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Abstract

The Rayleigh-Bénard thermoconvection of Newtonian fluids has been exten-

sively studied. The transition from the conductive, static state to thermocon-

vection flows corresponds in this case to a supercritical bifurcation. In shear-

thinning fluids, on the contrary, recent weakly nonlinear studies have shown

that the transition may become subcritical. Using a custom numerical code

developped with Freefem++ to compute bidimensionnal, fully nonlinear roll so-

lutions in Carreau fluids, for a large range of rheological parameters, and more

particularly for strongly shear-thinning fluids, approaching power-law fluids, we

confirm this result. A simple expression of the value of the Rayleigh number

at which subcritical convection rolls appear is proposed. This law suggests to

reconsider the choice of the reference viscosity for shear-thinning fluids. Indeed,

when the shear-thinning effects increase, the critical Rayleigh number increases

or decreases depending on the choice of the reference viscosity. The ‘neutral’ or

‘effective’ viscosity, which gives a constant value of the Rayleigh number at the

onset of subcritical convection rolls, is close to the bulk average viscosity. In

addition, a correlation is proposed to estimate the Nusselt number of subcritical
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1. Introduction

Rayleigh-Bénard thermoconvection constitutes a paradigmatic system that

is extensively studied because of its academical and practical interest. For re-

cent reviews, see [1, 2]. A temperature gradient in a viscous fluid produces

differences of density, and a buoyancy-driven instability may set in, that leads

to thermoconvection flows. The transition from the conductive, static state to

thermoconvection flows occurs when the buoyancy becomes strong enough to

overcome the stabilizing effects of viscous and thermal diffusions, i.e., when the

Rayleigh number

R = ρ0gβδTd
3/(η0κ) (1)

is large enough. Here, ρ0 is the reference value of the density, g the acceleration

due to gravity, β the thermal expansion coefficient, δT the temperature differ-

ence between the bottom and top walls separated by a distance d (Fig. 1), η0

the reference value of the dynamic viscosity, κ the thermal diffusivity. In sys-

tems extended in the horizontal directions, and with realistic no-slip boundary

conditions at the horizontal walls, which are the ones on which we focus, for

a Newtonian fluid, the static state becomes linearly unstable above the criti-

cal Rayleigh number Rc = RNewt
c = 1707.8 (see e.g. [3]). The bifurcation is

supercritical: if R < Rc, an initial flow will decay, if R > Rc, thermoconvec-

tion flows develop smoothly. This bifurcation is also pattern-forming: in the

absence of sidewall forcing, for R slightly larger than Rc, the thermoconvection

flows are generally straight rolls, of horizontal wavenumber k close to the critical

value kc = 3.116/d [1, 3]. Such two-dimensional rolls are interesting because

they constitute the simplest thermoconvection flows that can exist in this setup,

but present some qualitative or semi-quantitative features that persist at higher
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Rayleigh numbers and in more complex flows. For instance, two-dimensional

rolls increase heat transfer, as measured by the Nusselt number Nu which is the

ratio of the heat flux transferred by conduction and convection to the heat flux

that would be transferred by conduction only, at the same value of δT . The

Nusselt number is larger at large Prandtl number

P = η0/(ρ0κ) , (2)

as it can be seen for straight rolls near onset, of wavenumber k = kc, by studying

the weakly nonlinear formula

Nu− 1 =
1

0.69942− 0.00472P−1 + 0.00832P−2
R−Rc
R

(3)

derived by [3]. The same tendency exists in turbulent convection, observe the

Fig. 5a of [2]. From the formula (3) and this figure, one can define ‘large

P ’ by P & 1, which is the case that corresponds to most liquids for standard

conditions, and that will be considered here.

Whereas thermoconvection rolls and their onset in Newtonian fluids have

been precisely characterized and are well known [1, 3, 4], in non-Newtonian fluids

the situation is more complex. Firstly, there can exist elastic effects, as described

for instance by [5], or compositional effects, as advocated by [6]. Hereafter, we

will focus instead on shear-thinning effects, which are quite common in non-

Newtonian fluids. We will neglect the elastic response of the fluid, as well as

compositional effects.

Even in this framework, the problem of the onset of convection can be puz-

zling. For quite strongly shear-thinning fluids like yield-stress fluids, there is

still a debate on this subject, as exemplified by the different experimental re-

sults obtained recently by [7, 8]. Hereafter, we choose to study shear-thinning

fluids without yield-stress. An interesting example of such fluids is given by

the power-law fluids. Their rheology is characterized by two parameters only,

the consistency M and the shear-thinning index ni, ni ∈ [0, 1[, such that the

dynamic viscosity

η = M (γ̇)ni−1 (4)
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with γ̇ the rate of strain. Because of their simplicity, these models are often

used in the Engineering community and also by some Researchers. However, the

theoretical literature concerning Rayleigh-Bénard convection of power-law fluids

in extended geometry is sparse. In fact, to our knowledge, as far as convection

rolls in extended geometry are concerned, the relevant articles are [9, 10, 11, 12].

Eq. (4) shows that, at rest, γ̇ = 0, the viscosity diverges: it is therefore clear

that the conduction state is linearly stable, i.e., that the onset of convection

flows occurs through a nonlinear instability. Following [9], it is natural to define

a Rayleigh number by estimating the viscosity at a rate of strain which is the

inverse of the thermal diffusion time

τth = d2/κ , (5)

i.e.

Ra = ρ0gβδTd
3/[M(τth)1−niκ] = ρ0gβδTd

2ni+1/(Mκni) . (6)

Ozoe & Churchill [9] solved with a finite-difference method the system of equa-

tions of Boussinesq convection in a power-law fluid, in a two-dimensional xy

square cell with ‘dragless vertical boundaries’. The boundary conditions at

x = 0 and d were that the heat flux and the viscous stress vanish. These con-

ditions corresponds to the ones insured by the symmetries of thermoconvection

rolls, of wavelength 2d i.e. wavenumber k = π/d, with separatrices at x = 0

and d: this cell corresponds to one roll of a regular pattern. Hence, with this

method, an ‘extended geometry’ can be studied without Fourier expansion, and

with computations in a small domain. Hereafter, we adopt the same strategy, ex-

cept that we choose a rectangular cell corresponding to the critical wavenumber,

i.e., the length of the cell in the horizontal x direction is Lx = π/kc = 1.008d.

Starting with Newtonian solutions (ni = 1) at large Rayleigh number, and de-

creasing ni and Ra by steps, [9] determined a (sub)critical value of Ra below

which the flow vanished. We denote this Rasc (not Rac) since it corresponds

(roughly, i.e., within the size of the last step in Ra) to the smallest subcritical

value of Ra at which convection rolls can be sustained, i.e. to the position of

the turning point - saddle-node bifurcation at which the roll branch solution
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disappears. This subcritical value Rasc was found to decrease from RNewt
c to

250, as the shear-thinning index ni decreased from 1 to 0.5, see their Fig. 20. In

[10], a correlation was also developped to estimate the maximum rate of strain

and the Nusselt number in convection rolls in power-law fluids. This correlation

is rather complex and cannot be casted in a single formula, see the Page 131

of [10]. Another interesting correlation has been proposed by Parmentier [11],

who studied in some details nonlinear convection rolls above onset in power-

law fluids, with a geometry and numerical method similar to the ones used by

[9, 10]. Parmentier [11] introduced an average viscosity, that we will denote ηP ,

which is a volume average of the viscosity η weighted by the square of the rate

of strain (γ̇)2 . He showed, on the basis of a few computations, that, if one uses

a ‘Parmentier-Rayleigh number’

RaP = ρ0gβδTd
3/(ηPκ) , (7)

then the Nusselt number Nu vs RaP data points fall on a universal curve, which

is the curve Nu(Ra) of the convection rolls in a Newtonian fluid. Thus, the ‘Par-

mentier viscosity’ ηP is the relevant viscosity to characterize the heat transfers.

An unphysical feature of the power-law model is the infinite value of the vis-

cosity at zero rate of strain. Therefore, in the numerical models of [9, 10, 11],

various regularizations were used. Because of this, the behaviour of their solu-

tions in the vicinity of the space points where γ̇ = 0 (at the corners of the rolls,

or at some particular points on the separatrices between rolls) is questionable.

A quite physical regularization of the power-law model is offered by the Carreau

model

η = η0 (1 + λ2γ̇2)(ni−1)/2 (8)

which is considered here with a vanishing viscosity at infinite rate of strain.

This rheological model has a theoretical basis [13] and describes the viscosity

of several real fluids, like polymer solutions, over a quite large range of values

of γ̇, as shown for instance in [14]. As compared with the power-law model,

a new parameter comes in: the characteristic time of the fluid λ. Its inverse

1/λ gives the characteristic rate of strain above which the viscosity (8) starts
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to decrease below the Newtonian plateau η = η0. A dimensionless measure of

the characteristic time is, naturally,

λa = λ/τth = λκ/d2 . (9)

Clearly, when λ→ +∞, the Carreau model (8) approaches the power-law model

(4) with

M = MC = η0 λ
ni−1 . (10)

To our knowledge, Rayleigh-Bénard convection in Carreau fluids has only been

studied on the basis of linear and weakly nonlinear methods, i.e., near onset.

Since, in the vicinity of the conduction static state, Eq. (8) gives η = η0+O(γ̇2),

the linear problem in a Carreau fluid is analogous to the linear problem in a

Newtonian fluid: the linear onset in terms of the Rayleigh number (1) is still

at Rc = RNewt
c . Using stress-free boundary conditions at the horizontal walls,

[15, 16] showed that the effect of the nonlinearity in Eq. (8) is to change the

bifurcation from supercritical to subcritical, if the fluid is sufficiently shear-

thinning, as it will be precised in Eq. (27) below. These computations have

been also made with no-slip boundary conditions at the horizontal walls by

[17]. The same phenomenon occurs, though the critical values of the rheological

parameters at which the bifurcation to rolls changes of nature is modified (again,

see Eq. 27 below). Moreover, [17] also demonstrated that, in the supercritical

regime and near onset, two-dimensionnal rolls are stable vs simple perturbations

that could lead to three-dimensional patterns, ‘square’ or ‘hexagons’.

The aim of the present article is to study strongly subcritical Boussinesq con-

vection rolls in Carreau fluids, on the basis of a finite-element code constructed

with Freefem++ by Hecht [18]. As already discussed, the strategy adopted by

[9] is used, i.e., we compute only one roll in a row of rolls of critical wavenumber.

During the course of this work, we become aware of the recent study [12]. In

their section V.G, they study a system quite similar to the one addressed here,

except for a slightly smaller aspect ratio. Moreover, they use only one value of

λ, λ = 0.4, whereas we will focus on the limit λ→ +∞ : therefore, our results

are for interest for Carreau fluids but also for power-law fluids. Nevertheless,
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Figure 1: Rayleigh-Bénard geometry: cell of one roll in a row of rolls with wavenumber k.

Thus Lx = π/k.

a comparison with [12] will be shown in section 7. A very good agreement is

found. Our computations have been done by using R (1) as the main control

parameter. In the limit λ → +∞, it will be relevant to also use a Rayleigh

number constructed with the Eqs. (6) and (10),

Ra = ρ0gβδTd
2ni+1/(MCκ

ni) = ρ0gβδTd
2ni+1/(η0λ

ni−1κni) = λ1−ni
a R .

(11)

The plan of this article is as follows. In Section 2, we introduce the equations of

the problem. Section 3 summarizes the already known weakly nonlinear results.

In Section 4, we describe the numerical methods. The validation of the code

is described in Section 5. The results and the effect of a finite viscosity at

infinite rate of strain are presented in Sections 6 and 7, which are followed by a

concluding discussion.

2. Basic equations in dimensionless units

Consider a shear-thinning fluid in a Rayleigh-Bénard xy geometry (Fig. 1),

with the isothermal boundary conditions T = T+ = T0 + (δT )/2 (resp. T =

T− = T0 − (δT )/2) at the bottom (resp. top) plate situated at y = 0 (resp.

d). Denote Tc = T+ − (δT )(y/d) the conductive profile of temperature, at rest.

The dimensionless perturbation of temperature is defined by θ = (T −Tc)/(δT ).
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Using the thermal diffusion time τth (5) as the time scale, a natural velocity

scale is

vth = d/τth = κ/d . (12)

With the thickness d as the length scale, the dimensionless heat equation reads

∂θ

∂t
+ v ·∇θ = ∆θ + v · ey (13)

with v the dimensionless velocity field. Hereafter ex and ey denote the unit

vectors in the directions of the x and y axes (Fig. 1). The dimensionless rate-

of-strain tensor is

¯̇̄γ = ¯̄∇v + ¯̄∇vT (14)

where .T denotes the transposition. Its second invariant is the dimensionless

rate of strain

γ̇a =

(
1

2
γ̇ij γ̇ij

)1/2

. (15)

With the viscosity at rest, η0, as the scale of viscosity, the dimensionless viscosity

of the Carreau model (8) reads

ηa =
(
1 + λ2aγ̇

2
a

)(ni−1)/2
. (16)

With η0τ
−1
th = η0κ/d

2 as the scale of stress, the dimensionless viscous-stress

tensor

¯̄τ = ηa
¯̇̄γ . (17)

The linear momentum equation, written in dimensionless units and under the

Boussinesq approximation, reads

P−1
[
∂v

∂t
+ (v ·∇)v

]
= div(−Π¯̄I + ¯̄τ ) +Rθey (18)

with Π the dimensionless perturbation of the pressure, with respect to the static

pressure in the conduction state.
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At the horizontal boundaries, the sides (1) and (3) of Fig. 1, defined by

x ∈ [0, Lx], y = 0 or 1, with Lx = 1.008, we apply isothermal boundary condition

on the temperature field, no-slip boundary condition on the velocity field:

θ = 0, (19)

v = 0 . (20)

The vertical sides, (2) and (4) in Fig. 1, defined by x = 0 or Lx, y ∈ [0, 1], are

’virtual’ boundaries where the symmetries of the convection rolls impose adia-

batic boundary condition on the temperature field, free-slip boundary condition

on the velocity field:

∇θ · ex = 0, (21)

v · ex = 0, (22)

ey · ¯̄τ · ex = 0 . (23)

Finally, under the Boussinesq approximations, the velocity field also fulfills

the ’incompressibility’ condition

div(v) = 0 . (24)

From now on, we omit the index a in the dimensionless rate of strain, vis-

cosity and characteristic time, which are simply denoted by γ̇, η and λ.

In the nonlinear computations, the time and velocity scales used internally

in the code are different, as it will be discussed in section 4.5.

3. Summary of the known weakly nonlinear results

In [17] it has been shown, with a weakly nonlinear analysis based on a

spectral method, that, in this system, the nature of the bifurcation from the

conduction state to convection rolls with a critical wavenumber depends on a

single rheological coefficient

α =
1

2
(1− ni)λ2 (25)
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which controls the magnitude of the first nonlinear term in the dimensionless

viscosity (16),

η = (1 + λ2γ̇2)(ni−1)/2 = 1 − αγ̇2 + O(γ̇4) . (26)

For P & 1, the bifurcation is

supercritical if α < αc = 2.15 10−4 ,

subcritical if α > αc = 2.15 10−4 .
(27)

In the supercritical regime, the lowest-order version of the formula (3) reads

Nu− 1 =
ε

0.69942− 0.00472P−1 + 0.00832P−2
= γNewtε, (28)

with ε the distance to onset:

ε =
R−Rc
Rc

. (29)

The formula (28) has to be corrected as follows for a Carreau fluid:

Nu− 1 =
γNewt

1− α/αc
ε . (30)

4. Numerical methods

4.1. Weak formulation

To compute the flow in the cell represented in Fig. 1, FreeFem++ [18] is

used. The weak formulation of the equations reads:

∫
D

[
∂θ

∂t
+ v ·∇θ

]
ϕ d2x =

∫
D

[−∇θ ·∇ϕ+ (v · ey)ϕ] d2x

+

∫
∂D

ϕ∇θ · n dl, (31)

P−1
∫
D

[
∂v

∂t
+ (v ·∇)v

]
·w d2x =

∫
D

[(
Π¯̄I − ¯̄τ

)
: ¯̄∇w +Rθey ·w

]
d2x

+

∫
∂D

w ·
(
−Π¯̄I + ¯̄τ

)
· n dl, (32)∫

D

q div(v) d2x = 0, (33)
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with d2x = dxdy the surface element in the cell D, dl the length element along

the boundaries ∂D, n the unit vector normal to the boundaries, pointing out-

ward of the cell. The test functions ϕ, w and q are associated to the temperature

θ, the velocity vector v and the pressure Π respectively. One interest of this

weak formulation is that, in the energy equation (31), the heat flux through the

boundary intervenes, whereas, in the velocity equation (32), the stress at the

boundary intervenes. This will facilitate the implementation of the boundary

conditions (21) and (23).

4.2. Time discretisation

A semi-implicit time scheme is used. A first order discretisation scheme is

sufficient to obtain good results, as it will be shown in the following. Denoting

by vn and θn the velocity and temperature fields at the current time step tn,

we write:

∫
D

[
θn+1

δt
ϕ+ ∇θn+1 ·∇ϕ

]
d2x =

∫
D

[
θn
δt
− (v ·∇θ)n + vn · ey

]
ϕ d2x

+

∫
∂D

ϕ∇θn+1 · n dl,
(34)

∫
D

[
P−1

vn+1

δt
·w +

(
−Πn+1

¯̄I + ̂̄̄τn+1

)
: ¯̄∇w

]
d2x =∫

D

[
P−1

(vn
δt
− ((v ·∇)v)n

)
+Rθney

]
·w d2x+

∫
∂D

w ·
(
−Π¯̄I + ¯̄τ

)
n+1
· n dl,

(35)

∫
D

q div(vn+1) d2x = 0 . (36)

The coupling terms vn.ey and Rθney are explicit to preserve the symmetry of

the linear operator with respect to the couples (θn+1, ϕ) and (vn+1,w). Since

the stress tensor ¯̄τ depends nonlinearly of the velocity field, we use the approx-

imation of order one in time ̂̄̄τn+1 = ηn
¯̇̄γn+1, with ηn the viscosity field at time

tn.

4.3. Space discretisation

A triangular mesh with 40 × 40 identical rectangles in the cell of Fig. 1,

each of them divided into two triangles of equal area, is used in most cases.
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A convergence test has also been performed with 60 × 60 rectangles. Each

triangle is defined by the position of its three corner’s vertices. Interpolation

polynomials are defined in an element such that they are equal to 1 on a specific

vertex and zero on the others [18]. The pressure is defined on P1 finite-elements,

which means that the interpolation functions are polynomials of degree 1. The

temperature and velocity fields are defined on P2 finite-elements, where the

interpolation functions are polynomials of degree 2. To define P2 finite-elements,

the middle points of each P1 element’s edges are added to the corner’s vertices,

to double the number of ’collocation points’ [18].

4.4. Numerical scheme

Considering the N vertices xi of the mesh for P1 finite elements and the M

vertices x′i for P2 finite elements, we define the column vectors

Q = [Πn+1(x1), ... ,Πn+1(xN )]T (37)

and

X =

[ θn+1(x′1), ... , θn+1(x′M ),

ex · vn+1(x′1), ... , ex · vn+1(x′M ),

ey · vn+1(x′1), ... , ey · vn+1(x′M ) ]T .

(38)

By computing Eqs. (34 - 36) for general expressions of Πn+1 and (θ,v)n+1,

and all possible test functions q and (ϕ,w), among the P1 and P2 functions

described before, one can identify matrices A, G and D that represent the

left-hand-side linear operator in the equations (34 - 35), the gradient and the

divergence, respectively. Thus the matrix form of the problem (34 - 36) reads

AX +GQ = B, (39)

DX = 0 . (40)

In Eq. (39), B represents all the terms that are known explicitely in the right-

hand-side of Eqs. (34-35). The boundary terms are not included, i.e., they are

cancelled. Some of them vanish because of the Neumann boundary conditions

12



(21) and (23), the other ones are taken to be zero because the Dirichlet boundary

conditions (19), (20) and (22) are imposed by a penalisation method; some

diagonal coefficients of the matrix A are modified accordingly [18]. In the non-

Newtonian case, our temporal scheme demands to update A because of the

evolution of the viscosity as time goes on. To solve Eqs (39-40), we use the

Uzawa algorithm [18]. One computes the velocity and temperature fields given

by

X = A−1(−GQ+B) (41)

using the conjugated gradient algorithm. One then obtains the pressure field by

Q = (DA−1G)−1(DA−1B) . (42)

The pressure (42) is computed using a customized Cahouet & Chabard precon-

ditioner [19]

C−1 =
P−1

δt
(DG)−1 + ηeqI (43)

where ηeq is the constant viscosity of the Newtonian fluid and I the identity

N ×N matrix, to insure that

C−1(DA−1G) ∼ I . (44)

In our case, the viscosity of non-Newtonian fluids is not constant and we have

to define an average viscosity ηeq such as the property (44) is preserved. We

find that a good solution is

ηeq =
3ηminn + η0

4
, (45)

with η0 = 1, ηminn the minimal value of the viscosity over the mesh points at

the time step n.

Our time scheme becomes equivalent to a fully implicit time scheme de-

spite the explicit terms when the steady state is reached, as we do not use the
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Characteristics-Galerkin method implemented in Freefem++ for the convective

terms. Nervertheless, during the transient stages, the time step must verify the

CFL condition to insure the accuracy and the numerical stability, because of the

explicit inertial terms. Thus, in the following, the time step δt always verifies

δt ≤ δxmin
vmax

. (46)

with δxmin the minimum equivalent diameter of mesh elements, vmax the max-

imum value of the norm of v.

4.5. Numerical reference velocity for nonlinear simulations

In the nonlinear regime above onset, the order of magnitude of the velocity

induced by the buoyancy can be obtained by balancing the inertial and buoyancy

terms in Eq. (18):

(v ·∇)v ∼ RPθ . (47)

As (v ·∇)v ∼ v2 and θ ∼ 1, one finds a characteristic velocity

Vr =
√
RP . (48)

As this velocity Vr may be quite high (∼ 100), the components of the vector

X (38) may be unbalanced between the temperature and velocity components.

Then, the numerical inversion of the linear relation (39) may become unaccu-

rate. To avoid numerical problems in nonlinear simulations, the numerical code

calculates the velocity ṽ = v/Vr. A new inertial unit of time is also chosen,

which is the turnover time based on the dimensional velocity corresponding to

Vr, and on the length d. Thus, with these new scales, t̃ = (RP )1/2t with the

scales of section 2. With these new units, the Eqs. (13) and (18) become

∂θ

∂t̃
+ ṽ ·∇θ = (RP )

−1/2
div(∇θ) + ṽ · ey, (49)

∂ṽ

∂t̃
+ (ṽ ·∇)ṽ = (R/P )−1/2div

(
−Π̃¯̄I + ¯̃̄τ

)
+ θey, (50)
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with ¯̃̄τ = η
¯̃̄
γ̇, η = (1 + λ̃2 ˜̇γ2)(ni−1)/2 and λ̃ = λVr. In the code, the weak

formulation of (49) and (50), together with the incompressibility condition, is

solved internally in the nonlinear runs, but the results are always presented with

the dimensionless units defined in section 2. On the contrary, for ’linear’ runs

near onset, the equations with the dimensionless units of section 2 are used.

Indeed, near onset, the velocity estimated using the thermal diffusion time (12)

is relevant.

4.6. Initial condition

The first simulations of the code are started with a vanishing temperature

field, θ0 = 0, and a velocity field which corresponds to a divergence-free roll:

v0 = 16A0

(
−2y

k
(y − 1)(2y − 1) sin(kx)ex + y2(y − 1)2 cos(kx)ey

)
, (51)

with k = 3.116 the dimensionless wavenumber of the critical rolls and A0 the

amplitude of the initial perturbation of the velocity. For parametric studies, to

reduce the duration of the transients, a continuation method is used: each new

simulation is started with the permanent regime solution corresponding to the

closest set of parameters, as an initial condition.

5. Validation of the numerical method

5.1. Mesh and time step

Computations at R = 1800 and P = 7 for a Newtonian fluid show that the

values of the velocity at the middle of the cell height do not vary by more than

0.25% using meshes with 20× 20 to 50× 50 rectangles. In the following, we will

use a mesh of 40 × 40 rectangles to preserve the accuracy for non-Newtonian

calculations and high Rayleigh numbers. The results for strongly shear-thinning

fluids have been verified with a mesh of 60 × 60 rectangles and they differ by

less than 0.1%. In the following, we provide the coefficients obtained by fitting

our results with an accuracy of four digits to allow accurate comparisons, even

if the last digit is one order of magnitude below the error level.
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To set the time step δt̃, the CFL condition (46) is checked at every time step

and δt̃ is automatically adjusted to δt̃ = 0.5 min(δx/ṽ) if δt̃ < 0.1 min(δx/ṽ) or

δt̃ > min(δx/ṽ). This tolerance range is defined such that one does not have to

modify δt̃ at every time step. The CFL condition (46) leads to δt̃ ≤ 0.025/ṽmax

with the 40 × 40 rectangles mesh. As the velocity ṽ has been defined such as

ṽ ∼ 1, δt̃ = 0.01 is a good initial guess value. To avoid too large δt̃ values

when the flow velocity collapses to zero, we set δt̃max = 0.1 as the maximum

allowed value. This insures numerical stability and an acceptable accuracy

during the transient from the initial condition to the final static state. In the

following, the validation of the numerical code using the well known Newtonian

case provides an additional evidence that the time step chosen insures accuracy

in the transient stage of the flow. Note also that the final static solution does

not depend on the time-step value.

5.2. Comparisons with linear and weakly nonlinear theories

To determine the linear threshold of the primary instability in the Newtonian

case, we compute the transient evolution of the velocity and temperature, start-

ing with the initial condition (51) with a very small amplitude A0 = 10−6. We

compute the time evolution of the flow at R = 1700 and R = 1715, i.e. around

the value of the critical Rayleigh number Rc = 1707.76 found by Schlüter et al.

[3]. From exponential fits of the time series, we extract the linear growth rates

σ(R = 1700) = −0.0585245 and σ(R = 1715) = 0.054549 at P = 1. A linear fit

between these values provides a critical value Rc = 1707.76 undistinguishable

from the Schlüter et al. [3] value. Moreover, the linear stability theory provides

the characteristic time τ0 for the instability:

τ0 = 0.05084 + 0.02601/P = 0.07685 if P = 1, (52)

such that near onset the growth rate

σ = ε/τ0 . (53)
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Figure 2: Roll solution in a Newtonian fluid with P = 1, R = 5123: regularly spaced

streamlines (black curves) and isotherm corresponding to the mean temperature T0 (gray

curve - green curve on the web).

The Eqs. (52) and (53) leads to the following values of the growth rate:

σ(R = 1700) = −0.05913 and σ(R = 1715) = 0.05517 . (54)

These values and those obtained with our code agree within 1.1%.

In a strongly nonlinear regime, at R = 5123 and P = 1, we find a Nusselt

Nu = 2.12674 in perfect agreement with the calculation of Plows [4] which gives

Nu = 2.13. The fields corresponding to this case are shown on Fig. 2. They

have been compared with the fields computed with the spectral code of [20],

and a perfect agreement has been found.

As already mentioned in the introduction, in principle, in a Carreau fluid

the linear instability occurs at the same value of R as in a Newtonian fluid.

This has been checked with the Freefem code, using the parameters ni = 0.5

and λ = 0.02, which correspond to α = 10−4. With growth rate computations,

we also find Rc = RNewt
c = 1707.76.

Nonlinear results for a Newtonian fluid and this Carreau fluid with α = 10−4

are displayed on the Fig. 3. The full curves are tangent to the weakly nonlinear

lines given by (28) and (30), which have been obtained independently. The

slope of these lines are 1.431 (resp. 2.676) according to Eq. (28) (resp. 30).

The coefficients of the linear terms of polynomial fits of degree 11 to the Freefem

17



0 0.5 1 1.5 2

0

0.25

0.5

0.75

1

1.25

1.5

Ε

N
u

-
1

Figure 3: For a Newtonian fluid with P = 7 (black) and a Carreau fluid with P = 7, ni =

0.5, λ = 0.02 (gray - red on the web), reduced Nusselt vs distance to onset data. The full

curves show the numerical results of the Freefem code, the dashed lines show the weakly

nonlinear approximations (28) and (30).

data are 1.444 (resp. 2.727). The relative differences between the slopes given by

(28) and (30) and the ones measured by fits of the nonlinear data are 0.9% and

1.9%. This constitutes a validation of our code in the nonlinear, non-Newtonian

regime.

6. Subcritical rolls in shear-thinning fluids

6.1. Subcritical rolls

Hereafter we will always use

P = 7 . (55)

According to the weakly nonlinear criterion (27), for ni ≤ 0.9 and λ ≥ 1,

α ≥ 0.05 > αc, hence the bifurcation to rolls is subcritical. Classically, the roll

solution branch can then be continued down to a subcritical value Rsc where

the low Nu, unstable part of this branch merges with the high Nu, presumably

stable part of this branch in a saddle-node bifurcation. Below Rsc, all roll flows
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decay. By following the upper branch numerically, we can estimate Rsc. We first

compute a solution using a Rayleigh number above Rc, with the initial condition

(51), to capture nonlinear rolls. Once a steady solution is obtained, we use it

as the initial condition of another computation at a lower Rayleigh number.

This process is repeated: we follow the upper branch of roll solution, which

appears to be ’stable’ at least from a numerical point of view, step-by-step in

the Rayleigh number R. When the flow velocity vanishes, i.e., when the Nusselt

number tends to 1, it means that R < Rsc. The step between two successive

values of the Rayleigh number is reduced to 5 close to Rsc. Therefore, we can

estimate in this manner Rsc within an error of the order of ±1%. Solution

branches obtained with this method are displayed on the Figs. 4 and 5. As

expected, the subcritical behaviour is stronger when α increases, i.e. when ni

decreases or λ increases. In Fig. 9, we observe that the minimal value of Rsc is

115.6 for the strongest shear thinning parameters used in our study (ni = 0.5

and λ = 10), to compare to Rc = 1707.76. Indeed, for strongly shear thinning

fluids, the viscosity decreases abruptly when the rate of strain increases, i.e.

subcritical convection is strongly favoured.

6.2. Correlation law for the Nusselt number

According to the weakly nonlinear theory, in the vicinity of the saddle-node

bifurcation, the Nusselt number should grow proportionally to
√
εs, with

εs = R/Rsc − 1 (56)

the relative distance to the subcritical onset. Therefore, in order to propose a

correlation law for the Nusselt number of subcritical rolls, we assume a relation

of the form:

Nu(R,ni, λ) = K(ni, λ)
√
εs +Nusc(ni, λ). (57)

Here, K is a coefficient and Nusc > 1 the Nusselt number at the subcritical

Rayleigh number Rsc. Fig. 6 confirms, for ni = 0.8, the relevance of the ansatz
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Figure 4: In a Carreau fluid with P = 7, ni = 0.8, reduced Nusselt vs Rayleigh number for

different values of λ as indicated. The full curves connect nonlinear roll solutions. For each

λ, the dashed line connects the last non-vanishing solution, in terms of θ, v or Nu− 1, to the

conduction solution which is found at the next smaller value of R studied.
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Figure 5: Same as Fig. 4, but for different values of ni and a fixed value of λ, λ = 1.
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Figure 6: For ni = 0.8, reduced Nusselt numbers of the data of Fig. 4, for 1 ≤ λ ≤ 200, vs

the square root of the relative distance to the subcritical Rayleigh number εs (Eq. 56). The

full line is the linear fit Nu = 1.0126
√
εs + 1.1222 (least square residual r2 = 0.9980).

(57). Moreover, it suggests that the coefficients are independent of λ, i.e.

K(ni, λ) = K(ni) and Nusc(ni, λ) = Nusc(ni). (58)

In order to determine K(ni) and Nusc(ni), linear regressions are performed,

for λ = 1, with several values of ni in Fig. 7. The high values of the least

square residuals suggest that the law (57) is relevant in the range of rheological

parameters used. The values of K and Nusc are displayed in Figs. 8-a and 8-b.

A good agreement is found between the numerical data and the linear fits

K(ni) = −1.2958ni + 2.0217, Nusc(ni)− 1 = −0.9725ni + 0.9060. (59)

The λ-dependence of the Nusselt number in the final form of the correlation

Nu(R,ni, λ) = K(ni)
√
εs +Nusc(ni) (60)

is contained in εs = R/Rsc − 1. We will now study the subcritical Rayleigh

number Rsc = Rsc(ni, λ).
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Figure 7: Reduced Nusselt number vs the square root of the relative distance to the subcritical

Rayleigh number εs, for λ = 1 and different values of ni. The full lines are linear fits using

all data points (the least square residuals 0.9935 ≤ r2 ≤ 0.9996).
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Figure 8: Coefficient K (a) and reduced subcritical Nusselt number (b) vs ni. The full lines

show the linear fits (59), the least square residuals r2 = 0.9889 (a) and r2 = 0.9851 (b).
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Figure 9: Subcritical Rayleigh number Rsc for different values of the shear-thinning index ni.

© : numerical data. Full lines use the Eq. (63) and the power law (64) for fitting data.

6.3. Asymptotic power-law regime

The results of Fig. 9 suggest that the subcritical Rayleigh number Rsc

follows a power law of the form

Rsc(ni, λ) = R1(ni)λ
γ(ni) (61)

for λ ≥ 1. Fits of the data of Fig. 9 to such a power law yield the results of

Fig. 10, i.e.,

γ(ni) = 1.0208ni − 1.0172 . (62)

This is quite close to γ(ni) = ni − 1, which would indicate that the Rayleigh

number for the corresponding power-law fluid, Rasc = λ1−niRsc, according to

Eq. (11), is constant. Therefore, hereafter we write, instead of (61),

Rsc(ni, λ) = Rasc(ni)λ
ni−1, (63)
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and, by fitting Rasc(ni), we extract the data of Fig. 11. Fitting the values of

Rasc(ni) to a power law of ni, we obtain, as shown in Fig. 11, a very good

interpolation of our numerical data :

Rasc(ni) = 1710.49 n2.2411i . (64)

This law has been obtained with data in the range ni ∈ [0.5, 0.9]. It is interesting

to note that for, ni = 1, it gives Rasc(1) = 1710.49, which is, naturally, RNewt
c

within 0.16%. One can consider our Fig. 11 as a new, more accurate version of

the Fig. 20 of [9] (for the ’dragless vertical boundaries’ case). The combination

of the formulae (63) and (64) yields a rather precise prediction of Rsc(ni, λ),

Rsc(ni, λ) = 1710.49 n2.2411i λni−1, (65)

as demonstrated by the Fig. 12.

In fact, the temperature and the velocity fields in the subcritical solutions

at R ' Rsc seem to converge to a given structure, as shows the Fig. 13. This

structure should be seen as the one in the power-law fluid case. This convergence

happens despite increasing variations of the viscosity, as λ increases. Of course,

one can question the relevance of using the zero-rate-of-strain viscosity η0 in the

definition of the Rayleigh number (1), or an approximation of the viscosity at

γ̇ = τ−1th in the Rayleigh number (11). In the next subsections, we will explore

alternate definitions of the viscosities, to define alternate Rayleigh numbers.

6.4. Analysis with the Parmentier’s viscosity

Parmentier [11] suggested, on the basis of an analysis of the kinetic energy

equation, to define what we call the Parmentier’s viscosity,

ηP =

∫
D
η γ̇2 d2x∫
D
γ̇2 d2x

, (66)

with the notations already defined at the level of Eqs. (31-33). Using the

Parmentier-Rayleigh number RaP (7) constructed on this viscosity, and all the

subcritical solutions at R ' Rsc that we have computed, we obtain the Fig. 14.
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Figure 12: Relative difference between the analytic formula (65) and the numerical subcritical

Rayleigh number.

All data collapse on the Nu(Ra) curve for a Newtonian fluid. This confirms

the results of Parmentier [11], which were obtained for higher values of RaP

(denoted R̄a in his article), RaP ≥ 104.

The Fig. 14 shows also that, the smaller the shear-thinning index ni, the

more vigorous is the convection around the saddle-node bifurcation at R ' Rsc:

the Nusselt number corresponding to these solutions increases as ni decreases.

This is reasonable, since small ni correspond to strongly shear-thinning fluids.

Clearly, as ni → 1, Rsc → RNewt
c and the saddle-node solution converges to

the bifurcation solution in the Newtonian, supercritical case, i.e., to the static

solution, which is characterized by Nu − 1 = 0. This is also visible on the

Fig. 15. The dispersion of the data points of the Fig. 15 suggests that the

Parmentier viscosity, the values of which are plotted on the Fig. 16, is not the

one that can collapse the saddle node or subcritical Rsc values.
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6.5. Analysis with an effective viscosity - Relevance of the average viscosity

We define a dimensionless ‘neutral’ or ‘effective’ viscosity such that the sub-

critical Rayleigh number constructed on it is constant, equal to the Newtonian

critical value:

RNewt
c =

Rsc
ηe

i.e. ηe =
Rsc
RNewt
c

. (67)

The corresponding dimensional viscosity η0ηe can be seen as the viscosity of the

equivalent Newtonian fluid that leads to a critical temperature difference (δT )c

equal to the subcritical temperature difference (δT )sc, all the other parameters

being the same, i.e., that leads to the ‘same onset’. Using (67) to calculate the

effective viscosity in each case, we obtain the results of the Fig. 16, which also

display the Parmentier’s viscosity and the bulk-average viscosity

ηm =

∫
D
η d2x∫
D
d2x

. (68)

It is observed that the Parmentier’s viscosity is below the effective viscosity. On

the contrary, the values of ηm are found to be close to the effective viscosity

ηe. The fact that ηe ' ηm � 1 at large λ suggests that the reference viscosity

(1 in dimensionless units, η0 in dimensional units) is not the relevant one to

characterize the onset of rolls in Rayleigh-Bénard convection of a shear-thinning

fluid. Note also that Eqs. (65) and (67) yield an analytic approximation of ηe

and ηm, the characteristic viscosity at the onset of subcritical convection,

ηe ' ηm ' n2.2411i λni−1 . (69)

7. Influence of a finite viscosity at infinite rate of strain

As shows the Eq. (8), the previous study concerns fluids with a vanishing

viscosity, η∞ = 0, at infinite rate of strain, γ̇ → +∞. In this section, we
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Figure 16: Average and equivalent viscosities for different shear-thinning index ni. © :

equivalent viscosity ηe; � : Parmentier’s viscosity ηP ; + : average viscosity ηm.

examine the effect of a finite viscosity η∞ 6= 0 at infinite rate of strain, i.e., in

dimensionless units, the rheological model (16) is modified as follows:

η = η∞ + (1− η∞)
(
1 + λ2γ̇2

)(ni−1)/2
. (70)

To validate our numerical method when η∞ 6= 0, we compare with [12] for

P = 10, ni = 0.6, λ = 0.4, η∞ = 0.01, and for an aspect ratio of the cell

Lx/d = 1, which would not bring significantly different results than with our

value Lx/d = 1.008. Benouared et al. [12] found a subcritical Rayleigh number

Rsc = 800, whereas our computations show that 780 < Rsc < 782.5, which

is only 2% smaller. Moreover, the value of Nusselt number at R = 800 found

by [12] is Nu = 1.4798 to compare to our value, Nu = 1.4751: the relative

difference is smaller than 0.32%. A second point was compared at R = 2000,

and the relative difference of the Nusselt numbers is 0.38% (Nu = 2.7759 for

[12] and Nu = 2.7655 for us).

The Fig. 17-a shows that increasing the value of η∞ stabilizes the system,
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Figure 17: Subcritical Rayleigh number Rsc (a) and Parmentier-Rayleigh number RaPsc (b)

for different values of the viscosity η∞ at ni = 0.5 and λ = 10.

which is reasonable since this increases the minimum value of the viscosity.

However, using the Parmentier’s viscosity as reference viscosity leads to the

opposite effect, as shows the Fig. 17-b. Note that, when η∞ → 1, the fluid

becomes Newtonian and Rsc → RNewt
c , RaPsc → RNewt

c .

By introducing the effective and average viscosities as already defined in

Eqs. (67,68), we obtain the Fig. 18. It shows the same tendencies as in the case

η∞ = 0, i.e., the effective and average viscosities are close, and quite relevant,

whereas the Parmentier’s viscosity is smaller.

8. Conclusion

We have confirmed with bidimensionnal, fully nonlinear computations of

roll solutions in Carreau fluids that the transition to thermoconvection flows in

strongly shear-thinning fluids is subcritical. The subcritical onset of convection

and the corresponding subcritical solutions have been characterized for P & 1.

The threshold value of the Rayleigh number Rsc, based on the viscosity η0 of

the fluid in the static state, decreases when the shear-thinning increases, which

suggests that somehow the shear-thinning ‘destabilizes’ the system. However,

further analysis using the Parmentier’s viscosity ηP [11] to define the Rayleigh

number shows that when the shear-thinning index ni decreases (Fig. 14), the
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λ = 10. © : equivalent viscosity ηe; � : Parmentier’s viscosity ηP ; + : average viscosity ηm.

shear-thinning ‘stabilizes’ the conductive state, i.e., it increases the critical value

of the Parmentier-Rayleigh number RaPsc. Finally, we have defined a neutral

or effective viscosity ηe, such that the subcritical Rayleigh number based on it

is always equal to RNewt
c . This effective viscosity, which corresponds to the one

of an equivalent Newtonian fluid at onset (see after Eq. 67), is close to the

bulk-average viscosity ηm, even if the viscosity at infinite rate of strain η∞ 6= 0.

This rather simple result, and the fact that the temperature and velocity fields

at onset of subcritical convection are close to the ones in Newtonian rolls (see

the Fig. 13), shows that somehow the rheology of the viscous fluids considered

here does not influence strongly the structure of thermoconvection rolls.

In the case η∞ = 0, where the fluid behaves, as soon as it is sufficiently shear-

thinning, like a power-law fluid, a correlation for the Nusselt number Nu vs R,

up to R ∼ 2000 at least, is proposed in Eqs. (59) and (60) for the subcritical

cases 0.5 ≤ ni ≤ 0.9 and 1 ≤ λ < +∞. In the limit λ → +∞, because

R = Ra λni−1 and Rsc = Rasc(ni)λ
ni−1, the Eq. (60) gives a correlation for
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the Nusselt number of a power-law fluid, Nu = Nu(Ra, ni), with εs calculated

as Ra/Rasc(ni)− 1. To calculate the subcritical Rayleigh numbers, power laws

have been derived for both Rsc and Rasc (Eqs. 64 and 65) and also for the

characteristic viscosity (Eq. 69). The correlation (60) and the power-law (64)

for the onset of convection might be useful for some Engineering problems with

power-law fluids.

It should be pointed out that in the present study we considered a periodic

geometry and two spatial dimensions only. It would be interesting to develop

two-dimensional computations in a less constrained geometry, and, also, three-

dimensional computations. This would allow a systematic study of the stability

of subcritical rolls vs general perturbations. Another extension of this work

could consider more complex rheological models. One might want to take into

account temperature effects on the viscous parameters for instance. Finally, it

would be interesting to study a thixotropic model that extends naturally the

Carreau model, like the one of [21].
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Appendix A. Freefem++ source code

The algorithm to compute the subcritical Rayleigh number has been with-

drawn from the code, to make it easier to be read and used.

// Begin of the program

real ttgv=1e30; // very large value

real ttpv=1e-6; // very small value

// Mesh and time parameters

real dt=0.01; // Time step

int np=40; // Number of points along x

int mp=40; // Number of points along y

int N=100000; // Number of time steps

int frequenceSauvegarde=50; // Skip step for saving

// Physical parameters

real kx=3.116; // No slip wave number

real x0 = 0;

real x1 = 0.5*2*pi/kx;

real y0=0;

real y1=1;

real Pr=7; // Prandt number

// Internal reference velocity

real Vref;

real tref;

// Viscosity parameters

real eta0=1.0;
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real etainf=0.0;

real etamoy,gmoy,mumoy;

real nc=0.8;

real lambda=1.0;

real a=2;

real alpha=1./dt;

real nn=1./mp;

real Nu=1; // Nusselt number

real Nuo=20;

real dNu;

real temps; // Time

real adh=0; // No slip velocity

real imp=0; // Normal velocity

mesh Th;

fespace VVh(Th,[P2,P2,P2]);

VVh [v1,v2,t],[f1,f2,f3];

// [v1,v2,t] velocity and temperature

// [f1,f2,f3] test function

fespace Vh(Th,P2);

Vh v1o,v2o,to,nu,g2;

// [v1o,v2o,to] old velocity and temperature

// nu viscosity

// g2 second invariant of the strain rate tensor

fespace VMh(Th,[P1]);
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fespace Mh(Th,P1);

Mh p,pw;

// p pressure

// pw working pressure

// Name of reading and writting files

string inputf;

string outputf;

real Rainputf=1750; // Reading file Rayleigh number

real Ra=1750; // Rayleigh number

real ifrst=0; // Boolean for reading files

real nLoad=nc; // Shearthinning index for reading file

real lLoad=lambda; // lambda for reading file

if(ifrst) inputf="N"+nLoad+"L"+lLoad+"/Ra"+Rainputf;

Vref=sqrt(Ra*Pr);

tref=1./Vref;

// Warning : Saving folder must be created BEFORE running the script

// Example :

// Create a folder named such as N0.8L1 in the working directory

outputf="N"+nc+"L"+lambda+"/Ra"+Ra;

// Core of the program

// Mesh generation or reading

if (ifrst)

{

Th=readmesh(inputf+"ThRef.msh");
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}

else

{

Th = square(np,mp,[x0+(x1-x0)*x,y0+(y1-y0)*y]);

}

// Reading of starting files

if (ifrst)

{

{

ifstream file(inputf+"vt.txt"); // Velocity and temperature

file>>v1[];

}

{

ifstream file(inputf+"p.txt"); // Pressure

file>>p[];

}

{

ifstream file(inputf+"temps.txt"); // Time

file>>temps;

}

{

ifstream file(inputf+"dt.txt"); // Time step

file>>dt;

}

ttpv=-abs(ttpv);

alpha=1./dt;

}

else

{ // Start from scratch

temps=0;

p=0;

[v1,v2,t]=[-0.1*32*y/kx*(y-y1)*(2*y-y1)*sin(kx*x),0.1*16*y^2*(y-y1)^2*cos(kx*x),0];
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}

savemesh(Th,outputf+"ThRef.msh"); // Save mesh

macro gamma(v1,v2) (2*dx(v1)^2+2*dy(v2)^2+(dx(v2)+dy(v1))^2) // 2th invariant

// Viscosity law (Carreau)

macro eta(v1,v2)

((etainf+(eta0-etainf)*(1+(Vref*lambda)^a*(gamma(v1,v2))^(a/2))^((nc-1)/a))/eta0) //

plot(Th,wait=1,cmm="Maillage");

if(ifrst)

{

plot(t,wait=1,cmm="Temperature. Time="+temps);

}

nu=eta(v1,v2);

plot(nu,fill=1,wait=1,cmm="Viscosity. Time="+temps);

macro div(v1,v2) (dx(v1)+dy(v2)) // divergence

varf vDiv([v1,v2,t],[q],qforder=4)=int2d(Th)(div(v1,v2)*q);

matrix MDiv=vDiv(VVh,VMh);

macro grad(u) [dx(u),dy(u)] // gradient

// Problem definition

problem vRBnn([v1,v2,t],[f1,f2,f3],solver=CG,eps=ttpv)=

int2d(Th)(alpha*(v1*f1 + v2*f2 + t*f3)

+ (Pr*tref)*nu*(2*dx(v1)*dx(f1)+2*dy(v2)*dy(f2)

+(dy(v1)+dx(v2))*(dy(f1)+dx(f2)))

+ tref*(dx(t)*dx(f3)+dy(t)*dy(f3)))

- int2d(Th)(f1*(alpha*v1o-[v1o,v2o]’*grad(v1o))
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+f2*(alpha*v2o-[v1o,v2o]’*grad(v2o))

+f3*(alpha*to-[v1o,v2o]’*grad(to))

+ div(f1,f2)*pw

+ (Ra*Pr*tref^2)*to*f2

+ v2o*f3)

+ on(1,3,v1=adh,v2=adh,t=0) + on(2,4,v1=imp);

// Function divup

func real[int] divup(real[int] & pp)

{ pw[]=pp;

vRBnn;

real[int] divu=MDiv*v1[];

return divu;

};

//Preconditionner

varf vA(p,q) = int2d(Th)((grad(p)’*grad(q)));

varf vM(p,q) = int2d(Th,qft=qf2pT)(p*q);

matrix pAM=vM(Mh,Mh,solver=UMFPACK);

matrix pAA=vA(Mh,Mh,solver=UMFPACK);

real vism=0.5*(1.5*nu[].min+0.5)*tref*Pr;

func real[int] Precon(real[int] & p)

{

real[int] pa= pAA^-1*p;

real[int] pm= pAM^-1*p;

real[int] pp= alpha*pa+vism*pm;

return pp;

}

int res;
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real dtc;

nu=eta(v1,v2);

v1o=v1;

v2o=v2;

to=t;

int i=1;

dNu=1;

while (dNu>1e-5 && i<=N)

{

i++;

temps+=dt;

cout << "temps=" << temps << " dt=" << dt << endl;

vism=0.5*(1.5*nu[].min+0.5)*tref*Pr;

res=LinearCG(divup,p[],precon=Precon,veps=ttpv,nbiter=50,verbosity=10);

assert(res==1);

ttpv=-abs(ttpv);

divup(p[]);

v1o=v1;

v2o=v2;

to=t;

nu=eta(v1,v2);

cout << " v1 max " << v1[].linfty

<< " v2 max " << v2[].linfty

<< " t max " << t[].linfty

<< " visc min " << nu[].min << endl;

// CFL Condition for dt

pw=hTriangle/sqrt(v1^2+v2^2);

dtc=pw[].min;

if(dt>dtc)
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{dt=0.5*dtc;

alpha=1./dt;

cout << "dt change to " << dt << " CFL limit " << dtc << endl;}

if(dt<0.1*dtc)

{dt=min(0.5*dtc,0.05);

alpha=1./dt;

cout << "dt change to " << dt << " CFL limit " << dtc << endl;}

// Nusselt number

Nu=int1d(Th,3,qfe=qf2pE)(-dy(t));

// Saving temporal data

{ofstream ff(outputf+"Nu_t.txt",append); ff << temps << " " << Nu << endl;};

plot([v1,v2],value=true,wait=0,cmm="[v1,v2] au temps = "+temps);

// Saving full fields

if(i%frequenceSauvegarde==0)

{

dNu=abs(Nu-Nuo)/dt;

Nuo=Nu;

{ofstream f(outputf+"vt.txt");

ofstream g(outputf+"p.txt");

ofstream h(outputf+"temps.txt");

ofstream l(outputf+"dt.txt");

f << v1[]; // [v1,v2,t]

g << p[]; // pressure

h << temps;

l << dt;

};

}

};// End of the time loop

// Average viscosities

43



etamoy=int2d(Th)(nu);

etamoy*=1./((x1-x0)*(y1-y0));

{ofstream ff(outputf+"visco.txt",append); ff << " mean visc. = " << etamoy << endl;};

g2=gamma(v1,v2);

etamoy=int2d(Th)(nu*g2);

gmoy=int2d(Th)(g2);

mumoy=etamoy/gmoy;

{ofstream ff(outputf+"mup.txt",append);

ff << etamoy << " " << gmoy << " " << mumoy << endl;};

// Final saving

{

ofstream f(outputf+"vt.txt");

ofstream g(outputf+"p.txt");

ofstream h(outputf+"temps.txt");

ofstream l(outputf+"dt.txt");

f<< v1[]; // [v1,v2,v3,t]

g<<p[]; // pressure

h<<temps;

l<<dt;

}

{ofstream ff("N"+nc+"L"+lambda+"/NuN"+nc+"L"+lambda+".txt",append);

ff << Ra << " " << Nu << " " << i << " " << dNu << endl;};

// End of the program
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