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Collisional drift waves and ion temperature gradient (ITG) instabilities are studied using a linear

water-bag kinetic model [P. Morel et al., Phys. Plasmas 14, 112109 (2007)]. An efficient spectral

method, already validated in the case of drift waves instabilities [E. Gravier et al., Eur. Phys. J. D

67, 7 (2013)], allows a fast solving of the global linear problem in cylindrical geometry. The

comparison between the linear ITG instability properties thus computed and the ones given by the

COLUMBIA experiment [R. G. Greaves et al., Plasma Phys. Controlled Fusion 34, 1253 (1992)]

shows a qualitative agreement. Moreover, the transition between collisional drift waves and ITG

instabilities is studied theoretically as a function of the ion temperature profile. VC 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4799814]

I. INTRODUCTION

Low-frequency turbulence developing from micro insta-

bilities is responsible for the phenomenon of anomalous

transport in magnetically confined fusion plasmas.1,2 Thus,

drift waves, Ion Temperature Gradient (ITG), interchange

and Trapped Electron Modes (TEM) instabilities probably

play an important role in explaining the anomalous heat and

particle transport observed in tokamaks.3,4 These instabilities

are driven by gradients of the density or temperature of the

ion and electron populations. Low-frequency density fluctua-

tions are also easily observed in cylindrical magnetized

plasma columns.5–9 These cylindrical machines are of funda-

mental interest and can provide a testing ground for compari-

sons of numerical simulations with experiments.

Numerical simulations can contribute to a better under-

standing of plasma instabilities. Fluid models have been

widely used. Solving three-dimensional 3D fluid equations is

the most convenient way to compute the plasma response to

the perturbed electromagnetic field when there is no wave-

particle interaction, and is all the more justified when

Coulomb collisions are dominant. But predicting turbulent

transport in nearly collisionless fusion plasmas may require

solving gyrokinetic equations.10

On the other hand, although more accurate, the kinetic

calculation of turbulent transport is much more demanding

of computer resources than fluid simulations. Furthermore,

solving kinetic equations is still a nontrivial task. This moti-

vated us to revisit an alternative approach based on the

water-bag (WB) representation of the distribution function.11

The water bag model fills the gap between fluid and kinetic

descriptions of a collisionless and unmagnetized plasma,

incorporating kinetic effects, but with the complexity of a

multifluid model.

Recently, we used the water bag model for magnetized

plasmas in the framework of gyrokinetic modeling (Gyro-

Water-Bag, i.e., GWB model) in cylindrical geometry with a

uniform and static magnetic field pointing in the axis direc-

tion. In Ref. 12, a local linear study of the ITG instability in

cylindrical geometry has been performed in the case of the

drift-kinetic approximation without taking into account

Finite Larmor Radius (FLR) effects, polarization, and gyroa-

veraging. It has been shown that the water-bag model

converges rather rapidly towards that of the continuous dis-

tribution function (bag number � 5) when ITG instability

linear growth rates are compared. Next, a linear study of

both local collisional drift waves and ITG instabilities has

been performed.13 Finally, a precise study of FLR effects on

ITG instability has been presented in Ref. 14. In all these

studies, the eigenfunctions were not computed exactly but

approximated assuming local modes. For instance in Refs.

13 and 14, the electric potential was assumed to be of a

Gaussian form, centered around a radius r0, see the Eqs. (23)

and (31) of Ref. 13 and Eqs. (13) and (15) of Ref. 14. Here,

we revisit these studies by solving systematically the eigen-

problems, i.e., by performing a "global" stability analysis.

For this purpose, we use the new spectral method introduced

in Ref. 15.

A Gyro-Water-Bag model could be useful of course for

nonlinear simulations but also for linear studies. In this

frame, the Gyro-Water-Bag model could be an interesting

and efficient linear tool, giving linear instability growth

rates and eigenfunctions, and allowing to compare easily

the linear instability growth rate with that given by nonlin-

ear gyrokinetic codes. Also the linear model should be rele-

vant when regular and almost sinusoidal waves are

observed experimentally.

This article is organized as follows. In Sec. II, the

kinetic water-bag model is introduced and the linear analy-

sis is presented. The model is able to describe both colli-

sional drift waves and ITG instabilities. In Sec. III, the new

spectral method is presented. It will allow us to solve the

differential equation given by the linear analysis. The influ-

ence of the ion temperature and kinetic effects on ITG
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instabilities are discussed in Sec. IV, and a comparison

with the COLUMBIA experiment5,6 is performed. The

waves observed experimentally are nearly regular and sinu-

soidal. In the framework of a linear model, it is, therefore,

reasonable to assume that they correspond to the fastest

growing modes of the stability analysis. Finally, the transi-

tion between collisional drift waves and ITG instabilities is

studied theoretically in Sec. V, with the temperature profile

as the control parameter.

II. KINETIC WATER-BAG MODEL

A. Generalities—base state

We consider a cylindrical plasma of radius a. The plasma

is confined by a uniform magnetic field B ¼ Buz, with uz the

unit vector in the axial direction. The plasma can be weakly

or fully ionized. Three species can be considered: the neutral

gas, the electron fluid, which is free to collide and to exchange

momentum with the neutral gas, and finally the ion fluid. Ion-

neutral collisions are neglected. It is also assumed that fluctua-

tions of the magnetic field are negligible. The ion and electron

fluids are coupled by the quasi-neutrality equation.

When the ion thermal velocity vTi is close to the phase

velocity vu ¼ x=kk, with x the wave angular frequency and

kk its parallel wavenumber, resonant interactions between

waves and particles play an important role in determining

the instability growth rate. Moreover, ion-neutral collisions

are neglected hereafter. Consequently, a kinetic model that

directly determines the distribution function is required.

Fluctuations in strongly magnetized plasmas occur on

time scales much longer than charged particle gyromotion

period: x� Xc the ion cyclotron frequency. Moreover, the

ion Larmor radius is much smaller than the characteristic

length scale of density gradient n=jrnj. This gyrokinetic

ordering10 allows separation between fast gyromotion and

slow dynamics in the direction perpendicular to the magnetic

field. The gyrokinetic model makes full use of the l-invari-

ance to eliminate perpendicular kinetic variables in the

Vlasov equation, with l ¼ miv2
?=2B the first adiabatic invar-

iant, which is linked to the perpendicular dynamic. Thus, the

phase space reduces to three dimensions in real space and

one dimension in velocity space. The ions are described by

the statistical distribution function f ðr; vk; tÞ of their guiding-

center (GC) position. The variable vk is the velocity in the

direction parallel to the magnetic field. The gyrokinetic

Vlasov equation reads

@t f þ E� B

B2
þ vkuz

� �
� rf þ _vk@vk f ¼ 0 (1)

with _vk ¼ qEk=mi; q the ionic charge, E ¼ �rJ0U; U the

electric potential, J0ðk?v?=XcÞ the gyroaverage operator,

i.e., the zero order Bessel function of the first kind in

Fourier space,16 given by Eq. (15) in Ref. 17, k? the per-

pendicular wave number, and v? ’ vTi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KTi=mi

p
; Ti the

ion temperature. Here, the magnetic moment l, or the per-

pendicular velocity v?, is just a parameter defining different

particle classes, each of them having a different Larmor

radius.

In the same way, the WB concept uses Liouville’s invar-

iance to reduce again the phase space dimension. A detailed

presentation of the Gyro-Water-Bag model and the method

for choosing water-bag parameters can be found in Refs.

12–14.

An ion distribution function of the following form (Fig. 1)

is chosen:

fMWBðr; vk; tÞ ¼
XM

j¼1

AjfH½vk � v�j ðr; tÞ� � H½vk � vþj ðr; tÞ�g

(2)

with M the bag number and H the heaviside step-function.

The interesting property of the WB distribution is the abso-

lute time invariance of the bag heights Aj. Consequently, the

evolution of the system is entirely determined by the evolu-

tion of the contours vþj ðr; tÞ and v�j ðr; tÞ (Fig. 2). Introducing

this distribution function in the gyrokinetic equation leads to

the following set of equations, called contour equations:12

@tv
6
j þ

E� B

B2
� r?v6

j þ v6
j rkv6

j ¼ _v6
j ¼

qEk
mi

: (3)

These contours are coupled by the quasi-neutrality equa-

tion. The polarization drift can be explicitly introduced in

FIG. 1. Water-Bag distribution function for M ¼ 3 plotted against the paral-

lel velocity.

FIG. 2. Bag contours in the phase space x; v for a three-bag system. Between

two contours, the distribution function f remains equal to a constant Fj. Note

that Fig. 1 shows a typical profile of the function f at a particular x-value.
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the Vlasov equation or can be written as a perturbed ion

density,18 so that the quasi-neutrality equation reads

ne ¼ J0ni þr? �
�

ni

XcB
r?U

�
(4)

with

ni ¼
XM

j¼1

Ajðvþj � v�j Þ: (5)

Hereafter, we assume ions with one positive charge q ¼ e.

The second term in the right hand side of Eq. (4) is the polar-

ization term.

To sum up, the use of magnetic moments and Liouville

invariance yields an exact reduction of the phase space: it is

now simply the physical space. The drawback is that the veloc-

ities v? and vk reappear as parameters in the various magnetic

moments l and bag contours v6
j . Since there is no mathematical

lower bound on the bag number M, from a physical point of

view, many interesting results can be obtained even with small

values of M.12 Note also that the GWB approach is not restricted

to Maxwellian distribution functions. The sampling j allows to

consider any arbitrary function of the parallel velocity vk.

B. Linear stability equations

Linear perturbations are assumed. Using cylindrical

coordinates (r; h; z), the electrostatic potential of a wave is

Uðr; h; z; tÞ ¼ /ðrÞ exp½iðmhþ kkz� xtÞ� þ c:c:; (6)

with m the azimuthal wavenumber, kk the parallel wavenum-

ber, and x the wave angular frequency. We will often use

the notation kh ¼ m=r. Similarly, the densities

ni ¼ n0ðrÞ þ ni1ðrÞ exp½iðmhþ kkz� xtÞ� þ c:c:; (7)

ne ¼ n0ðrÞ þ ne1
ðrÞ exp½iðmhþ kkz� xtÞ� þ c:c:; (8)

and the velocities

v6
j ¼ 6ajðrÞ þW6

j ðrÞ exp½iðmhþ kkz� xtÞ� þ c:c:; (9)

with aj the velocity of the jth bag at equilibrium, i.e., vþj ¼ aj

and v�j ¼ �aj at equilibrium.

By linearizing Eq. (3), one obtains

W6
j ¼

kkq=mi7ðkh=BÞ@aj=@r

x7kkaj
J0/: (10)

Noticing that, according to Eq. (5),

ni1 ¼
XM

j¼1

AjðWþj �W�j Þ; (11)

by linearizing the right hand side of Eq. (4), one obtains

ne1 ¼
n0q

KTe
J2

0/
XM

j¼1

aj

k2
kc

2
s � 1

s xX?
j

x2 � k2
ka

2
j

þ n0

XcB

d2/
dr2
þ ðjn þ

1

r
Þ d/

dr
� k2

h/

� �
(12)

with Te the electron temperature

X?
j ¼

KTi

qB
kh@r ln aj; (13)

aj ¼ 2ajAj=n0; (14)

cs ¼
ffiffiffiffiffiffiffiffi
KTe

mi

r
; (15)

s ¼ Ti=Te; (16)

jn ¼ @r ln n0: (17)

For the electrons, one can assume that the phase velocity

of the instabilities is much lower than the electron thermal

velocity. Moreover, electron-neutral collisions are consid-

ered at a collision rate �e. Consequently, kinetic effects are

neglected, the electron distribution function is close to a

Maxwellian, and a fluid model with an isothermal closure

can be used. The model and calculations are the same as in

Refs. 19 and 20. The electron response is

ne1 ¼ ne0

x? þ i�k
x� kku0 þ i�k

e/
KTe

(18)

with

x? ¼ khvd ¼ �kh
KTe

eB
jn; (19)

the electron diamagnetic frequency, u0 the electron drift par-

allel to the magnetic field,

vd ¼ �
KTe

eB
jn; (20)

the diamagnetic velocity, and

�k ¼
k2
kKTe

me�e
: (21)

Finally, Eq. (12) gives the following differential equa-

tion for /ðrÞ:

d2/
dr2
þ jn þ

1

r

� �
d/
dr
þ QðrÞ � m2

r2

� �
/ ¼ 0 (22)

with

QðrÞ ¼ J2
0

q2
s

XM

j¼1

aj

k2
kc

2
s � 1

s xX?
j

x2 � k2
ka

2
j

 !
� 1

q2
s

x? þ i�k
x� kku0 þ i�k

� �

(23)

and q2
s ¼

c2
s

X2
c

.

It is worth noting that the particular case vu � vTi
, i.e.,

x� kkaj; kkvTi
, and J0 ¼ 1, leads to the same expression as
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the one obtained in Refs. 19 and 20 for drift waves, described

by a fluid model and assuming �i ¼ 0

QðrÞ ¼ 1

xq2
s

x? �
x? þ i�k

x� kku0 þ i�k
x

� �
: (24)

Moreover, the case �e ¼ 0 and u0 ¼ 0 leads to the same

expression as the one obtained in Ref. 12 for ITG instabilities.

Finally, results of a comparison with a gyrofluid model

are presented. The gyrofluid model is obtained by integrating

the three first moments of the kinetic Eq. (1) and assuming a

Maxwellian distribution function. In this case,

QðrÞ ¼ J2
0

r2
Li

k2
kv

2
Ti 1þ 2X?

n�X?
T

x

� �
� xX?

n

x2 � 3k2
kv

2
Ti

� s

r2
Li

x? þ i�k
x� kku0 þ i�k

� �
(25)

with rLi the ion Larmor radius, X?
n ¼ kh

KTi

qB jn the ion dia-

magnetic frequency, X?
T ¼ kh

KTi

qB jt, and jt ¼ @r ln Ti.

III. SPECTRAL METHOD

The ordinary differential Eq. (22) is of the form of the

one studied in Ref. 15. In order to solve it in an efficient

manner, we use the spectral method introduced in this article,

which permits the computation of the "global" /ðrÞ profile.

The function / is expanded as follows:

/ ¼
XN

n¼1

bnfnðrÞ (26)

with N the total number of the functions fn, chosen on the ba-

sis of an hypothesis of analyticity of /, and fulfilling the

boundary condition

/ðaÞ ¼ 0; (27)

which states that there are no fluctuations at the edge of the

machine. A good choice for fn is

fnðrÞ ¼ rmða2 � r2ÞT2ðn�1Þðr=aÞ (28)

with m the azimuthal wavenumber.

For the discretization in r, we use collocation points

defined by the N zeros of the Chebyshev polynomial T2Nðr=aÞ
that sit in the interval [0, a], i.e.,

rk ¼ acos
ð2k � 1Þp

4N

� �
(29)

for k 2 f1; :::;Ng.
Equation (22) evaluated at these points yields the matrix

problem

MðxÞV ¼ 0; (30)

where V ¼

b1

:
:
:

bN

0
BBBB@

1
CCCCA is the vector representing the solution

and MðxÞ is a matrix.

Next, we scan the (xr; xi) plane, searching for values of

x such that one eigenvalue of the matrix MðxÞ vanishes

within machine precision. For this purpose, a method that finds

the minimum of a scalar function of several variables, starting

at an initial state, and uses the simplex search method,21 is

used. Among these solutions, one finds the couple (xr; xi) for

which the instability growth rate xi is maximum.

For a more detailed presentation of the method, the

reader should refer to Ref. 15.

IV. ION TEMPERATURE GRADIENT INSTABILITIES

Here, we focus on the ability of the model to describe

ITG instabilities for which an ion temperature gradient is

needed. The parameter g ¼ jt=jn, where jt ¼ @rlnTi and

jn ¼ @rlnn0, has to exceed a critical value22,23 to observe an

ITG instability. This parameter can be increased either by

flattening the density gradient or by increasing the ion tem-

perature gradient. We focus here on the Columbia Linear

Machine (CLM).5,6 CLM is a cylindrical device with radio-

frequency heating employed to heat the core of the plasma

column and produce a peaked ion temperature profile.

Furthermore, the mesh for ion heating reduces the density in

the central core and helps to reduce the density gradient.

Therefore, this heating can produce high values of g. The

goal is to compare the CLM experimental results6 with our

global model. A hydrogen plasma with Hþ2 ions is produced

in CLM. The magnetic field is B ¼ 0:1 T. Typical plasma

parameters are: Te0 ¼ 4 eV; Ti0 ¼ 9 eV; u0 ¼ 0:03vTe; kk
¼ 2p=4:3 m ¼ 1:4 m�1; and mi ¼ 3:34� 10�27 kg.

Density and temperature profiles are approximated by

n0ðrÞ ¼ nr0
exp knrn tanh

r2 � r2
0

r2
n

� �� �
; (31)

TaðrÞ ¼ Ta0 exp ktrt tanh
r2 � r2

0

r2
t

� �� �
; (32)

for a ¼ e; i.
The parameters rn ¼ rt ¼ 1:6 cm; kn ¼ �13:9 m�1, and

kt ¼ �50 m�1, so that the profiles shown Fig. 3 are close to

that measured in CLM. Moreover, for such a set of parame-

ters, g ¼ jt=jn ¼ kt=kn ¼ 3:6 is constant because rn ¼ rt.

The maximum value of r is the radius a ¼ 3:5 cm of the de-

vice. r ¼ r0 is chosen to be 0.6 a. The collision frequencies

are approximately �e ¼ 2:6� 106 s�1 (Ref. 24) and �i ¼ 1:0
�104 s�1. For such parameters, the ratio of the destabilizing

term of the linear instability growth rate of drift waves given

by a fluid model (Eq. (18) in Ref. 15) due to the electron-

neutral collisions over the stabilizing term due to ion-neutral

collisions is greater than 15 with m ¼ 2. Therefore, we can

neglect ion-neutral collisions and their stabilizing effect,

042105-4 E. Gravier and E. Plaut Phys. Plasmas 20, 042105 (2013)



only electron-neutral collisions are taken into account and a

water-bag distribution function can be chosen for ions.

The location r ¼ r0 is where temperatures are equal to

Ti0 or Te0, the density n0 ¼ nr0
, and where the reference

water-bag distribution function is calculated. The construc-

tion of the water-bag distribution function (2) at this location

is the same as in Ref. 12 for a Maxwellian distribution

function

f0ðr; vkÞ ¼ n0ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mi

2pKTiðrÞ

r
exp �

miv2
k

2KTiðrÞ

" #
: (33)

Thus, we assume that the WB distribution function at r0 has

been built and all ajðr0Þ are known. Next, from this reference

WB distribution function at r0, one has to build the water-bag

distribution function as a function of r. We take into account

the fact that all Aj ¼ Fj � Fjþ1 remain constant (Fig. 1),

so that only the aj is changing with radius. Calculating

Fj ¼ f0ðajðr0Þ � Daðr0Þ=2Þ and Fjþ1 ¼ f0ðajðr0Þ þ Daðr0Þ=2Þ
at r ¼ r0, with Daðr0Þ the constant step between two veloc-

ities ajðr0Þ (see Ref. 12), and assuming that the Fj do not

depend on r, one can write

Fj þ Fjþ1

2
¼ f0ðr; ajÞ

¼ n0ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mi

2pKTiðrÞ

r
exp � mi

2KTiðrÞ
a2

j ðrÞ
� �

; (34)

hence

ajðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2KTiðrÞ

mi
ln

Fj þ Fjþ1

2n0ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pKTiðrÞ

mi

s" #vuut ; (35)

Note that as aj is a function of r, compared to Eq. (49) in

Ref. 12, one must now take into account that Daj ¼ ajðrÞ
�aj�1ðrÞ depends on r. The coefficients cj=aj, with aj ¼ 2aj

ðFj � Fjþ1Þ=n0, and cj such that Ref. 12

ajX
?
j ¼

1

2
ðaj � cjÞX?

T þ cjX
?
n; (36)

are now given by

cj=aj ¼
1

2ajðFj � Fjþ1Þ
½Fjþ1Daj þ FjDajþ1�: (37)

Equation (22) is solved using the spectral method with

N the number of spectral basis functions, in the range,3,15

and the bag number M ¼ 6. This number of bags is large

enough for the model to converge toward the kinetic value of

the linear instability growth rate.12

One can see (Fig. 4) that the instability growth rate con-

verges rather rapidly as a function of N, here in the case of

m ¼ 2. In Fig. 5, where the bn coefficients are presented, one

can observe an exponential convergence. Hereafter, N ¼ 12

will be used.

The mode with an azimuthal wavenumber m ¼ 2 is the

most unstable (Fig. 6), and an ITG instability with xr 	 �2:45

�104 s�1 and c ¼ xi 	 0:92� 104 s�1 is observed. The angu-

lar frequency is negative, meaning that the perturbation propa-

gates in the ion diamagnetic drift direction as expected for ITG

instabilities.

With Ti ¼ 9 eV, the ion thermal velocity is equal to

2:1� 104 m s�1, which is of the order of the ITG wave phase

velocity, vu ¼ �1:75� 104 m s�1 since kk ¼ 1:4 m�1. Wave-

particle interaction effects can be expected. It is worth noting

that the fluid model, which is not able to take into account the

kinetic effects, indeed overestimates the instability growth

rate by a factor 2 (m ¼ 2 is also the fastest growing fluid

FIG. 3. Temperature (diamond) and density (square) normalized base

profiles.

FIG. 4. In the case of Fig. 3, instability growth rate c vs the number of coef-

ficients N for a WB kinetic model (M ¼ 6). The mode is m ¼ 2; g ¼ 3:6,

and u0 ¼ 0:03vTe.

FIG. 5. Decimal logarithms of coefficients bn vs n, for a computation with a

total number of radial modes N ¼ 12, with g ¼ 3:6; m ¼ 2 and with a WB

kinetic model.

042105-5 E. Gravier and E. Plaut Phys. Plasmas 20, 042105 (2013)



mode) when compared to the results presented here with the

WB model, which is equivalent to a continuous kinetic model.

This confirms that the kinetic phenomena play a stabilizing

role when the thermal velocity is close to the phase velocity.

Also, in Fig. 7, the radial profile of the modulus of the

wave plasma potential shows a maximum located where the

temperature and density gradients are located.

The results presented are in a qualitative agreement with

results obtained on the CLM device. The ITG mode is con-

firmed in the CLM device, where a m ¼ 2 mode is obtained

with a finite parallel wavelength and an azimuthal propaga-

tion in the ion diamagnetic drift direction. The angular fre-

quency of this mode lies in the range ½3:7; 11:3� � 104 s�1,

which is in agreement with our model prediction but slightly

greater taking into account the fact that we did not look for

being very close to the experimental profiles. The purpose is

just to check that the most unstable mode is an ITG one, and

that the value of the frequency is of the order of magnitude

of the frequency measured experimentally.

V. COMPETITION BETWEEN DRIFT WAVES AND ION
TEMPERATURE GRADIENT INSTABILITIES

The goal here is to study theoretically the transition

from ITG to collisional drift waves instabilities when the pa-

rameter jjtj ¼ j@rlnTij decreases. When jjtj (or g) becomes

smaller than a critical value, drift waves should be more

unstable. The plasma parameters are the same as the ones of

Sec. IV except for g being in the range ½2:1; 4:3� : kn is fixed

to �13:9 m�1 and kt is varied in the range ½�30;�60�m�1.

Note that in CLM, drift waves are not observed because of the

low levels of jn and electron parallel drift u0 ðu0 ’ 0:03vTeÞ,
which lead to a low drift wave instability growth rate when

compared to that of the ITG instability. Concerning the desta-

bilizing influence of u0, see, e.g., Ref. 15. In this section, in

order to study the transition between drift waves and ITG, u0

is taken to be 0:2vTe
; this larger value may favour drift waves.

Moreover, for such parameters, the destabilizing effect of

electron-neutral collisions on drift waves is much greater than

the stabilizing effect of ion-neutral collisions. Indeed using

Eq. (18) in Ref. 15, the ratio is greater than 80 for m ¼ 2.

Therefore, here again ion-neutral collisions are neglected and

a water-bag distribution function for ions can be considered.

Results are shown in Fig. 8. For g in the range

½2:16; 3:27�, the linear growth rate is about 0:9� 104 s�1 and

corresponds to collisional drift waves with m ¼ 3. ITG insta-

bility with m ¼ 3 occurs if g exceeds the critical value

g ¼ 3:27, for which the ITG growth rate is greater than that

of drift waves. The growth rate increases when g becomes

larger, and a new transition is observed at g ¼ 3:55 where an

ITG instability with m ¼ 2 occurs.

Note that the instability growth rates are smaller by a

factor 2 when compared to the ones given by the fluid

model. Moreover, using the fluid model, the bifurcation

between drift waves m ¼ 3 and ITG m ¼ 3 instabilities

takes place for g ¼ 2:66, and the following bifurcation with

m ¼ 2 as the ITG fastest growing mode takes place for

g ¼ 4:18.

The angular frequency corresponding to the fastest

growing mode is plotted against the parameter g in Fig. 9, in

the case of the WB kinetic model. For g < 3:27; xr is

greater than zero, the perturbation propagates in the electron

diamagnetic drift direction as expected for drift waves. For

g > 3:27; xr becomes negative, meaning that the perturba-

tion propagates in the ion diamagnetic drift direction as

expected for ITG instabilities. Note that the real frequencies

are very close to the ones given by the fluid model.

FIG. 6. In the case of Fig. 3, instability growth rate c vs the azimuthal wave-

number m for a WB kinetic model ðM ¼ 6Þ; g ¼ 3:6 and u0 ¼ 0:03vTe.

FIG. 7. Radial profile of the modulus of the wave plasma potential, for a com-

putation with a total number of radial modes N ¼ 12, with g ¼ 3:6; m ¼ 2

and with a WB kinetic model (M ¼ 6).

FIG. 8. Instability growth rate ci ¼ xi of the fastest growing mode vs g
given by the kinetic WB model.
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The structure of the eigenmodes corresponding to the

ITG mode m ¼ 3 with g ¼ 3:54 and the ITG mode m ¼ 2

with g ¼ 3:56 is shown in Figs. 10 and 11. The figures dis-

play both fluctuations of plasma potential in a section of the

plasma column and the radial profile of the modulus of the

wave plasma potential. The maximum of the fluctuations is

located near the radius rm at which jjnj and jjtj both attain

their maximum value. Only a small change in the location of

the maximum of the fluctuations between ITG m ¼ 3 and

ITG m ¼ 2 modes is observed.

Moreover, it has been observed that the location of the

maximum of the fluctuations for the drift wave (DW) mode

m ¼ 3 is the same as for the ITG mode m ¼ 3 at g ¼ 3:27.

This scenario between drift waves and ITG modes can

be observed in any machine that allows one to vary signifi-

cantly the parameter g. Our kinetic water-bag model seems

to be well suited in order to describe such a transition.

VI. CONCLUDING DISCUSSION

Our model is able to describe simultaneously collisional

drift waves and ITG instabilities. Interesting results have

been obtained pointing to the ability of the collisional gyro-

water-bag model to take into account kinetic effects for drift

waves and ITG instabilities. Converting kinetic problems

into multi-fluid ones, without a loss of generality, represents

one interesting property of the multi-water-bag model.

The global model presented in this article is much more

complete than the local one used in Ref. 13, because here ra-

dial boundary conditions are considered and the radial depend-

ence of the eigenmodes is computed. This is rather easy with

the new spectral method. This spectral method is accurate and

suitable for numerical investigation of drift waves and ITG

global modes in cylindrical geometry. It can be a very useful

and fast tool to get the linear kinetic ITG or drift wave instabil-

ity growth rates and to identify the fastest growing modes.

Moreover, as expected, the ITG instability depends

strongly on the g parameter. It has been shown that a transi-

tion between drift waves and ITG instabilities appears as

soon as g reaches a critical value, so that the ITG instability

becomes dominant.

An interesting ability of the water-bag model is to allow

the treatment of any distribution function: there is no con-

straint on the shape of the distribution function, which can

be very far from a Maxwellian. This should permit, for

instance, the study of the influence of energetic particles on

ITG and drift wave instabilities.
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