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Nonlinear dynamics of traveling waves in rotating Rayleigh-Be´nard convection:
Effects of the boundary conditions and of the topology

Emmanuel Plaut
LEMTA, INPL-UHP-CNRS, 2 Avenue de la Foreˆt de Haye, F-54504 Vandœuvre Cedex, France

~Received 13 November 2002; published 15 April 2003!

Motivated by the experimental results of Liu and Ecke~1997, 1999!, different models are developed to
analyze the weakly nonlinear dynamics of the traveling-wave sidewall modes appearing in rotating Rayleigh-
Bénard convection. These models assume fully rigid boundary conditions for the velocity field. At the linear
level, this influences most strongly the critical frequencies: they appear to be proportional to the logarithm of
the Coriolis number, which is twice the inverse of the Ekman number. An annular flow domain is considered.
This multiply connected geometry is shown to lead generally to the existence of aglobal mean-flow mode
proportional to the average, over the azimuthal coordinate, of the square of the modulus of the envelope of the
waves. Because this mode feeds back on the active wave modes at cubic order, the resulting Ginzburg-Landau
envelope equation contains anonlocal term. This new term, however, vanishes in the large-gap limit relevant
to the experiments of Liu and Ecke. As compared with previous theoretical work, the present models lead to
reduced discrepancies with the results of these experiments concerning the coefficients of the envelope equa-
tion. It is also shown that the new nonlocal effects may be realized experimentally in a small-gap annular
geometry if a small-Prandtl-number fluid is used, despite the fact that no regime of Benjamin-Feir instability
is predicted to occur.

DOI: 10.1103/PhysRevE.67.046303 PACS number~s!: 47.20.Ky, 47.20.Bp, 47.35.1i
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I. INTRODUCTION

Nonlinear waves are ubiquitous in nature: they appea
biological, chemical, mechanical or optical systems, wh
they often play a crucial role. The simplest and most univ
sal model capable of describing some relevant feature
their nonlinear dynamics is the Ginzburg-Landau envelo
equation

t~] tA1vg]xA!5~11 ic0!eA1j2~11 ic1!]x
2A

2g~11 ic !uAu2A ~1!

for a quasiunidimensional system extended in thex direction.
This equation for the slowly varying envelopeA5A(x,t) of
the waves can be shown to hold rigorously whene→0 in the
case of a supercritical instability,e being the reduced dis
tance to the onset of the instability@1#. The dynamical fea-
tures described by Eq.~1! are quite rich. For instance, thi
equation captures long-wavelength secondary instabil
that may lead to an adjustment of the wave numberk of the
waves~Eckhaus instability!, but also to spatiotemporal chao
if the Benjamin-Feir-Newell criterion

11c1c,0 ~2!

is fulfilled. In this later case, very different dynamics invol
ing specific localized structures are obtained depending
the precise values ofc1 andc, see e.g., Ref.@2#. This rich-
ness of behaviors, and the fact that simple generalization
this equation appear to be also semiquantitatively valid
‘‘large’’ e in some cases@3#, explains the interest of physi
cists in Eq.~1!, as is evident from numerous reviews~e.g.,
Ref. @4#!.

However, systematic comparisons of experiments
theories relying on Eq.~1! are sparse. This can be explain
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on the one hand by the fact that the regimee→0, where~1!
is expected to be quantitatively valid, is quite difficult
attain experimentally. On the other hand, the theoretical
culation of the coefficients of Eq.~1! from basic physical
models is very demanding. A recent and interesting tenta
comparison has focussed on thetraveling-wave wall modes
that are obtained in theRayleigh-Be´nard convection of a ro-
tating layerof thicknessh ~Fig. 1! when the rotation rateV
is sufficiently large, see e.g., Refs.@5,6# and references
therein. The propagation of the waves is due to the Cori
force, which dominates the viscous force as measured by
Coriolis numberh52h2V/n, wheren is the kinematic vis-
cosity of the fluid. In their remarkable experiments, Liu a
Ecke @7,8# used water as fluid, corresponding to a Pran

FIG. 1. Left, setup of the experiment of Liu and Ecke@7,8# as
seen from above. Two isothermal horizontal disks separated
distanceh sandwich a layer of fluid, which is contained by a circ
lar vertical sidewall. The whole apparatus is mounted on a ta
rotating at an angular velocityV around the axis of the disks. Th
dashed circle shows a virtual internal sidewall, which should
influence the wall modes at least for sufficiently large gaps~see
text!. Right, geometry of models based on a Cartesian approxi
tion. Thus the sidewalls are unfolded to rectangles, and perio
boundary conditions are applied in thex direction.
©2003 The American Physical Society03-1
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TABLE I. The first line shows the critical Rayleigh number, wave number, and dimensionless frequency~see Sec. III!, the coefficients or
combinations of coefficients of the Ginzburg-Landau equation~1! measured experimentally by Liu and Ecke~LE! @8#. The Prandtl number
P56.3 corresponds to water at 25 °C, and the Coriolis numberh5548. These measurements are compared with the theoretical predic
of Kuo and Cross~KC! @9# ~second line! and of the present work~P! ~third line!. The discrepancies between the experiment and the theo
are given in terms of percentages.

Rc kc vc vg t j (c02c1)/t g (c02c)/t

Expt. LE 20850 4.65 222.0 2.65 0.03 0.179 4.2 0.74 20.4
Theor. KC 19500 - 6% 4.00 - 14%224.0 - 9% 2.22 - 16% 0.026 - 13% 0.24 - 34% 14.4 - 242% 1.11 - 50% 19.2 -
Theor. P 19660 - 6% 4.22 - 9% 222.4 - 2% 1.91 - 28% 0.025 - 16% 0.21 - 17% 6.40 - 52% 0.53 - 29% 19.7 -
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numberP, the ratio ofn to the thermal diffusivityk of the
fluid, of 6.3. These experiments motivated the theoret
calculations of Kuo and Cross@9#, Herrmann and Busse@10#,
Hecke and Saarloos@11#. All these authors neglected curva
ture effects and considered a Cartesian geometry. Becau
wall mode is localized near a sidewall, it was suggested
Hecke and Saarloos that an experiment in an annular ge
etry should lead basically to the same results, as long as
gap between the two sidewalls is large as compared with
penetration length of the wall modes. Thus Hecke and S
loos considered in Ref.@11# an annulus of finite aspect rati
G5Ly /h, wherey50 andy5Ly locate the two sidewalls. A
simpler semi-infinite geometry assumingG51` was con-
sidered in Refs.@9,10#. Only Kuo and Cross gave detaile
predictions for the Ginzburg-Landau coefficients correspo
ing to the experiments of Liu and Ecke. The comparis
shown in the first two lines of Table I is somehow disa
pointing, especially concerning the coefficientsc0 and c1
which characterize the frequency shifts due to variations
the main control parametere and of the wave numberk. The
first goal of the present work is to reduce this discrepa
through the development of new models where fully rig
boundary conditions are used for the velocity field, instead
mixed conditions as in Refs.@9–11#. Indeed, to allow semi-
analytical calculations, rigid boundaries were assumed o
for the vertical sidewalls in Refs.@9–11#, while unphysical
stress-free horizontal boundaries were used. My more re
tic models require fully numerical calculations from the b
ginning, based on the Fourier-Galerkin scheme presente
Appendix A, but lead to results closer to the experiments
shown in the third line of Table I.

Another more fundamental motivation of this work co
cerns the form of the envelope equation in connection w
the topology of the flow domain. At the nonlinear level, t
envelope formalism requires an adiabatic elimination of
slaved modes of order of magnitudeA2. Among those, a
mean-flow mode can be excited ifuAu2 does not depend on
the azimuthal coordinatex, or large-scale flow modes due t
slow variations ofuAu2 in x. Usually, these two types o
modes are calculated through the vorticity equation, i.e.,
curl of the Navier-Stokes equation; this scheme is very c
venient, since it permits a straightforward elimination of t
pressure field. Hence these two types of modes give ris
the same type of contribution

uA~x,t !u2vm f~y,z!
04630
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to the slaved velocity field. This is valid, in fact, in a sing
connected domain such as that considered by Refs.@9,10#.
On the contrary, in a multiply connected domain such as
annular domain considered in Ref.@11#, according to the
potential theory the Navier-Stokes equation isnot equivalent
to the vorticity equation. In order to insure the existence
the pressure field, this vorticity equation has to be supp
mented with the azimuthal average of the azimuthal com
nent of the Navier-Stokes equation@see Eq.~8! below#. This
‘‘global’’ equation does not enter into the calculation
modulated modes such as the linear modes relevant for
primary instability; but it must be solved at the nonline
level for the mean-flow independent ofx. This leads to a
distinction between the two types of modes introduc
above, and to contributions to the slaved velocity field of t
form

uA~x,t !u2vhm f~y,z!1@ uA~x,t !u22uA~x,t !u2#vls f~y,z!.

The overbar designates the average in the azimuthal d
tion x, vhm f is the ‘‘homogeneous mean flow’’ andvls f is the
‘‘large-scale flow.’’ Since the terms proportional touAu2 feed
back on the active modes at orderA3, one then obtains the
nonlocalenvelope equation

t~] tA1vg]xA!5~11 ic0!eA1j2~11 ic1!]x
2A

2g~11 ic !uAu2A2d~11 id !uAu2A.

~3!

This new phenomenon@12#, established for a two-
dimensional model in Ref.@15#, is studied here for the firs
time in a fully three-dimensional model. In particular, it wi
be shown that, in the limit of a large aspect ratioG→1` of
the annular geometry considered, the nonlocal term in
~3! does vanish, i.e., Eq.~1! is recovered.

The different models considered will be presented in S
II and the linear results in Sec. III. Section IV will establis
envelope equation~3!. The large-gap limit relevant to the
experiments of Liu and Ecke will be discussed in Sec. V, a
the small-gap case in Sec. VI.

II. MATHEMATICAL DESCRIPTION OF THE MODELS

Using the cell heighth as length scale, the flow domain
defined byxPR, yP@0,G#, zP@21/2,1/2# with a finite pe-
riod L in thex direction~Fig. 1!. Following Refs.@8–11#, the
3-2
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NONLINEAR DYNAMICS OF TRAVELING WAVES IN . . . PHYSICAL REVIEW E67, 046303 ~2003!
regime of not too large rotation rates is considered, where
centrifugal acceleration is negligible relative to the gravi
tional accelerationg. Time is scaled in units of the therma
diffusion timeh2/k and temperature in units ofkn/(agh3),
with the thermal expansion coefficienta of the fluid. Under
the Boussinesq approximation, the evolution equations
the velocityv and the deviationu of the temperature from
the basic profile of pure conduction are

P21@] tv1~v•“ !v#1h ẑ3v52“p1Dv1u ẑ, ~4!

] tu1v•“u5Du1Rvz . ~5!

Here, in addition to the Prandtl numberP and the Coriolis
numberh defined in the introduction, the Rayleigh numb
R5agh3(Tin f2Tsup)/(kn) and the pressurep appear. Be-
cause of the periodicity underx°x1L and of the incom-
pressibility condition“•v50, a spectral decomposition o
the velocity field

v5 x̂v01 ŷ~]zc0!2 ẑ~]yc0!

1 (
kPS

@ i x̂~]yvky1]zvkz!/k1 ŷvky1 ẑvkz#e
ikx ~6!

can be used withS52pZ* /L, and with the functionsv0 ,
c0 , vky , andvkz depending only ony and z. Hereafter the
limit of large L will be considered, where the wave numbe
k vary quasicontinuously. As stated in the Introduction, b
cause of the annular geometry the Navier-Stokes equation~4!
is equivalent to the vorticity equation

P21@] tv1S~v,v!#2h]zv5Dv1 x̂~]yu!2 ŷ~]xu! ~7!

with v5“3v, S(v,v)5“3@(v•“)v#, plus the x compo-
nent of the Navier-Stokes equation~4! averaged in thex
direction,

P21~] tv01v•“vx!2h]zc05Dv0 . ~8!

For convenience, the local state vector of the fluid

V5~vx ,vy ,vz ,u!5~v,u!

is introduced, and Eqs.~5! and ~7! relevant forx-dependent
modes (kÞ0) are written in the form

D] tV1N2~V,V!5LRV, ~9!

whereD,LR (N2) are linear~nonlinear! operators.
Realistic rigid boundary conditions,

v50 for y50,G, z561/2,

are used for the velocity field. With spectral decomposit
~6!, they translate into

v05c05vky5vkz50 for y50,G, z561/2,

]yc05]yvky50 for y50,G, ~10!

]zc05]zvkz50 for z561/2.
04630
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Whereas the horizontal plates are always assumed perf
conducting, i.e.,

u50 for z561/2, ~11!

three different types of thermal boundary conditions ha
been implemented at the sidewalls. Model CC, used for v
dation by comparison with Ref.@16#, assumes sidewalls tha
are also perfectly conducting,

u50 for y50,G. ~12!

Models II and CI, on the other hand, have been develope
approximate the experimental boundary conditions of L
and Ecke, where the ratio of the thermal conductivity of t
sidewall to that of the fluid was of the order of 0.25, i.e
small. For the purpose of simplification, and following Re
@11#, it is assumed in model II that this ratio vanishes, i.
that the two sidewalls are insulating:

]yu50 for y50,G. ~13!

This, however, leads to the existence of two counterpro
gating sidewall modes, each one attached to one of the s
walls. Therefore, the competition between these two mo
should be analyzed first, presumably with two coupled en
lope equations generalizing~1!. Because the form and th
validity of such envelope equations is still the object of
controversy~see, e.g., the discussion in Ref.@17#!, it seems
interesting to develop also an asymmetric model CI with
internal conducting sidewall and an external insulating si
wall:

u50 for y5G, ]yu50 for y50. ~14!

This asymmetric model favors external sidewall modes~see
Ref. @10# and Sec. III!, and moreover permits a simple
Galerkin ansatz for the temperature field@see Eq.~A8!#.

III. LINEAR RESULTS: PROPERTIES OF
THE SIDEWALL MODES

With the Fourier-Galerkin scheme introduced in Append
A, the linearized version of Eq.~9!,

s~k,n,R!DV1~k,n,R!5LRV1~k,n,R! ~15!

with V1(k,n,R) depending onx only through the factor
exp(ikx), is transformed to a matrix eigenvalue problem. T
eigenvaluess(k,n,R), depending on the wave numberk
Þ0 and on a mode numbern, are computed, and neutra
modes verifying Re(s)50 are sought. They correspond
R5R0(k,n); by minimizing these functions with respect t
k, the optimal modesV1(kc

n ,n,Rc
n) are found. The corre-

sponding eigenvaluess(kc
n ,n,Rc

n) assume the form2 ivc
n ,

with the optimal frequenciesvc
n . A further minimization of

the corresponding thresholdsRc
n yields the critical valuenc

of n. The corresponding values ofRc
nc (kc

nc), more simply
notedRc (kc), are the critical Rayleigh number~wave num-
ber!; the corresponding optimal mode is called the critic
mode; the corresponding frequency is the critical freque
3-3
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EMMANUEL PLAUT PHYSICAL REVIEW E 67, 046303 ~2003!
vc . For fixed control parametersP, h, G, the results of the
computations are considered to be ‘‘Galerkin converged
the relevant values ofkc

n , Rc
n , andvc

n change by less than
1.5% when the truncation parameterN of the Galerkin code
@see Eq.~A10!# is increased by two. Note that all the activ
modes discussed hereafter areeven modessuch that, under
z°2z,

vz andu are even,vx andvy are odd. ~16!

With model CC, and a vanishing Coriolis number like
Ref. @16#, the critical mode is a stationary bulk mode whic
invades the whole gap 0,y,G. The results of Table I of
Ref. @16# are recovered with a very good accuracy.

With models II and CI, sidewall modes become preferr
for not too small values ofh; the computation of a sidewa
branch is considered to be converged if the correspond
Galerkin converged values ofkc

n , Rc
n , andvc

n change by less
than 1.5% whenG is increased by one unit. Figure 2 show
the onset valuesRc5Rc

e corresponding to the externa
insulating-sidewall modes~which are identical in models I
and CI!, together with the bulk mode onset valuesRc

b in
infinite geometry for the purpose of completeness. A go
agreement is obtained with the measurements of Liu
Ecke @8#. With model CI, the inner conducting-sidewa
modes can also be computed. These modes become ne
only at quite large valuesRc

i of the Rayleigh number. Fo
instance, forP56.3, h51000, I find Rc

e534 520 andRc
i

567 580, of the order of magnitude ofRc
b571 080. This fact

that a conducting sidewall dramatically damps wall mod
agrees with the results of Herrmann and Busse@10#. Hence,
in the following, I shall focus on the external insulating-wa
modes. The numerical values ofRc

e in Fig. 2 indicate a scal-
ing law of the formRc

e}h for large h, in accordance with
@9,10#. As shown in Fig. 3~a!, the critical wave numberkc

e of
the sidewall modes converges to a finite value whenh
→`; this behavior also agrees with the results of Re
@9,10#. With their negative frequencyvc

e @Fig. 3~b!#, the ex-
ternal sidewall modes do correspond to waves traveling
the retrograde direction. The comparison of Fig. 3~b! with

FIG. 2. ForP56.3, the dashed line shows the onset valuesRc
b

of the stationary bulk mode in infinite geometry calculated with
scheme of Ref.@18#. The squares show the corresponding measu
ments of Liu and Ecke@8#. For Coriolis numbersh*100,
traveling-wave sidewall modes are excited at a lower Rayle
numberRc

e . The corresponding onset values calculated with
Galerkin code are shown with the full line, whereas the disks sh
the measurements of Liu and Ecke.
04630
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the Fig. 4 of@8# also shows that the agreement between
computed and measured frequencies is much better tha
the case of the mixed model@9#; see also the first columns o
Table I for such comparisons. The numerical results of F
3~b! indicate a peculiar scaling law for the frequencyvc

e

which appears to be proportional to lnh. This property con-
trasts with the results of the mixed model@9,10#, where it
was found thatvc

e converges to a limit value forh→`.
Another relevant difference with respect to previo

analyses is that, with the model II, bulk modes are ne
found to become critical forh.100, in contradiction to the
findings of Hecke and Saarloos@11#. They predicted that for
P50.15 and G51, traveling-waves bulk modes becom
critical for 280&h&11 200. WithP50.15 andG51, I do
find traveling-waves bulk modes with rather large wa
numbers as in Ref.@11#, but they correspond to a value o
Rc

n.1.7Rc
e . This large discrepancy cannot solely be due

the different velocity boundary conditions. It reveals an er
in the linear scheme of Hecke and Saarloos: they assu
that thex andy components of the vorticity equation impl
its z component, which was not solved~see Ref.@19# p. 35!.
In fact, still for G51 and at even lower Prandtl numbers,
turns out that the most dangerous modes after the side
modes are oscillatory axisymmetric bulk modes~correspond-
ing to the continuous limitk→0) rather analogous to thos
presented in Ref.@20#. For instance, for the Prandtl numbe
of liquid mercuryP50.0257, the corresponding ratioRc

n/Rc
e

attains a minimum of 1.23 forh5630.

IV. WEAKLY NONLINEAR ENVELOPE EQUATION

In the weakly nonlinear regime, wheree5R/Rc21!1,
approximate solutions of the evolution equations~8! and~9!

-

h
e
w

FIG. 3. ~a! For P56.3, the dashed line shows the optimal valu
kc

b of the azimuthal wave number of the stationary bulk mode
infinite geometry. The full line shows the critical wave numberkc

e

of the sidewall mode computed with the Galerkin code, and
disks show the corresponding measurements of Liu and Ecke@8#.
~b! Under the same conditions, the computed critical frequenc
are compared with those measured by Liu and Ecke.
3-4
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NONLINEAR DYNAMICS OF TRAVELING WAVES IN . . . PHYSICAL REVIEW E67, 046303 ~2003!
can be obtained with the so-called weakly nonlinear me
ods. Here the spectral approach exposed, for instance
Refs. @15,21# is employed. The basic ansatz assumes
form

V5W1W* 1V' ~17!

with

W5 (
q!kc

Â~kc1q!V1~kc1q!e2 ivct ~18a!

; (
q!kc

Â~kc1q!V1~kc!e
i (qx2vct) ~18b!

;A~x!V1~kc!e
2 ivct ~18c!

being the active wave packet, andV' , regarded as a pertur
bation ofW, in the passive modes subspace generated by
eigenmodes of linearized problem~15! with finite negative
growth rate Re(s). In Eq. ~18!, V1(kc1q) is the neutral
mode of wave numberkc1q,

V1~kc!5„v1~x,y,z!,u1~x,y,z!…5„ṽ1~y,z!,ũ1~y,z!…eikcx

~19!

is the critical mode, and

A~x!5 (
q!kc

Â~kc1q!eiqx ~20!

is the slowly varying envelope. The first step of the nonline
calculations consists of the‘‘adiabatic’’ elimination of V' at
orderA2; for the calculation of the corresponding nonline
terms, the simplified forms~18b! and~18c! of W can be used.
Because of the properties of symmetry of Eqs.~8! and~9!, all
the contributions toV' that will now be calculated have az
symmetry opposite to that of the active linear modes~16!:
they areodd modessuch that, underz°2z,

vz andu are odd,vx andvy are even. ~21!

A. Elimination of the homogeneous mode

The mode of temperature and velocity inV' which is
homogeneous with respect tox assumes the form

(
q

Â~kc1q!Â~2kc2q!V2
h5uA~x!u2V2

h ~22!

with V2
h5V2

h(y,z)5(vx
h ,]zc

h,2]yc
h,uh), using the nota-

tion

Â~2kc2q!5Â* ~kc1q!.

It is controlled by the averaged azimuthal Navier-Stok
equation~8!, the averaged azimuthal vorticity equation~7!

• x̂, and the averaged heat equation~5! at order of magnitude
A2,
04630
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mRe~v1•“v1x* !5Dvx
h1h]zc

h, ~23a!

mRe@Sx~v1 ,v1* !#52DDch1h]zvx
h1]yu

h, ~23b!

2Re~v1•“u1* !5Duh2Rc]yc
h, ~23c!

with the notationm52/P. Note that, because of the identitie

Sy~v1 ,v1* !5]z@~v1•“ !v1x* #, ~24a!

Sz~v1 ,v1* !52]y@~v1•“ !v1x* #, ~24b!

the derivatives of Eq.~23a! with respect toy andz yield the
y and z components of the averaged vorticity equation~7!.
The system~23! is solved numerically with the Galerkin
scheme. A representative result, normalized physically w
the use ofA5A0 given by Eq.~43a!, is shown in Fig. 4. A
retrograde flow is generated near the external sidewall. T
flow is small but not negligible as compared with th
leading-order flow: with the parameters of Fig. 4, the ma
mum value ofA0

2uvx
hu is only 11.6 times smaller than th

maximum value of 2A0Re(v1z). Note also the classical hea
ing ~cooling! of the upper~lower! part of the layer due to
convection near the sidewall.

B. Elimination of the large-scale modes

The large-scale modes inV' are generated by the nonlin
ear term

FIG. 4. Homogeneous modeA0
2V2

h computed forP56.3, h
5200, G53, e50.1, and the model II. Upper plot: contour lines o
the azimuthal velocityvx

h(y,z). The thick line is the isolinevx
h

50. Mid plot: profile ofA0
2vx

h(y,0) vsy. Bottom plot: the contour
lines of the temperature fielduh(y,z) are shown with the gray lev-
els, and the transverse flow lines, i.e., the isolines ofch(y,z) are
shown with the full lines. The arrows indicate the direction of t
transverse flow. The maximum value ofA0

2uh(y,z) is 288.
3-5
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(
q

(
q8Þq

Â~kc1q!Â~2kc2q8!

3N2„V1~kc!e
iqxuV1~2kc!e

2 iq8x
…

in Eq. ~9!, where the notation

N2~VauVb!5N2~Va ,Vb!1N2~Vb ,Va!

has been used. Their elimination yields to lowest order

V'
l 5(

q
(

q8Þq

Â~kc1q!Â~2kc2q8!V2
l ei (q2q8)x

5@ uA~x!u22uA~x!u2#V2
l ~25!

with V2
l 5V2

l (y,z)5(vx
l ,vy

l ,vz
l ,u l) defined by

V2
l 5 lim

q→0
LRc

21N2„V1~kc!e
iqxuV1~2kc!…. ~26!

This limit, which has to be taken forqÞ0, and which is real,
is computed numerically with the Fourier-Galerkin schem
Note that the continuity equation

iqvx
l 1]yvy

l 1]zvz
l 50 ~27!

implies the constraint

E
0

GE
21/2

1/2

vx
l ~y,z!dydz50, ~28!

which has no counterpart in the properties of the homo
neous flow. From Eq.~28!, it is clear that the large-scale flow
cannot be purely retrograde as is nearly the case for the
mogeneous flow~Fig. 4!. Indeed, Fig. 5 shows the existenc
of a prograde component of the flow throughout most of
interior of the layer. It is thus erroneous to assume thatV2

h

andV2
l are identical, as has been done in Ref.@11#. In order

to prove this in more details and to isolate the nonlocal
fects @see Eq.~32!#, I focus now on the differenceV2

h2V2
l .

For this purpose, it is worthwhile to note that limit~26! sat-
isfies the following equations derived from the vorticity a
heat equations~7! and ~5!, i.e., the components of Eq.~9!,

mRe@Sx~v1 ,v1* !#5D~]yvz
l 2]zvy

l !1h]zvx
l 1]yu

l ,
~29a!

mRe@Sy~v1 ,v1* !#5D~]zvx
l !1h]zvy

l , ~29b!

FIG. 5. For the parameters of Fig. 4, the azimuthal compon
of the large-scale flowA0

2vx
l (y,0) in the middle of the layer is ploted

vs y.
04630
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mRe@Sz~v1 ,v1* !#52D~]yvx
l !1h]zvz

l , ~29c!

2Re~v1•“u1* !5Du l1Rcvz
l . ~29d!

C. Difference between these modes: Global mode

From continuity equation~27! in the large-scale limitq
→0, one expects the existence of a large-scale stream f
tion c l such that

vy
l 5]zc

l and vz
l 52]yc

l . ~30!

The global mode is defined as the difference

vx
g5vx

h2vx
l , cg5ch2c l , ug5uh2u l , ~31!

i.e., V2
g5(vx

g ,]zc
g,2]yc

g,ug)5V2
h2V2

l , such that the sum
of homogeneous~22! and large-scale modes~25! in V' reads

V'
hl 5 uA~x!u2V2

g1uA~x!u2V2
l . ~32!

By comparison of Eqs.~29b! and ~29c! with Eq. ~23a!, the
identities~24! show that

]y~Dvx
g1h]zc

g!5]z~Dvx
g1h]zc

g!50,

i.e.,

Dvx
g1h]zc

g5M . ~33a!

On the other hand, substraction of Eq.~29a! from Eq. ~23b!
and of Eq.~29d! from Eq. ~23c! yields

2DDcg1h]zvx
g1]yu

g50, ~33b!

Dug2Rc]yc
g50. ~33c!

The three equations~33! show that the global mode corre
sponds to the velocity and temperature fields that a cons
pressure gradientM in thex direction would drive; of course
the value ofM is not free but set by the differenceV2

g be-
tween the nonlinear modesV2

h and V2
l computed in Secs

IV A and IV B ~see Appendix A 2 for details on these com
putations!. A typical result forV2

g , which will be commented
on in Sec. V, is shown in Fig. 6.

D. Elimination of the short-scale modes

As usual, the nonlinear source terms of wave numb
close to62kc generate the terms

V'
s 5A2~x!V2

sexp~22ivct !1c.c. ~34!

in V' , whereV2
s depends onx through the factor exp(2ikcx).

This finishes the determination of the passive modes at l
est order, which thus yields

V'5V'
hl1V'

s . ~35!

nt
3-6
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NONLINEAR DYNAMICS OF TRAVELING WAVES IN . . . PHYSICAL REVIEW E67, 046303 ~2003!
E. Envelope equation

The linear terms of the envelope equation are obtaine
in Ref. @15# from the expansion

s~kc1q,nc ,R!;2 i ~vc1vgq!

1t21@~11 ic0!e2j2~11 ic1!q2#

of the linear eigenvalue for smallq and e, wherevg is the
group velocity of the waves, andt (j) is the characteristic
time ~length! of the instability. On the other hand, the res
nant nonlinear terms in Eq.~9!, which are contained in
N2(WuV')1N2(W* uV'), yield after projection onto the ad
joint critical modeU1

c the terms

2t21g~11 ic !uA~x!u2A~x!2t21d~11 id !uA~x!u2A~x!

with

t21g~11 ic !5^N2„V1~kc!uV2
l
…1N2„V1~2kc!uV2

s!…,U1
c&,

~36a!

t21d~11 id !5^N2„V1~kc!uV2
g
…,U1

c&. ~36b!

After adding the linear terms and multiplying byt, one ob-
tains envelope equation~3!. For fixed values of the contro
parametersP, h, andG, the numerical values of the coeffi
cients of Eq.~3! are considered to be Galerkin converged
they change by less than 2.5% when the truncation param
N ~A10! is increased by 2.

F. Source terms controlling the homogeneous
and large-scale flows—validations

The nonlinear source term in homogeneous flow equa
~23a! assumes the form

FIG. 6. Same as Fig. 4, but for the global modeA0
2V2

g , i.e., the
fields vx

g(y,z), A0
2vx

g(y,0), ug(y,z), andcg(y,z) from top to bot-
tom. The maximum value ofA0

2ug(y,z) is 0.93.
04630
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mRe~v1•“v1x* !52~Pkc!
21Im@ ṽ1y]y~]yṽ1y* 1]zṽ1z* !

1 ṽ1z]z~]yṽ1y* 1]zṽ1z* !#. ~37!

Because of Eq.~24!, the derivatives of this expression wit
respect toy and z are also the nonlinear source terms
large-scale equations~29b! and ~29c!. In the absence of ro-
tation and for bulk modes, the critical eigenfunctionsṽ1y and

ṽ1z can be chosen to be real; consequently these source t
vanish. Sinceh50, Eqs.~23a!, ~29b!, and ~29c! show that
vx

h5vx
l 50. Thus vx

g50, and according to Eq.~33a! M
5V2

g50 as assumed in Ref.@16#. With the Galerkin code for
model CC, the local envelope equation~4.13! of @16# is re-
covered, with values of the coefficients in very good agr
ment with those of Table I of Ref.@16#.

On the contrary, in the presence of rotation and for si
wall modes, the critical eigenfunctionsṽ1y and ṽ1z are al-
ways complex. Thus nonlinear source term~37! and its de-
rivatives are nonvanishing, as arevx

h ~Fig. 4!, vx
l ~Fig. 5!, and

hencevx
g ~Fig. 6!. Before proceeding with the description o

the nonlinear results, I mention that a validation of full e
velope equation~3! has been done through a comparison
the results of the stability analysis of the critical solution
Eq. ~3! with respect to long-wavelength modulations~see
Sec. 4.3 of Ref.@15#! with a direct numerical stability analy
sis based on computations similar to those of Appendix C
Ref. @22#. A very good agreement has been obtained.

V. LARGE-GAP LIMIT

Equations~33! are invariant undery°G2y. Thus with
model II, the boundary conditions of which are also sy
metrical, one has undery°G2y that

vx
g and cg are even,ug is odd. ~38!

Because it is driven by a~virtual! pressure gradient indepen
dent of y and z, the global mode is a bulk mode which in
vades the whole gap, as shown in Fig. 6. This figure, as F
4 and 5, has been computed with model II. With model C
the fields are very similar and only weakly affected, near
internal sidewall, by the different thermal boundary con
tions. From an energetic point of view, it is clear that t
sidewall modes cannot feed a large amplitude global m
invading the whole gap, especially in the large-gap lim
Indeed, the numerical results show that the ratio of the ma
mum values ofuvx

gu and uvx
hu, or equivalently of the maxi-

mum values ofug anduh, decay rapidly with increasingG.
Accordingly, the ratio of the global-coupling termd(1
1 id) ~36b! vs the local-coupling termg(11 ic) ~36a! de-
cays rapidly with increasingG. This is shown in Fig. 7 for
the real parts of these coefficients; note that the critical m
has been normalized with the convention defined by Eq.~28!
of @8#, i.e., such that the reduced Nusselt number reads

Nu2150.36uAu21O~A4! . ~39!

The data of Fig. 7 indicate a power-law decrease ofd vs G
with an exponent of the order of21.1. The numerical results
3-7
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EMMANUEL PLAUT PHYSICAL REVIEW E 67, 046303 ~2003!
show a similar behavior of the imaginary partsgc anddd of
coefficients~36a! and~36b!, with the same exponent for th
power law ofdd vs G. Naturally models II and CI give the
same results. Thus the limitG→1` is regular, and local
envelope equation~1! used in Refs.@7–9# is recovered in the
large-gap limit, with the coefficients shown in the last line
Table I for P56.3, h5548. The remaining discrepancie
with the experiments are probably due to the finite therm
conductivity of the sidewall and due to curvature effects~the
experiments were carried out in a disk with a not very la
radius-to-height ratio of five!.

VI. SMALL-GAP CASE

A natural question arising from this work concerns t
possibility of new experiments in an annular geometry t
may exhibit the nonlocal term of Eq.~3!. It is obvious from
Fig. 7 that a small gap should be used. Asymmetric bound
conditions corresponding to model CI, with an inner co
ducting sidewall and an external insulating sidewall, sho
be of interest: then only external sidewall modes will beco
critical for h*100, and more complicated effects genera
by the competition between left and right traveling wav
will not appear. The next important point concerns the m
surable effects of the nonlocal nonlinear term is Eq.~3!. This
term sums up with the local nonlinear term for monoch
matic waves

A5Aq exp@ i ~qx2ṽt !#, ~40!

for which uAu25uAu2. Hence for such waves envelope equ
tion ~3! reduces to the local envelope equation of the fo
~1!

t~] tA1vg]xA!5~11 ic0!eA1j2~11 ic1!]x
2A

2g3~11 ic3!uAu2A ~41!

with

g35g1d, c35~gc1dd!/g3 . ~42!

The corresponding solutions read

Aq5A@e2e0~q!#/g3, ~43a!

FIG. 7. ForP56.3, h5200, the disks show the computed va
ues of the local saturation coefficientg vs the dimensionless gapG.
These values have already converged to their limit value forG5
1` shown by the full line. The squares show the~rescaled! nonlo-
cal saturation coefficientd; the dashed line is a fit of these data
a power law.
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ṽ5@~c32c0!e1tvgq1j2~c12c3!q2#/t, ~43b!

and exist only for

e.e0~q!5j2q2. ~44!

Obviously, detailed measurements of the amplitude and
quency of these waves yield estimates of the coefficient
Eq. ~41! as in Ref.@8#. The study of the Eckhaus instabilit
may then reveal the nonlocal effects. Indeed, from the lo
envelope equation~41!, one would expect an Eckhaus lim
at

eE~q!5
2~11c3

2!111c1c3

11c1c3
e0~q!. ~45!

However, the full nonlocal envelope equation~3! yields a
different result~see Ref.@23# for the calculation of this limit!

eE8 ~q!5

2~11c2!S 11
d

g D111c1c

11c1c
e0~q!. ~46!

Taking into account the fact thatd!g ~Fig. 7!, one sees tha
the difference betweeneE(q) andeE8 (q) corresponds essen
tially to the replacement ofc3 by c. Since c32c5d(d
2c)/g3, this change will be important ifd/g is not too small
and if dd is quite different fromdc. As shown in Figs. 8~a!
and 8~b!, this happens only for very small Prandtl numbe
P,0.05. Indeed important global effects require a larg
amplitude global-mean flow, i.e., a weak viscous dampi
i.e., a small viscosity, see the factors ofP21 in front of the
nonlinear advection terms like Eq.~37!. It is also important
to note that the global coefficientd does not vary monotoni-
cally with P @~Fig. 8~a!#, indicating complex changes in the
structure of the flows; for instance, the form of the homog
neous flow depends strongly on the Prandtl number as sh
in Fig. 9 ~compare with Fig. 4!. Figures 8~a! and 8~b!, which
suggest that the limitP→0 is singular, can be complemente
by the plots ofeE(q)/e0(q) andeE8 (q)/e0(q) shown in Fig.
8~c!. For the exhibition of global effects, the use of a liqu
metal such as liquid mercury corresponding toP50.0257
@24# appears to be appropriate. ForP50.0257, G51, h
5250, model CI predictsg511.10, d520.901, c15
20.151, c520.011, and c3521.067, i.e., a ratio
eE8 (q)/eE(q) of 0.605. This significant decrease of the Ec
haus limit as compared with the predictions of the local e
velope equation should be measurable experimentally. T
calculation furthermore reveals the stabilizing effect of t
nonlocal term on modulational instabilities at very sm
Prandtl number. Indeed, in contradiction to Ref.@11#, I find
no region of Benjamin-Feir instability in this system; sin
g.0 always holds, the corresponding criterion for modu
tional stability is 11c1c.0, see Ref.@15# or @23#.

VII. CONCLUSION

The occurrence of global coupling from the ‘‘topologica
constraint~8! is an interesting result, that extends the pre
3-8
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NONLINEAR DYNAMICS OF TRAVELING WAVES IN . . . PHYSICAL REVIEW E67, 046303 ~2003!
ous analysis@15# restricted to a two-dimensional system
Physically, the generation of the mean and large-scale fl
originates from the nonlinear advection term or Reynol
stress term (v•“)v in the Navier-Stokes equation. Becau

FIG. 8. ForG51, h5250, ~a! shows the value of the local~full
line! and~rescaled! nonlocal~dashed line! saturation coefficientsg
and d versus the Prandtl numberP; ~b! shows the value of the
~rescaled! local ~full line! and nonlocal~dashed line! frequency-
shift coefficientsc and d after a multiplication byd. ~c! The thin
line shows the value of the reduced Eckhaus-instability thresh
eE(q)/e0(q) ~45! that one would expect on the basis of the effect
local envelope equation~41!. The thick line shows the correc
thresholdeE8 (q)/e0(q) ~46! predicted by the full nonlocal envelop
equation~3!. The thin dashed line shows for memory the classi
value obtained when the frequency-shift coefficients vanish.

FIG. 9. ~a! Contour lines of the homogeneous azimuthal flo
vx

h(y,z) computed forP50.0257,G51, h5250. The thick line is
the isolinevx

h50. ~b! for G51, h5250, ande50.1 corresponding
to water, pressurized argon and mercury from top to bottom@24#,
profiles of the dimensional azimuthal flow (k/h)A0

2vx
h(y,0) vs y

predicted for a cell of thicknessh51 cm. One unit of the vertica
axis is 0.1 mm/s.
04630
s
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their x dependence can be described as the sum of Fou
modes in exp(iqx) with qÞ0, the large-scale flows automat
cally fulfill the requirement of a vanishing mean pressu
gradient in thex direction, and can be calculated with th
vorticity equation. By contrast, the strictly homogeneo
mean flow has to adjust in accordance with this requirem
i.e., it has to be calculated directly with the Navier-Stok
equation. Since the corresponding nonlinear source te
can be deduced by the application of the curl operator,
difference V2

g(y,z) between the homogeneous and larg
scale flow modesV2

h(y,z) andV2
l (y,z), i.e., the global mode

factor of uA(x)u2 in V' , is a neutral mode of the linearize
vorticity equation@as confirms the inspection of Eqs.~33a!
and ~33b!#. This explains why a scheme relying only on th
vorticity equation, like that of Ref.@11#, cannot capture this
global mode. This also shows why the global flow mu
equilibrate a mean pressure gradientM in the x direction. A
further important result is that the magnitude of the me
large-scale, and global flows, and of the correspond
global-coupling coefficients, is controlled by the visco
damping: the smaller the viscosity, i.e., the Prandtl numb
the stronger the mean flows, see Figs. 8~a! and 9~b!. This
classical tendency was also found in a similar context in R
@15#, see e.g. its Fig. 4~b!. It is, moreover, interesting to
quote that the nonlocal effects do not enter for monoch
matic waves, for which the local envelope equation~41! is
effectively valid; indeed the corresponding nonlinear term

t21g3~11 ic3!5^N2„V1~kc!uV2
h
…1N2„V1~2kc!uV2

s
…,U1

c&

because ofV2
l 1V2

g5V2
h , can be calculated from the know

edge ofV2
h ~andV2

s) ignoring bothV2
l andV2

g . Naturally, the
nonlocal effects enter only for more general solutions su
that uA(x)u2ÞuA(x)u2, e.g., modulated solutions. Indeed th
nonlocal effects alter the modulational Eckhaus instability
shown in Fig. 8~c!; this may permit experiments exhibitin
the nonlocal effects, as discussed at the end of Sec. VI.

Global-coupling effects similar to those exhibited here e
ist, in principle, in any hydrodynamical annular system. Y
they are quite probably negligible in many situations, as
the present case for fluids with Prandtl numbersP*1. From
a direct analogy, it is thus expected that the use of lo
envelope equations is justified for the analyses of the bina
mixture experiments@25,26#, since the Prandtl number wa
larger than six in both experiments. The qualitative use
local models for convection experiments in gases@27,28#
also appears to be justified, since the Prandtl numbeP
>0.7. However, Fig. 8~c! suggests that high-precision con
vection experiments in gases may reveal nonlocal effe
Another classical annular setup used for the study of hyd
dynamic instabilities is the Taylor-Couette apparatus. In t
system global-coupling effects should also exist, as poin
out by Refs.@13# and @14#; it would be interesting to revisit
these pioneering studies.

It is finally important to mention that nonlinearand non-
local waves represent a category of phenomena that go
yond hydrodynamics. For instance, it has been shown
cently@23# that the envelope equation for ionization waves

ld

l
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EMMANUEL PLAUT PHYSICAL REVIEW E 67, 046303 ~2003!
a plasma column is nonlocal, because the constraint
fixed electric potential assumes the nonlocal form

E
0

L

Ex dx5U2RI

with E being the electric field~compare with the constrain
of a vanishing pressure gradient*0

L]xp dx50). It is there-
fore hoped that the present work will stimulate new expe
ments and modeling efforts aiming at a better knowledge
the dynamics of nonlinear nonlocal waves.
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APPENDIX: FOURIER-GALERKIN SCHEME

1. Generalities

Only pure Fourier modes, in exp(ikx), of the velocity and
temperature fields are considered; thus fields depending
on yP@0,G# and zP@21/2,1/2# are to be expanded o
Galerkin base functions. In order to allow for a tunable va
of G, the flow domain is mapped to@21,1#2 through the
change of coordinates

Y5~2y2G!/G, Z52z. ~A1!

For the velocity components of a modulated modekÞ0 @see
Eq. ~6!#, one must write

vky5(
n

(
m

ṽynmBn
y~Y!Am

z ~Z!, ~A2a!

vkz5(
n

(
m

ṽznmAn
y~Y!Bm

z ~Z!, ~A2b!

with

An
r ~61!5Bn

r ~61!5~Bn
r !8~61!50 ~A3!

for r 5y,z in order to satisfy boundary conditions~10! con-
cerningvky andvkz . For the homogeneous mode of veloci
@see Eq.~6!#,

v05(
n

(
m

ṽnmAn
y~Y!Am

z ~Z!, ~A4a!

c05(
n

(
m

c̃nmBn
y~Y!Bm

z ~Z! ~A4b!

fulfill boundary conditions~10! concerningv0 and c0. A
Fourier mode of the temperature field assumes the form

u5(
n

(
m

ũnmAn
y~Y!Am

z ~Z! ~A5!

for model CC with boundary conditions~11! and ~12!. For
model II, according to boundary conditions~11! and~13!, the
more complicated ansatz
04630
a
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f
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e

u5(
m

ũ0mAm
z ~Z!1(

n
(
m

ũnmCn
y~Y!Am

z ~Z! ~A6!

is necessary, with

~Cn
y!8~61!5E

21

1

Cn
y~Y!dY50. ~A7!

Model CI, according to boundary conditions~11! and ~14!,
permits the simpler ansatz

u5(
n

(
m

ũnmDn
y~Y!Am

z ~Z! ~A8!

with

~Dn
y!8~21!5Dn

y~1!50. ~A9!

The sums over the integer indicesn andm run for

n21~m12!2<N2 ~A10!

with N being the truncation parameter of the Galerkin co
this slightly unsymmetric truncation scheme favors a be
resolution in they direction aiming at the study of the large
gap limit. In order to accelerate the convergence of
scheme in this same limit, it has proven useful to use diff
ent scalar products in theY and Z directions. The scalar
product in theY direction is simply

^ f ~Y!,g~Y!&y5E
21

1

f ~Y!g* ~Y!dY; ~A11!

in theZ direction, in order to favor a better resolution of th
corresponding boundary layers,

^ f ~Z!,g~Z!&z5E
21

1

f ~Z!g* ~Z!dZ/A12Z2 ~A12!

is preferred. The polynomialsAn
y , Bn

y , Cn
y , Dn

y are con-
structed with the Gram-Schmidt orthogonalization sche
from simple polynomials fulfilling the corresponding boun
ary conditions, the scalar product being given by Eq.~A11!.
The same procedure is used to construct the polynomialsAm

z

andBm
z with the scalar product~A12!. Special care is taken

to insure the symmetry properties

Am
z ~2Z!5~21!m11Am

z ~Z!,
~A13!

Bm
z ~2Z!5~21!m11Bm

z ~Z!.

Thus the active even modes fulfilling Eq.~16! correspond to
Eq. ~A2a! with m odd, Eq.~A2b! with m even, Eqs.~A5!,
~A6! or ~A8! with m even; the passive homogeneous mo
correspond to Eq.~A4a! with m even, Eq.~A4b! with m odd,
Eqs.~A5!, ~A6! or ~A8! with m odd; the passive ‘‘modulated
modes’’ correspond to Eq.~A2a! with m even, Eq.~A2b!
with m odd, Eqs.~A5!, ~A6! or ~A8! with m odd. The equa-
tions forvky andvkz are they andz components of vorticity
equation~7!; these components imply thex component of the
3-10
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NONLINEAR DYNAMICS OF TRAVELING WAVES IN . . . PHYSICAL REVIEW E67, 046303 ~2003!
vorticity equation, since this equation in a curl andx-Fourier
modes are considered. With the method of the weighted
siduals,~7! • ŷ and~7! • ẑ give ordinary differential equation
~ODEs! for the coefficientsṽynm and ṽznm, the bidimen-
sional scalar product being naturally given by the combi
tion of Eqs.~A11! and ~A12!, i.e.,

^ f 1~Y! f 2~Z!,g1~Y!g2~Y!&

5^ f 1~Y!,g1~Y!&y^ f 2~Z!,g2~Z!&z . ~A14!

The same method is used to derive from heat equation~5! the
ODEs for the coefficientsũnm . Finally, the ODEs for the
coefficientsṽnm and c̃nm are obtained from Eqs.~8! and~7!

• ẑ. Naturally even and odd modes are treated separately
adjoint linear problem for even modes, needed to comp
the adjoint critical modeU1

c @see Eq.~36!#, is deduced from
the consideration of the adjoints of the corresponding lin
matrices. Full matrices are obtained, but the convergenc
the code is rather fast. For instance, the computations of
id

th
ph
ira
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critical data displayed in Figs. 2 and 3 are achieved withN
518 for h<1000, whereasN520 is sufficient to obtain
converged results forh51500. The limitation of the code
concerns the nonlinear terms, which yield quite large and
tables of coefficients.

2. Computation of the global mode

The computations of the large-scale modeV2
l from Eq.

~26!, and hence of the global modeV2
g from V2

h2V2
l are very

demanding and slowly converging. The following schem
has therefore been employed to accelerate the converg
of these computations. The formV0

g of the global mode is
first computed by a direct solution of the linear problem~33!
assumingM51. Spatial averages of the ratios between
fields inV2

g5V2
h2V2

l and the same fields inV0
g then yield the

~approximate! value ofM. For subsequent computationsV2
g

5MV0
g is used instead of the first estimateV2

g5V2
h2V2

l ,
because this yields much smoother fields.
id

t

,
.
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