereas the horizontal plates are always assumed perfectly
centrifugal acceleration is negligible relative to the gravita-conducting, i.e.,

tional acceleratiorg. Time is scaled in units of the thermal

diffusion timeh?/ k and temperature in units afv/(agh®), 6=0 for z=+*1/2, 11

with the thermal expansion coefficieatof the fluid. Under
the Boussinesq approximation, the evolution equations fo
the velocityv and the deviatiord of the temperature from
the basic profile of pure conduction are

three different types of thermal boundary conditions have
been implemented at the sidewalls. Model CC, used for vali-
dation by comparison with Ref16], assumes sidewalls that
are also perfectly conducting,

P o+ (v-V)v]+ nZXv=—Vp+Av+6z, (4 6=0 for y=0[. (12)

h0+Vv-VO=A6+Ro,. (5 Models Il and CI, on the other hand, have been developed to
approximate the experimental boundary conditions of Liu
and Ecke, where the ratio of the thermal conductivity of the
sidewall to that of the fluid was of the order of 0.25, i.e.,

Here, in addition to the Prandtl numbBrand the Coriolis
number# defined in the introduction, the Rayleigh number

R=ag hS(Tinf_Ts,un)_/(_"V) and the pressurp appear. Be-  ga For the purpose of simplification, and following Ref.
cause of the periodicity undes—>x+L and of the incom-  r19] it is assumed in model Il that this ratio vanishes, i.e.,
pressibility conditionV-v=0, a spectral decomposition of it the two sidewalls are insulating:
the velocity field
. N . dy0=0 for y=0I". (13
V=Xv o+ Y(d,1ho) — 2(dyiho)
This, however, leads to the existence of two counterpropa-
0 iy 5 ikx gating sidewall modes, each one attached to one of the side-
+k§s [X(9y01y I K YOIy T 20l © walls. Therefore, the competition between these two modes
should be analyzed first, presumably with two coupled enve-
can be used wittb=2#7Z*/L, and with the functions)y,  |ope equations generalizingd). Because the form and the
%o, vy, andv, depending only ory andz Hereafter the validity of such envelope equations is still the object of a
limit of large L will be considered, where the wave numberscontroversy(see, e.g., the discussion in REE7]), it seems
k vary quasicontinuously. As stated in the Introduction, be4nteresting to develop also an asymmetric model CI with an

cause of the annular geometry the Navier-Stokes equéton internal conducting sidewall and an external insulating side-
is equivalent to the vorticity equation wall:

P i+ S(V,v)]— ndv=Aw+X(dy0)—y(dx0) (7) 9=0 for y=T', a,6=0 for y=0. (14)

with w=V Xv, S(v,v)=V X[(v-V)v], plusthe x compo- This asymmetric model favors external sidewall mogse
nent of the Navier-Stokes equatiqd) averaged in thex  Ref. [10] and Sec. Ill, and moreover permits a simpler
direction, Galerkin ansatz for the temperature fi¢tke Eq.(A8)].

-1 _
P~ Y 0w+ V- Vuy) — ndziho=Avg. 8 Ill. LINEAR RESULTS: PROPERTIES OF

For convenience, the local state vector of the fluid THE SIDEWALL MODES

With the Fourier-Galerkin scheme introduced in Appendix

V=(vx,vy,vz,0)=(v,0) A, the linearized version of Eq9),

is introduced, and Eq$5) and (7) relevant forx-dependent kN RIDV:(knR=LoV:(knR 15
modes k+0) are written in the form olknR)DVi(kn.R)=LrVi(kin.R) 19

with V,(k,n,R) depending onx only through the factor

DaV+No(V. V) =LgV, ©) exp(kx), is transformed to a matrix eigenvalue problem. The
whereD,Lg (N,) are linear(nonlineay operators. eigenvalueso(k,n,R), depending on the wave numbkr
Realistic rigid boundary conditions, #0 and on a mode number, are computed, and neutral
modes verifying Ref)=0 are sought. They correspond to
v=0 for y=0I', z==*1/2, R=Ry(k,n); by minimizing these functions with respect to

k, the optimal modes/,(kZ,n,RY) are found. The corre-

are used for the velocity field. With spectral decompositionsponding eigenvalues (k" .n,R) assume the form-i !,
(6), they translate into with the optimal frequencie®?. A further minimization of
the corresponding threshold® yields the critical valuen,

Vo= ho=vky=0y,=0 for y=0I", z=x1/2,
o Ty of n. The corresponding values & (k <), more simply

dytho=dyvy=0 for y=0T, (100  notedR; (k.), are the critical Rayleigh numbéwave num-
ben; the corresponding optimal mode is called the critical
0= 0dv,=0 for z==1/2. mode; the corresponding frequency is the critical frequency
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100 250 N 500 1000 1500 500 " 1000 1500

FIG. 2. ForP=6.3, the dashed line shows the onset valRps 0fp
of the stationary bulk mode in infinite geometry calculated with the
scheme of Ref[18]. The squares show the corresponding measure-
ments of Liu and Ecke[8]. For Coriolis numbers%=100,
traveling-wave sidewall modes are excited at a lower Rayleigh o
numberRS. The corresponding onset values calculated with the 10 .
Galerkin code are shown with the full line, whereas the disks show
the measurements of Liu and Ecke.

<

100 250 n 500 1000 1500

w¢ . For fixed control parametef3, 7, I', the results of the

. . u . ... FIG.3.(a) ForP=6.3, the dashed line shows the optimal values
computations are ConSIderr?d to be “Galerkin converged 'ka of the azimuthal wave number of the stationary bulk mode in

n n
the relevant values df;, R;, andw. change by less than jxfinite geometry. The full line shows the critical wave numbgr
1.5% when the truncation paramet¢iof the Galerkin code  of the sidewall mode computed with the Galerkin code, and the

[see Eq(A10)] is increased by two. Note that all the active gisks show the corresponding measurements of Liu and FRlke
modes discussed hereafter @&een modesuch that, under (b) Under the same conditions, the computed critical frequencies
z2—>—1Z, are compared with those measured by Liu and Ecke.

v, and @ are evenp, andv, are odd. (16) the Fig. 4 of[8] also shows that the agreement between the
computed and measured frequencies is much better than in

With model CC, and a vanishing Coriolis number like in the case of the mixed modgd]; see also the first columns of
Ref.[16], the critical mode is a stationary bulk mode which Table | for such comparisons. The numerical results of Fig.
invades the whole gap<Qy<T'. The results of Table | of 3(b) indicate a peculiar scaling law for the frequeney
Ref.[16] are recovered with a very good accuracy. which appears to be proportional to4nThis property con-

With models 1l and Cl, sidewall modes become preferredrasts with the results of the mixed mod@,10], where it
for not too small values ofy; the computation of a sidewall was found thatw? converges to a limit value fof— .
branch is considered to be converged if the corresponding Another relevant difference with respect to previous
Galerkin converged values &f, R7, andwy change by less analyses is that, with the model II, bulk modes are never
than 1.5% wher is increased by one unit. Figure 2 shows found to become critical for;> 100, in contradiction to the
the onset valuesR.=RS corresponding to the external findings of Hecke and Saarlopsl]. They predicted that for
insulating-sidewall modegwhich are identical in models I P=0.15 andI'=1, traveling-waves bulk modes become
and C), together with the bulk mode onset valug§ in  critical for 280< »=11200. WithP=0.15 andl'=1, | do
infinite geometry for the purpose of completeness. A goodind traveling-waves bulk modes with rather large wave
agreement is obtained with the measurements of Liu an@umbers as in Ref.11], but they correspond to a value of
Ecke [8]. With model Cl, the inner conducting-sidewall R¢>1.7R;. This large discrepancy cannot solely be due to
modes can also be computed. These modes become neutta¢ different velocity boundary conditions. It reveals an error
0n|y at quite |arge Va|ue§{ic of the Ray|e|gh number. For in the linear scheme of Hecke and SE.la.”OOS: they a_lssumed
instance, forP=6.3, »=1000, | find R®=34520 andR. that thex andy components of the vorticity equation imply
— 67580, of the order of magnitude Bf =71 080. This fact IS Zcomponent, which was not solvésee Ref[19] p. 35.

that a conducting sidewall dramatically damps wall moded" fact, still for '=1 and at even lower Prandtl numbers, it
agrees with the results of Herrmann and Bugs@. Hence turns out that the most dangerous modes after the sidewall

in the following, | shall focus on the external insulating-wall _modes are oscillatory axisymmetric bulk modesrrespond-

modes. The numerical values Bf in Fig. 2 indicate a scal- ing to the (;ontinuous Iimitg—>0) rather analogous to those
ing law of the formRSe 5 for large 7, in accordance with presented in Ref.20]. For instance, for the Prandtl number
C 1

[9.10]. As shown in Fig. &), the critical wave numbek® of of liquid mercuryP=0.0257, the corresponding ratRl/Rg
,10). . y c

the sidewall modes converges to a finite value whgn attains a minimum of 1.23 fop=630.
—o0; this behavior also agrees with the results of Refs.
[9,10]. With their negative frequency [Fig. 3b)], the ex-

ternal sidewall modes do correspond to waves traveling in In the weakly nonlinear regime, wheee= R/R,—1<1,
the retrograde direction. The comparison of Figb)3with approximate solutions of the evolution equatid8sand(9)

IV. WEAKLY NONLINEAR ENVELOPE EQUATION
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can be obtained with the so-called weakly nonlinear meth- 9:3
ods. Here the spectral approach exposed, for instance, in
Refs. [15,2]] is employed. The basic ansatz assumes the z 0
form
-0.5
V=W+W*+V, (17 E 2 y
0
with
-0.25
v
W= 2 Ak +a)Vi(ke+ae e (189
a<ke 075
3 2 y 1 0
~ 2 Alket q)Vi(kp)e! @) (18b
a<kc
- S
~AX)Vy(ko)e et (180
being the active wave packet, aNd , regarded as a pertur- 5 2 y ! 0
bation of W, in the passive modes subspace generated by the o
eigenmodes of linearized proble(5) with finite negative FIG. 4. Homogeneous mod&;V, computed forP=6.3, 7

growth rate Re§). In Eq. (18), Vy(k.+q) is the neutral =200,I'=3, €=0.1, and the model Il. Upper plot: contour lines of
mode of wave numbek+q the azimuthal velocity(y,z). The thick line is the isoliney”
C )

=0. Mid plot: profile ofASvQ(y,O) vsy. Bottom plot: the contour
~ ~ i lines of the temperature field'(y,z) are shown with the gray lev-

_ _ ik X p (y1 ) gray
Vi(ke) = (Va(X,y,2), 01(%,y,2)) = (va(y,2), 61(y,2) )™ els, and the transverse flow lines, i.e., the isolines/®¥y,z) are

(19 shown with the full lines. The arrows indicate the direction of the
is the critical mode, and transverse flow. The maximum value Af6"(y,z) is 288.
_ h h
A= 3 Alke+a)e™ (20) wREV1 Vo) = Avct 90z, (233
C
q<k¢

*\T— h h h
is the slowly varying envelope. The first step of the nonlinear HRES V1V ALY oty (23D
calculations consists of tHadiabatic” elimination of V, at . h h
orderAZ; for the calculation of the corresponding nonlinear 2Rev,-VO7)=A0"—Rcdy (239
terms, the simplified form&l8h) and(18¢) of W can be used.
Because of the properties of symmetry of E@s.and(9), all  with the notationu=2/P. Note that, because of the identities
the contributions td/, that will now be calculated have &
symmetry opposite to that of the active linear mod&6): *y — . *
they areodd modesuch that, undez— —z, SV v1) =2 (Ve VoL, (243

v, and ¢ are odd,v, andv, are even. (21) Sy(v1, Vi) =—3dy[(v1-V)viy], (24b)

A. Elimination of the homogeneous mode the derivatives of Eq(23g with respect toy andz yield the

y and z components of the averaged vorticity equati@h
The system(23) is solved numerically with the Galerkin
scheme. A representative result, normalized physically with
the use ofA=A, given by Eq.(43a), is shown in Fig. 4. A

> Alke+q)A(—ke—q)Vi=|A(X)[2V) (22)  retrograde flow is generated near the external sidewall. This
q flow is small but not negligible as compared with the
leading-order flow: with the parameters of Fig. 4, the maxi-
mum value ofAZ|v"| is only 11.6 times smaller than the
maximum value of 2,Re(v,). Note also the classical heat-

N R ing (cooling) of the upper(lower) part of the layer due to
A(—ke—q)=A*(kc+0). convection near the sidewall.

The mode of temperature and velocity ¥ which is
homogeneous with respect xceassumes the form

with V3=V3(y,2)=(vy,d,4", —a,¢", 6", using the nota-
tion

It is controlled by the averaged azimuthal Navier-Stokes S
equation(8), the averaged azimuthal vorticity equaticf B. Elimination of the large-scale modes

-X, and the averaged heat equat{®hat order of magnitude The large-scale modes W, are generated by the nonlin-
A?, ear term
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v, MRS, (V1 V)= = A(dyv}) + 7dvy, (299
e 2ReVv;- VO )=A6'+Rw. (290)
-0.50

R 3 y i 0 C. Difference between these modes: Global mode

FIG. 5. For the parameters of Fig. 4, the azimuthal component From continuity equatllor(27) in the large-scale limig
20 ) . ) —0, one expects the existence of a large-scale stream func-
of the large-scale flowgv,(y,0) in the middle of the layer is ploted tion ¢| such that

vsy.
vy=d,¢ and vl=—0a,y . (30)
zq: Eq Alko+ A(—ke—a') The global mode is defined as the difference
XN (V1 (ko) | V(—koe ™19 vI=vl-vl, PO=yr—y), =6"-¢, (3D
in Eq. (9), where the notation i.e., Vi=(ve,0,49,— 9,4 6% =V)—V}, such that the sum
Ny (Vo[ Vi) =No(V Vi) + No(Vp  Va) of homogeneou&?2) and large-scale modé25) in V, reads
has been used. Their elimination yields to lowest order VI = [ACO[AVE+ A2V . (32)
(o Aok STl Eakion v i £ 250 e
=[AGOIP=[ACOPIV; (25 ay(AvS+ nay®) = Avi+ nay9) =0,
with Vb =V4(y,2) = (v},vy,v5, 6') defined by ie.,
Vo= lim LeNo(Va(k)@¥Va(—ko). (26 Avd+ 70,49=M. (333

This limit, which has to be taken far#0, and which is real, O the other hand, substraction of Eg9a from Eq. (230
is computed numerically with the Fourier-Galerkin scheme.and of Eq.(29d) from Eq. (230 yields
Note that the continuity equation
—AA YO+ oI+ a,69=0, (33b
iqv!(-i-(?yvly-i-&zvlzzo (27)
A 69— R.o,y9=0. (330
implies the constraint
The three equation83) show that the global mode corre-
frfllz vi(y,2)dydz=0 (29) sponds to the velocity and temperature fields that a constant
oo 7 ' pressure gradiem! in the x direction would drive; of course
the value ofM is not free but set by the differend&) be-
which has no counterpart in the properties of the homogetween the nonlinear modeg and v, computed in Secs.
neous flow. From Eq28), it is clear that the large-scale flow |y A and IV B (see Appendix A 2 for details on these com-

cannot be purely retrograde as is nearly the case for the h?)‘utations. A typical result forvg, which will be commented
mogeneous flowFig. 4). Indeed, Fig. 5 shows the existence y, in sec. V. is shown in Fig. 6.

of a prograde component of the flow throughout most of the
interior of the layer. It is thus erroneous to assume Wt
andV'2 are identical, as has been done in Réd]. In order

to prove this in more details and to isolate the nonlocal ef- As usual, the nonlinear source terms of wave numbers
fects[see Eq.(32)], | focus now on the differenceh—V,.  close to* 2k, generate the terms

For this purpose, it is worthwhile to note that liniiz6) sat-
isfies the following equations derived from the vorticity and
heat equation§7) and(5), i.e., the components of E¢Q),

D. Elimination of the short-scale modes

VS =A%(x)Viexp — 2i wct) +c.c. (34)
inV, , whereV; depends o through the factor exp(R.Xx).
MRG[SX(VLV’{)]:A((?yUIz— 3zv|y) + 9duL+ ayg[ This finishes the determination of the passive modes at low-

(293 est order, which thus yields
LRES,(v1,VE)1=A(d,03) + nd,0y, (29b) vV, =Vi4vs (35)
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pReE(V1- Vui) =2(Pky) M Im[v1,dy(9,01,+d,01,)

+; lzaz( é’y’ljiy_{— ‘92; Iz)] (37)

Because of Eq(24), the derivatives of this expression with
y respect toy and z are also the nonlinear source terms in
B large-scale equation@9b) and (29¢). In the absence of ro-
-)i).ozs tation and for bulk modes, the critical eigenfuncti&;@ and
v1, can be chosen to be real; consequently these source terms
vanish. Sincep=0, Eqgs.(233), (29b), and (290 show that
0075 vi=v,=0. Thusv?=0, and according to Eq(3339 M
| =V9=0 as assumed in R€fL6]. With the Galerkin code for
model CC, the local envelope equati¢hl3 of [16] is re-
covered, with values of the coefficients in very good agree-
ment with those of Table | of Ref16].
On the contrary, in the presence of rotation and for side-
> 1 ! wall modes, the critical eigenfunctions,, andv,, are al-
Y ways complex. Thus nonlinear source tef®7) and its de-
FIG. 6. Same as Fig. 4, but for the global modV/g, i.e., the  fivatives are nonvanishing, as ar (Fig. 4), v} (Fig. 5, and
fieldsv(y,z), A2 (y,0), 6%(y,z), and ¢%(y,z) from top to bot-  hencev} (Fig. 6). Before proceeding with the description of

-0.050

0.5

-0.5

tom. The maximum value o&A36%(y,z) is 0.93. the nonlinear results, | mention that a validation of full en-
velope equatior{3) has been done through a comparison of
E. Envelope equation the results of the stability analysis of the critical solution of

The linear terms of the envelope equation are obtained agd- (3) with respect to Iong-wavelengt_h modu_lgtio(fsse
in Ref. [15] from the expansion Sec. 4.3 of Ref[15]) with a direct numerical stability analy-

sis based on computations similar to those of Appendix C of

o(Ke+0,ne,R) ~—i(we+0v40) Ref.[22]. A very good agreement has been obtained.
-1 H 2 H 2
+7 [(1+ico)e—&%(1+icy)q?] V. LARGE-GAP LIMIT
of the linear eigenvalue for smad and €, whereuv is the Equations(33) are invariant undey—1"—y. Thus with

group velocity of the waves, and (£) is the characteristic model Il, the boundary conditions of which are also sym-
time (length of the instability. On the other hand, the reso- metrical, one has undgr—I"—y that

nant nonlinear terms in Eq9), which are contained in ]
No(W|V,)+N,(W*|V,), yield after projection onto the ad- vy and ¢¢ are even, ¢9 is odd. (38

joint critical modeU$ the terms L . L
J ! Because it is driven by @virtual) pressure gradient indepen-

dent ofy and z, the global mode is a bulk mode which in-
vades the whole gap, as shown in Fig. 6. This figure, as Figs.
4 and 5, has been computed with model 1. With model CI,
the fields are very similar and only weakly affected, near the
o ) | < . internal sidewall, by the different thermal boundary condi-
7 y(1+ic) =(Na(Vi(ke) Vo) + Na(Va(— ko) |V3)),UT), tions. From an energetic point of view, it is clear that the
(363 sidewall modes cannot feed a large amplitude global mode
invading the whole gap, especially in the large-gap limit.
7 18(14id) =(Nx(V1(ke)|VY),US). (36b)  Indeed, the numerical results show that the ratio of the maxi-
mum values ofv?| and|v"|, or equivalently of the maxi-
After adding the linear terms and multiplying by one ob-  mum values of¢® and 6", decay rapidly with increasing.
tains envelope equatiof8). For fixed values of the control Accordingly, the ratio of the global-coupling term(1
parameter®, », andI’, the numerical values of the coeffi- +id) (36b) vs the local-coupling termy(1+ic) (36a de-
cients of Eq.(3) are considered to be Galerkin converged if cays rapidly with increasin@’. This is shown in Fig. 7 for
they change by less than 2.5% when the truncation parametéte real parts of these coefficients; note that the critical mode
N (A10) is increased by 2. has been normalized with the convention defined by(E§).
of [8], i.e., such that the reduced Nusselt number reads

— 7 Ly(1+ic)|AX)|2A(x) — 7~ 18(1+id)|A(X)|?A(X)

with

F. Source terms controlling the homogeneous

1 2 4
and large-scale flows—validations Nu—1=0.39A|*+O(A"). (39

The nonlinear source term in homogeneous flow equatioThe data of Fig. 7 indicate a power-law decrease of I'
(23a assumes the form with an exponent of the order ef 1.1. The numerical results
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Y w=[(cz—cole+ vgq+E(ci—cy)d’l/7, (43D

and exist only for

W | €>eo(q)=£0°. (44)
K - Obviously, detailed measurements of the amplitude and fre-
23 3 WL a3 3 guency of these waves yield estimates of the coefficients of

Eqg. (41) as in Ref[8]. The study of the Eckhaus instability
FIG. 7. ForP=6.3, =200, the disks show the computed val- may then reveal the nonlocal effects. Indeed, from the local
ues of the local saturation coefficieptvs the dimensionless gdh envelope equatiodl), one would expect an Eckhaus limit
These values have already converged to their limit valuelfer at
+00 shown by the full line. The squares show thescaled nonlo-
cal saturation coefficiend; the dashed line is a fit of these data to 2(1+C§)+ 1+c,c3
a power law. ee(q)=

1+c,c, €0(q). (45)
show a similar behavior of the imaginary pagts andéd of ~ However, the full nonlocal envelope equati¢d) yields a

coefficients(36a and (36b), with the same exponent for the ifferent resultsee Ref[23] for the calculation of this limjt
power law of d vs I'. Naturally models 1l and CI give the

same results. Thus the limlf— +« is regular, and local S

envelope equatiofil) used in Refs[7—9] is recovered in the 2(1+c?)| 1+ —|+1+coc

large-gap limit, with the coefficients shown in the last line of ex(q)= €(Q). (46)
Table | for P=6.3, »=548. The remaining discrepancies 1+cqc

with the experiments are probably due to the finite thermall_aking into account the fact thak< y (Fig. 7), one sees that

conductivity of the sidewall and due to curvature effdtte the diff bet de! q
experiments were carried out in a disk with a not very Iarget, e” ltertehnce elweeeE((t]) at1:n ;E(q) (éqrrespon s_eéssden-
radius-to-height ratio of five ially to the replacement o by c. Since c;—c=&(

—c)/gs, this change will be important i/ y is not too small
and if 5d is quite different fromsc. As shown in Figs. &)
and 8b), this happens only for very small Prandtl numbers

A natural question arising from this work concerns theP<0.05. Indeed important global effects require a large-
possibility of new experiments in an annular geometry thaémplitude global-mean flow, i.e., a weak viscous damping,
may exhibit the nonlocal term of E@3). It is obvious from i.e., a small viscosity, see the factors P! in front of the
Fig. 7 that a small gap should be used. Asymmetric boundarfionlinear advection terms like E(37). It is also important
conditions corresponding to model CI, with an inner con-to note that the global coefficieatdoes not vary monotoni-
ducting sidewall and an external insulating sidewall, shouldcally with P [(Fig. 8@], indicating complex changes in the
be of interest: then only external sidewall modes will becomestructure of the flows; for instance, the form of the homoge-
critical for =100, and more complicated effects generatedeous flow depends strongly on the Prandtl number as shown
by the competition between left and right traveling wavesin Fig. 9 (compare with Fig. # Figures 8a) and 8b), which
will not appear. The next important point concerns the measuggest that the lim®— 0 is singular, can be complemented
surable effects of the nonlocal nonlinear term is ). This by the plots ofez(q)/eo(q) and e£(q)/eq(q) shown in Fig.
term sums up with the local nonlinear term for monochro-8(c). For the exhibition of global effects, the use of a liquid
matic waves metal such as liquid mercury correspondingRe-0.0257

5 [24] appears to be appropriate. FBr=0.0257,I'=1, %
A=Aqexdi(gx—wt)], (40 =250, model CI predictsy=11.10, §=-0.901, c;=
- —0.151, ¢=-0.011, and c3=-1.067, i.e., a rato
for which |A|*=|A|2. Hence for such waves envelope equa-e/(q)/e(q) of 0.605. This significant decrease of the Eck-
tion (3) reduces to the local envelope equation of the formhaus limit as compared with the predictions of the local en-
D velope equation should be measurable experimentally. This
. ) . 2 calculation furthermore reveals the stabilizing effect of the
T(9A+vgdA)=(1+iCo)eA+ E(1+icy) LA nonlocal term on modulational instabilities at very small
—gs(1+ics)|Al2A (41) Prandt! number. I_nde_ed, i|j (;ontraq_ictipn to Rf1], | finq
no region of Benjamin-Feir instability in this system; since
with v>0 always holds, the corresponding criterion for modula-
tional stability is 14+-c,c>0, see Ref[15] or [23].

VI. SMALL-GAP CASE

g3=7y+9d, cz=(yc+dd)/gs. (42)

. . VII. CONCLUSION
The corresponding solutions read
The occurrence of global coupling from the “topological”

Ag=Vle—en(a)]/gs, (433  constraint(8) is an interesting result, that extends the previ-
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10 a their x dependence can be described as the sum of Fourier
modes in exg€x) with q# 0, the large-scale flows automati-
cally fulfill the requirement of a vanishing mean pressure
0 — gradient in thex direction, and can be calculated with the
108 vorticity equation. By contrast, the strictly homogeneous
mean flow has to adjust in accordance with this requirement,
/ i.e., it has to be calculated directly with the Navier-Stokes
.025 005 0.1 05 1 5 10 . . . .

P equation. Since the corresponding nonlinear source terms
3 can be deduced by the application of the curl operator, the

100 3¢ b .

SN difference V4(y,z) between the homogeneous and large-

- scale flow mode¥!(y,z) andV}(y,z), i.e., the global mode

; factor of |[A(x)|2 in V, , is a neutral mode of the linearized
vorticity equation[as confirms the inspection of Eq83a
/ and(33b)]. This explains why a scheme relying only on the
O e — — vorticity equation, like that of Ref.11], cannot capture this

P global mode. This also shows why the global flow must
‘local’ c equilibrate a mean pressure gradiéhin the x direction. A
further important result is that the magnitude of the mean,
large-scale, and global flows, and of the corresponding
global-coupling coefficients, is controlled by the viscous
damping: the smaller the viscosity, i.e., the Prandtl number,
] e =S CL b the stronger the mean flows, see Fig&)&nd 9b). This
B — i — classical tendency was also found in a similar context in Ref.

P [15], see e.g. its Fig. @). It is, moreover, interesting to

FIG. 8. ForT =1, »=250, (a) shows the value of the locél quote that the nonlocal effects do not enter for monochro-

line) and (rescaled nonlocal(dashed ling saturation coefficienty matic_waves, .fo.r' which the local envelqpe equgt(da) is
and 5 versus the Prandtl numbd®, (b) shows the value of the effectively valid; indeed the corresponding nonlinear term,

(rescaledl local (full line) and nonlocal(dashed ling frequency-
shift coefficientsc and d after a multiplication bys. (c) The thin 7 1ga(1+ics) = (No(Vi(ke) V5 + No(Vi(—ko)[V3),US)
line shows the value of the reduced Eckhaus-instability threshold

ee(0)/ €9(q) (45) that one would expect on the basis of the effective | g_\sh
local envelope equatioi4l). The thick line shows the correct because oW, +V;=V;, can be calculated from the knowl-

thresholde..(q)/ex(q) (46) predicted by the full nonlocal envelope €dge ofv§ (andV3) ignoring bothV}, andV. Naturally, the
equation(3). The thin dashed line shows for memory the classicalnonlocal effects enter only for more general solutions such
value obtained when the frequency-shift coefficients vanish. that|A(x)|?#|A(x)|?, e.g., modulated solutions. Indeed the
nonlocal effects alter the modulational Eckhaus instability as
ous analysig[15] restricted to a two-dimensional system. shown in Fig. &c); this may permit experiments exhibiting
Physically, the generation of the mean and large-scale flow#e nonlocal effects, as discussed at the end of Sec. VI.
originates from the nonlinear advection term or Reynolds- Global-coupling effects similar to those exhibited here ex-
stress term (- V)v in the Navier-Stokes equation. Becauseist, in principle, in any hydrodynamical annular system. Yet,
they are quite probably negligible in many situations, as in
the present case for fluids with Prandtl numbees1. From
a direct analogy, it is thus expected that the use of local
envelope equations is justified for the analyses of the binary-
mixture experiment$25,26, since the Prandtl number was
larger than six in both experiments. The qualitative use of
local models for convection experiments in ga$2g,2§
also appears to be justified, since the Prandtl nunier
=0.7. However, Fig. &) suggests that high-precision con-
L e vection experiments in gases may reveal nonlocal effects.
s 0.5 0 Another classical annular setup used for the study of hydro-
y dynamic instabilities is the Taylor-Couette apparatus. In this

FIG. 9. (a) Contour lines of the homogeneous azimuthal flow SyStém global-coupling effects should also exist, as pointed
v(y,z) computed foP=0.0257,T'=1, »=250. The thick line is  Out by Refs[13] and[14]; it would be interesting to revisit
the isolinev"=0. (b) for I'=1, =250, ande=0.1 corresponding these pioneering studies.
to water, pressurized argon and mercury from top to bom, Itis flnally important to mention that nonlineand non-
profiles of the dimensional azimuthal flowc(h)AZ(y,0) vsy  local waves represent a category of phenomena that go be-
predicted for a cell of thickneds=1 cm. One unit of the vertical yond hydrodynamics. For instance, it has been shown re-
axis is 0.1 mm/s. cently[23] that the envelope equation for ionization waves in

‘nonlocal’

0.5
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a plasma column is nonlocal, because the constraint of a

fixed electric potential assumes the nonlocal form 9=% héOmAan(Z)Jr; % DonCHY)AR(Z)  (AB)
L
f E,dx=U-RI is necessary, with
0
1
with E being the electric fieldcompare with the constraint (CH'(x1)= LC%(Y)dY= 0. (A7)

of a vanishing pressure gradiefgd,p dx=0). It is there-

fore hoped that the present work will stimulate new experi-Model ClI, according to boundary conditiof$l) and (14),
ments and modeling efforts aiming at a better knowledge opermits the simpler ansatz

the dynamics of nonlinear nonlocal waves.

= iy y z
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APPENDIX: FOURIER-GALERKIN SCHEME (DY)’'(—1)=D¥(1)=0. (A9)

1. Generalities The sums over the integer indicesandm run for

Only pure Fourier modes, in exgx), of the velocity and 5 o i
temperature fields are considered; thus fields depending only n“+(m+2)°<N (A10)

on ye[0I'] and ze[—1/2,1/2) are to be expanded on . . . . )
Galerkin base functions. In order to allow for a tunable valuew'th N being the truncation parameter of the Galerkin code;

L 2 this slightly unsymmetric truncation scheme favors a better
g;;“r{g;hgffcl:%v(\)/rddicr)]r:tzzlg 's mapped o-1,1]" through the resolution in they direction aiming at the study of the large-

gap limit. In order to accelerate the convergence of the
Y=(2y-D)IT, Z=2z. (A1)  scheme in this same limit, it has proven useful to use differ-
ent scalar products in th&¥ and Z directions. The scalar
For the velocity components of a modulated maéde0 [see  product in theY direction is simply
Eqg. (6)], one must write

1
~ , <f(Y),g(Y)>y=f f(Y)g*(Y)dY; (A11)
uky=; % UynnBY(Y)AL(Z), (A2a) -1
in the Z direction, in order to favor a better resolution of the
~ corresponding boundary layers,
V=2 2 VannAH(YV)BR(2), (A2b)
1
with (f(2),9(2)),= jﬁlf(Z)g*(Z)dZ/\/l—Z2 (A12)
AN(£1)=B(£1)=(By)'(£1)=0 (A3) is preferred. The polynomiald’, BY, CY, DY are con-

] ) - structed with the Gram-Schmidt orthogonalization scheme
for r=y,z in order to satisfy boundary conditiori$0) con-  from simple polynomials fulfilling the corresponding bound-
cerninguyy andvy,. For the homogeneous mode of velocity ary conditions, the scalar product being given by &iL1).
[see Eq(6)], The same procedure is used to construct the polynorfals

~ and B}, with the scalar productA12). Special care is taken
Vo= X, vnmAL(Y)AL(Z), (Ad4a)  to insure the symmetry properties
n m

AL(=2Z)=(—1)MIAY(2),

= DamBY(Y)BL(Z Adb (A13)
Yo=2 2 YnnBY(Y)B(2) (A4b) B (—2)=(— 1™ 1BZ(2).
fulfill boundary conditions(10) concerningv, and ¢,. A Thus the active even modes fulfilling E{.6) correspond to
Fourier mode of the temperature field assumes the form Eq. (A2a) with m odd, Eq.(A2b) with m even, Egs(A5),
(A6) or (A8) with m even; the passive homogeneous mode
_ ~ Ly 7 correspond to EqA4a) with m even, Eq(A4b) with m odd,
0 ; ; OnmAn(Y)Am(Z) (AS) Eqgs.(A5), (A6) or (A8) with m odd; the passive “modulated
modes” correspond to EqA2a) with m even, Eq.(A2b)
for model CC with boundary conditiondl) and(12). For  with m odd, Egs.(A5), (A6) or (A8) with m odd. The equa-
model I, according to boundary conditio(il) and(13), the  tions forv,, andv, are they andz components of vorticity
more complicated ansatz equation(7); these components imply tkecomponent of the
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vorticity equation, since this equation in a curl aaffourier  critical data displayed in Figs. 2 and 3 are achieved With
modes are considered. With the method of the weighted re=18 for <1000, whereadN=20 is sufficient to obtain
siduals,(7) -y and(7) -z give ordinary differential equations converged results fop=1500. The limitation of the code
(ODES for the Coefﬁcientsgynm and v,,m, the bidimen- concerns the nonlinear terms, which yield quite large and full
sional scalar product being naturally given by the combinatables of coefficients.

tion of Egs.(All) and(A12), i.e.,

(F1(Y)f2(2),091(Y)g2(Y)) 2. Computation of the global mode

=(f1(Y),91(Y)(f2(2),92(2)),. (A14) The computations of the large-scale modg from Eq.
_ _ (26), and hence of the global mod from V5—V, are very

The same method is used to derive from heat equéfipihe  jemanding and slowly converging. The following scheme
ODEs for the coefficients),,,. Finally, the ODEs for the has therefore been employed to accelerate the convergence
coefficientsv ,, and Y, are obtained from Eqg8) and(7) of these computations. The fortg of the global mode is
.. Naturally even and odd modes are treated separately; tHisst computed by a direct solution of the linear problé3s)
adjoint linear problem for even modes, needed to comput@ssumingM =1. Spatial averages of the ratios between the
the adjoint critical modeJ¢ [see Eq(36)], is deduced from fields inV§=V3—V; and the same fields Mg then yield the
the consideration of the adjoints of the corresponding lineafapproximatg value of M. For subsequent computatiokg
matrices. Full matrices are obtained, but the convergence of MV{ is used instead of the first estima#=V5—V,,
the code is rather fast. For instance, the computations of thieecause this yields much smoother fields.
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