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Abstract. A bifurcation scenario between collisional drift waves with different azimuthal wavenumbers m
in a magnetized plasma column is experimentally studied, and compared with a linear two-fluid model
solved with a new spectral method. The control parameter is the potential of an internal metallic tube in
the experiments, the electron drift along the axis of the cylinder in the model. By increasing this parameter,
we find bifurcations from azimuthal modes m = 5 to m = 1. The linear properties of the model agree well
with the experimental observations.

1 Introduction

Small scale cylindrical devices, together with numerical
simulations, can play an important role in understanding
basic plasma processes. It is now widely believed that low-
frequency turbulence developing from micro instabilities is
responsible for the phenomenon of anomalous transport.
This issue is related to the problem of anomalous trans-
port in magnetically confined fusion plasmas [1,2].

Low-frequency density fluctuations are easily observed
in cylindrical magnetized plasma columns. These cylin-
drical machines are of fundamental interest and can pro-
vide a testing ground for comparisons of numerical sim-
ulations with experiments. In particular, different plasma
experiments exhibiting drift wave instabilities have been
published, in Q-machines [3,4], Mirabelle [5,6], Mistral [7],
Kiwi [8], Alexis [9,10], or Columbia [11,12] to name only a
few. These experiments show regular, chaotic or turbulent
regimes.

Here we focus on the Mirabelle device [5]. Our study
shows a clear bifurcation scenario between regular waves
in a magnetized plasma column. These waves are col-
lisional drift waves induced by a steady-state pressure
gradient in the direction transverse to the magnetic field.
Bifurcation scenarios can be obtained by using the high
sensitivity of an influent parameter. The typical obser-
vation is that the azimuthal wavenumber m of the wave
strongly depends on this control parameter. The potential
of an inner insulated tube acts as the control parameter
of the dynamical regimes of drift waves.

We also report on a comparison of the experimental re-
sults to the linear properties of a two-fluid model. In this
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model, the control parameter is the axial electron drift in
the base state. In order to solve this model, a new, efficient
spectral method inspired from fluid dynamics studies [13]
is developped. This also yields a better understanding of
the mathematical conditions that have to be fulfilled on
the axis of the machine, as it will be discussed in Sec-
tion 3.3. From a physical point of view, the influence of an
axial electron drift on plasma instabilities is an important
general topic in plasma physics, which has for instance
been studied in Q-1 [4] or in Alexis [10].

The article is organized as follows. The experimental
setup is described with the measurement techniques in
Section 2.1. A scenario involving five modes as function
of the potential of the inner insulated tube is reported
in Section 2.2. In Section 3, a study of a linearized two-
fluid model is performed, considering Gaussian and non-
Gaussian density profiles. The first case is considered as a
simple reference, the latter more realistic case requires a
numerical solution: here the new spectral method is pre-
sented. Numerical results are compared to experimental
results. In the concluding Section 4, we discuss the link
between the experimental and theoretical control param-
eters, and propose some future prospects.

2 Experimental study

2.1 Experimental setup and diagnostics

The experiments were conducted in the cylindrical
MIRABELLE device [5]. The device is made of two large
multipolar plasma chambers connected to each end of a
stainless steel vacuum vessel. This vessel is immersed in
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Fig. 1. Sketch of the MIRABELLE experiment.

a set of coils to generate a homogeneous magnetic field
up to 120 mT along the axis of the cylinder (Fig. 1). A
metallic tube of radius a = 11.5 cm is inserted inside the
vessel. At the one end of the device, an Argon plasma
is produced using a standard thermionic discharge. The
cathode consists of 24 equally spaced tungsten filaments
(biasing Ud with respect to the anode) located on a ver-
tical plane at the end of the source chamber. The biasing
of the anode with respect to the ground is Ua. A high
transparency stainless grid is located between the source
chamber and the plasma column. It controls the energy
and the flux of the electrons flowing from the source cham-
ber into the plasma column. The biasing Ug of this grid
influences the axial drift of the electrons along the plasma
column. Moreover, the biasing of the insulated internal
metallic tube (potential Ut in Fig. 1) also influences the
axial drift of the electrons. This biasing is the dynamical
control parameter chosen for the experiments. The work-
ing pressure in Argon gas is typically p = 10−4 Torr. For
the other typical parameters the reader can refer to [14].

Plasma parameters are measured with Langmuir
probes. First a three-dimensional movable probe installed
inside the plasma column is used for the measurement of
the radial profiles. This probe used with a second probe
as phase reference also permits the measurement of the
parallel wavelength λz of drift waves.

Moreover, an azimuthal array of 32 Langmuir probes
(0.5 mm in diameter, 4 mm in length) is used for the mea-
surement of poloidal mode structures. This set-up is con-
nected to two VXI plug-in units for the synchronous ac-
quisition of the time-series. The sampling rate is 200 kHz
with 16 bits of resolution. This fast acquisition system
allows a real-time imaging of the spatiotemporal regime
of the system and the integer number m characterizing a
regular azimuthal mode can be determined.

2.2 Experimental scenario

The mean radial profiles of the density (Fig. 2) have been
recorded with Ug = 8 V, Ua = 0 V, and Ud = 50 V.
The experimental control parameter is the polarization
of the tube Ut, which is varied from 0 to 4.2 V by
steps δUt = 0.2 V, from 4.2 to 9 V by steps δUt = 0.4 V.
From other similar experiments [14], we expect that the

Fig. 2. Experimental (squares), Gaussian (dotted line)
and interpolated (solid line) mean density profiles in the
MIRABELLE experiment at p = 10−4 Torr. The error bars
are not displayed because they are of the order of the size of
the squares [14]. For the Gaussian profile, see Section 3.2, and
for interpolated profile, see Section 3.4.

mean plasma potential profile is uniform excepted in the
sheath, within ±0.4 V, so that global electric rotation
drift effects are small. We also expect that, when Ut in-
creases, the mean value Up of the plasma potential in-
creases, whereas the mean density profile is not altered.
Collisional drift waves instabilities are observed [14], and
characterized from spatiotemporal data such as the ones
of Figure 3. From such measurements one can extract the
frequency ωr/2π of the wave, and its azimuthal wavenum-
ber m. When Ut increases, the wavenumber m decreases,
as shown in Figure 4. Meanwhile, for a mode m the fre-
quency increases, until the mode suddenly changes for
a lower mode with a lower frequency. In Figure 5 the
frequencies are plotted versus the observed azimuthal
wavenumber m. Low mode frequencies depend linearly
on m whereas for m = 4 and m = 5 the frequency reaches
a plateau.

Similar modes have been obtained in the KIWI exper-
iment [15,16] or in our MIRABELLE device [6]. But the
study of the frequency as a function of the bias of the
tube or as a function of the mode number has never been
performed before in the range m = 1 to m = 5. It is also
important to mention that high modes have been stud-
ied in the VINETA device [17] for a cylindrical helicon
plasma in which electron-ion collisions play a very impor-
tant role in the behavior of drift waves instabilities. In the
MIRABELLE experiment, the electron-ion collisional rate
is negligible.

3 Linear study of a two-fluid model

3.1 Base state and linear problem

The equations of the model are the two-fluid equations for
a weakly ionized plasma with cold ions given by Self [18]
or Ellis et al. [19,20]. Collisions with neutrals are dom-
inant for both electrons and ions and are characterized
by the collision frequencies νe and νi, respectively. The
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Fig. 3. Spatiotemporal data for Ut = 0 V, m = 5. The floating potential, recorded at r = 7 cm, is plotted versus time and θ,
the azimuthal angle (left). A one probe signal of the density fluctuations is also recorded and plotted versus time (right).

basic density profile n0 is assumed to depend only on the
radial coordinate r. Indeed, experimentally there is no dif-
ference observed between the mean profiles measured by
two Langmuir probes separated by an axial distance equal
to 0.5 m. The existence of a radial density gradient dn0/dr
induces an azimuthal electron diamagnetic drift,

vd = −KTe

eB
κnθ̂, (1)

with K the Boltzmann constant, Te the electron
temperature,

κn =
1
n0

dn0

dr
(2)

and e the absolute value of the electron charge. This drift
is a source of free-energy that can lead to the growth of
the fluctuations. Moreover, we assume like in [19,20] that,
in the base state, electrons drift parallel to the magnetic
field at speed u0. Recent observations of the modification
of drift instabilities by plasma flows parallel to the mag-
netic field have been shown [10]. This drift is the control
parameter of our model. We assume that it is linked (i.e.,
roughly proportional) to the tube potential Ut, and plays
a similar role, as will be discussed in the conclusion.

All frequencies are assumed to be small when com-
pared to the ion cyclotron frequency Ωc = eB/mi, with mi

the ion mass.
Linear perturbations are assumed. For example the

electrostatic potential of a wave is assumed to be of the
form

Φ(r, θ, z, t) = φ(r) exp
[
i(mθ + k‖z − ωt)

]
+ c.c. (3)

After linearization, the two-fluid model yields a set of cou-
pled equations, e.g. equations (4) to (8) of [20]. Note that
in equation (7) of [20] there misses a term −eñB(vd × ẑ)
in the right hand side. After some algebra, one can express
all perturbation fields in terms of the potential φ(r), and
obtain a differential equation for φ(r),

d2φ

dr2
+

(
κn +

1
r

)
dφ

dr
+

(
Q(r) − m2

r2

)
φ = 0, (4)

with

Q(r) =
1

(ω + iνi)ρ2
s

(
ω� − ω� + iν‖

ω − ω‖ + iν‖
ω

)
, (5)

Fig. 4. Experimental bifurcation scenario: frequencies ωr/2π
of the drift waves vs. Ut. The azimuthal wavenumber is
indicated.

and
ω� =

m

r
vd = −m

r

KTe

eB
κn (6)

the electron diamagnetic frequency,

ν‖ =
k2
‖KTe

meνe
, ω‖ = k‖u0, (7)

cs =
√

KTe

mi
, ρ2

s = c2
s

Ω2
c
, m the azimuthal wavenumber,

k‖ = 2π/λz the axial wavenumber, νe (resp. νi) the
electron-neutral (resp. ion-neutral) collision rates.

Equation (4) can also be written

Lφ = −Q(r) φ (8)

with

Lφ =
d2φ

dr2
+

(
1
r

+ κn

)
dφ

dr
− m2

r2
φ. (9)

It has to be solved with the boundary condition

φ(a) = 0 (10)

that expresses the isopotential nature of the tube.
The plasma parameters relevant for the MIRABELLE

experiment, with an Argon plasma, are: p = 10−4 Torr,
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Fig. 5. Experimental bifurcation scenario: frequencies plot-
ted against the azimuthal wavenumber m. The data are the
same as in Figure 4. Two points are separated by δUt = 0.4 V
for m = 1 and δUt = 0.2 V for other modes.

Te = 3 eV, B = 37 mT, a = 11.5 cm. We have also set the
axial wavenumber to its value measured in [14]:

k‖ = 2 m−1. (11)

The collision frequencies are approximately νe = 1.0 ×
106 s−1 [21] and νi = 750 s−1 [22]. The uncertainties on
the plasma parameters are assumed to be of the order
of 0.2 eV for Te [14], 50% for νe, 30% for B, 20% for k‖.
Sensitivity analyses will be performed.

3.2 Case of a Gaussian density profile:
semi-analytical results

If the density profile is assumed to be Gaussian,

n0(r) = N0 exp(−r2/r2
0), (12)

with r0 the Gaussian parameter, one has κn = −2r/r2
0,

hence ω∗ and Q do not depend on r.
Therefore equation (8), together with the boundary

condition (10), can be solved with a change of variables
and an hypergeometric function, as shown by [23]. This
yields the values of Q = Q(m, a, r0) or

b = b(m, a, r0) = ρ2
sQ(m, a, r0) =

ρ2
s

a2
S

(
m,

r0

a

)
(13)

according to dimensional analysis. The functions S and b
increase with m; typical values are shown in Figure 2
of [20]. Once they are computed, ω can be calculated by
inversing equation (5), i.e. by solving

bω2 + ω[(1 + b)iν‖ + b(iνi − ω‖]

− ν‖(bνi + iω∗) + ω‖(ω∗ − ibνi) = 0. (14)

In the frequent case where ω, ω∗, ω‖ are small as com-
pared to ν‖, νi is very small as compared to ν‖, one can
show that

ωr = Re(ω) = ω1 + ω2 (15)

Fig. 6. Numerical real frequencies ωr/2π of the fastest growing
mode vs. the axial electron drift in the case of a Gaussian
profile.

with the leading-order real frequency

ω1 =
ω∗

1 + b
=

2m

1 + b

KTe

eBr2
0

(16)

and an higher-order correction

ω2 =
bω1(ω‖ − 2ω1)(ω‖ + bω1)

(1 + b)2ν2
‖

+
b

(1 + b)2
νi

ν‖
[ω‖ + (b − 1)ω1] . (17)

Moreover one also obtains

ωi = Im(ω) =
ω1(ω‖ + bω1)

(1 + b)ν‖
− b

1 + b
νi (18)

which corresponds to a corrected version of equation (10)
of [20]. This shows that electron-neutral collisions are
destabilizing whereas ion-neutral collisions are stabiliz-
ing. Equation (18) also demonstrates clearly the desta-
bilizing influence of the axial electron drift u0 (recall
that ω‖ = k‖u0).

In order to study the experimental results with a most
simple model, we first use a Gaussian radial profile (12)
with N0 = 11.75×1015 m−3 and r0 = 6.19 cm, to approx-
imate the (non-Gaussian) experimental profile (Fig. 2).
The values of S and b have been computed with the
method of [23], and the wave frequencies have been com-
puted by solving equation (14).

The waves observed experimentally are quite regular
and almost sinusoidal (Fig. 3). In the framework of a lin-
ear model, it is therefore reasonable to assume that they
correspond to the fastest growing modes of the stability
analysis. Using the plasma parameters given at the end of
Section 3.1, we obtain the results shown in Figure 6. The
drift u0 is measured in units of the thermal electron speed

vTe =
√

KTe

me
. (19)

For this set of parameters the system is stable in the
range u0 ∈ [0, 0.021vTe]. For larger values of u0, the
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mode m = 2 is amplified and then competes with other
modes. The azimuthal wavenumber of the fastest grow-
ing mode decreases with increasing axial electron drift.
The fact that at fixed m, the real frequency ωr increases
when ω‖ = k‖u0 increases, can be understood from the
approximate formula (17): as soon as u0 ≥ 0.01vTe, ω‖ >
(1 − b/2)ω1 for m ∈ {1, 2}. The formula (18) also shows
that the strongest effect of ω‖ occurs for modes with
low bω1 and low b, i.e. modes with low m: this explains
why modes with low m are preferred when u0 increases.
The results in Figure 6 show a tendency that is coherent
with the experimental results of Figure 4. However the
frequencies and the wavenumbers are much smaller.

The existence of a stability region at low values of u0

depends on the plasma parameters. For instance this sta-
bility region disappears if νe is increased by 32%, or k‖
decreased by 13%, the other parameters being fixed. The
sensitivity to the parameter r0, which characterizes the
density profile, is stronger, since the stability region dis-
appears if r0 is decreased by 8% only. If the plasma pa-
rameters are varied in the confidence interval indicated in
Section 3.1, whereas r0 is varied by ±8%, the maximal fre-
quency of the fastest growing modes, in the range u0 ∈ [0,
0.9 vTe], is at most 6.4 kHz, which does not fill the gap
with the highest frequencies observed in the experiments,
of the order of 12 kHz. This discrepancy might be due to
nonlinear effects. However, we will show in the next section
that a linear model taking into account the non-Gaussian
experimental density profile yields fastest growing modes
with properties much closer to the ones of the experimen-
tal waves.

3.3 Case of a general density profile: spectral method

Whereas solving equation (8) with a Gaussian profile is
a relatively easy exercise, it is more difficult to solve (8)
for an arbitrary profile. The change of variables of [23] be-
comes useless, Q in equation (8) depends on r in a com-
plicated manner, i.e., −Q is no more an eigenvalue of L.
We present hereafter an efficient numerical technique to
solve the differential equation (8).

Using a spectral approach, the solution φ(r) is expan-
ded as follows:

φ =
N∑

n=1

anfn(r) (20)

where N is the total number of functions fn.
Assuming that Φ, the wave electrostatic potential,

given by equation (3), is a scalar analytic function, the
second corollary of the page 375 in reference [13] gives that

φ = rmφ̂(r) (21)

with m the azimuthal wavenumber, φ̂(r) an even power
series of r. This implies φ(0) = 0 as soon as m > 0: this
boundary condition, which was stated in [20], thus appears
to be a regularity condition on the axis r = 0. On the other
hand, the boundary condition (10) still holds.

Our first choice for fn(r) was rm(a2 − r2)r2(n−1),
but this choice yields badly conditioned matrices. When
Chebyshev polynomials of the first kind T2(n−1)(r/a) are
chosen the functions

fn(r) = rm(a2 − r2)T2(n−1)(r/a) (22)

and rather good conditioning properties are obtained.
Hence equation (8) reads

N∑

n=1

anLfn(r) = −
N∑

n=1

anQ(r)fn(r), ∀r ∈ [0, a] . (23)

For the discretization in r we use collocation points defined
by the N zeros of the Chebyshev polynomial T2N (r/a),
that sit in the interval ]0, a[, i.e.

rk = a cos
(

(2k − 1)π
4N

)
(24)

for k ∈ {1, . . . , N}. If we make an analogy with an in-
terpolation problem, since T2N (r/a) is the first function
not included in the truncated sum (20), this choice would
permit to minimize the truncation error.

Equation (23) evaluated at these collocation points
yields the matrix problem

MLV = −MQV (25)

where V =

⎛

⎝
a1.
.
.

aN

⎞

⎠ is the vector representing the solution,

(ML)kn = L(rk)fn(rk), (26)

(MQ)kn = Q(rk)fn(rk), (27)

with k, n ∈ {1, ..., N}.
Next we scan the (ωr, ωi) plane, searching for values

of ω such that one eigenvalue of the matrix M = ML+MQ

vanishes within machine precision. For this purpose a
method that finds the minimum of a scalar function of
several variables, starting at an initial state, and uses the
simplex search method [24], is used. Among these solu-
tions one finds the couple (ωr, ωi) for which the instability
growth rate ωi is maximum.

In order to validate the spectral method we first con-
sider the simpler case of a Gaussian profile (12). In this
case MQ is proportional to the scalar Q, hence Q can
be found straightforwardly as the opposite of an eigen-
value. The test is performed using the parameters given
by Ellis et al. in references [19,20]. The results of our
spectral method totally agree with those obtained by
a Runge-Kutta shooting method in figures 3a and 6a
of reference [20]. However for azimuthally homogeneous
modes m = 0, the condition φ(0) = 0 is no more valid,
thus the shooting method of [20] would give unphysical
results, if any. On the contrary our spectral method also
works for m = 0, and we checked that the corresponding
modes are always damped.
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Fig. 7. With the interpolated density profile, m = 1, u0 = 0.6
vTe, decimal logarithms of coefficients an vs. n, for a compu-
tation with a total number of radial modes N = 25.

Another test is performed with our experimental pa-
rameters and the approximated Gaussian profile used in
Section 3.2. With the spectral method, we recover the re-
sults of Figure 6, which were obtained by using Chen’s
change of variables, and an hypergeometric function.

These comparisons prove that the spectral method
is capable of reliably predicting instability growth rates
and perturbation profiles. Moreover, this method is much
faster than the shooting one and can be used for any arbi-
trary density profile, contrarily to the method relying on
hypergeometric functions.

3.4 Non-Gaussian density profile: results
and comparison with experiments

We apply the spectral method to the experimental profile
(Fig. 2), which is approximated by:

– a parabolic function between 0 and 3.3 cm,

n0(r) = 11.0 × 1015 − 1.34 × 1018r2, (28)

– a straight line between 3.3 and 7.5 cm,

n0(r) = 15.65 × 1015 − 1.85 × 1017r, (29)

– a Gaussian between 7.5 cm and a,

n0(r) = 8.84 × 1016 exp(−r2/0.0382). (30)

Figure 2 displays both experimental and interpolated
equilibrium density profiles.

With the plasma parameters given at the end of Sec-
tion 3.1, we obtain the results of Figure 7 for the co-
efficients an versus n, in the typical case m = 1 and
u0 = 0.6 vTe. A spectral convergence is observed, with
|an| ≤ A exp(−αn) for 2 ≤ n ≤ 8, before numerical
noise levels are reached. Note also that |an/a1| < 10−3

for n > 7. With the same parameters the fast conver-
gence is confirmed in Figure 8 where the real frequency ωr

reaches a constant level as soon as N ≥ 6. The same con-
vergence is observed for the instability growth rate ωi.
Hereafter N = 7 will be used.

Fig. 8. In the case of Figure 7, real frequency ωr/(2π) vs. the
number of coefficients N .

Fig. 9. With the interpolated density profile, radial profile of
the modulus of the wave plasma potential for m = 5 to m = 1,
for u0 = 0.05, 0.1, 0.15, 0.3 to 0.6 in vTe unit. The profile of
the damped mode m = 0 is also displayed, which has been
computed for u0 = 0.05 vTe.

Figure 9 displays the radial profile of the modulus of
the wave plasma potential for m = 1 to m = 5. The
profiles correspond to the fastest growing modes observed
with different values u0 = [0.05, 0.1, 0.15, 0.3, 0.6] × vTe.
The profile of the damped mode m = 0 is also displayed.
The fact that there is no condition like φ(0) = 0 for m = 0
is obvious. The modes with m > 0 present a maximum at
values of r close to a. Indeed, we noticed that in our ex-
periment the maximum of the fluctuations is well located
at the outside of the vessel.

Next Figure 10 displays the imaginary parts ωi of the
eigenfrequencies versus u0 for different values of the az-
imuthal mode number m. The destabilizing influence of u0

is clear, since for each value of m, ωi increases when u0

increases. Contrarily to the case of a Gaussian profile,
there is no stability region for the system: some modes
with m > 5 are amplified for u0 close to zero. However,
as soon as u0 > 0.05 vTe, the fastest growing modes cor-
respond to m ≤ 5.

Considering like in Section 3.2 the fastest growing
modes, we show calculations of the corresponding real fre-
quency versus u0 (Fig. 11) and versus m (Fig. 12) for the
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Fig. 10. With the interpolated density profile, numerical in-
stability growth rate ωi vs. axial electron drift u0.

Fig. 11. With the interpolated density profile, numerical real
frequencies ωr/(2π) of the fastest growing mode vs. axial elec-
tron drift u0.

interpolated experimental profile (Fig. 2). The model pre-
dicts a decrease of the real frequency and of the mode
number m when the drift u0 increases (Fig. 11). Mean-
while, for a mode m the frequency increases until the
mode suddenly changes for a lower mode with a lower
frequency. Low mode frequencies depend linearly on the
mode whereas for m = 4 and m = 5 the frequency reaches
a plateau as it has been experimentally observed (Fig. 12).

This scenario, in the interval u0 ∈ [0.05, 0.9]vTe, is
robust against changes in the plasma parameters. If we
vary Te, νe, B or k‖ in the confidence intervals described
at the end of Section 3.1, we always find the same scenario
involving the modes m = 5 down to m = 1. Refering to
Figure 11, the locations of the cross-over points between
two neighbouring values of m change, both in abscissa (u0)
and ordinate (ωr/2π), of at most 20% with respect to the
values obtained with the standard parameters.

Comparing Figures 4, 11, 5 and 12, we observe that a
semi-quantitative agreement is obtained between the ex-
periments and the model, provided that we assume a lin-
ear relation between Ut and u0, Ut = 1 V corresponding
to u0 = 0.1vTe. This strong correlation between the po-
larization of the tube and the electron parallel speed will
be discussed hereafter.

Fig. 12. Numerical real frequencies vs. the azimuthal
wavenumber m.

4 Concluding discussion

The main result of this work is the bifurcation scenario
observed experimentally as a function of the biasing of
the confining tube Ut, or numerically as a function of the
electron speed u0 along the axis of the cylinder. The az-
imuthal wavenumber m of the drift waves observed in the
experiments decreases when Ut increases; similarly the
wavenumber m of the fastest growing mode computed
theoretically decreases when u0 increases. These varia-
tions are correlated with the decrease of the frequency
as m decreases. The experimental results are in semi-
quantitative agreement with the results given by the two-
fluid model, provided that a non-Gaussian density profile,
which interpolates closely the experimental one, is used,
and that a monotonous relation between Ut and u0 is as-
sumed. Indeed, the stability properties of the Gaussian
and non-Gaussian density profiles are quite different (com-
pare Figs. 6 and 11). This sensitivity to the density pro-
file has been also observed experimentally. Indeed, a small
change on the experimental density profile due to a dif-
ferent bias of the grid for instance leads to a very differ-
ent scenario. Some remaining discrepancies may be due
to nonlinear phenomena, which are clearly present in the
experiments, and are not considered in our model.

The link between Ut and u0 can be analyzed as a two
step process. First, it is natural to assume that the poten-
tial of the tube has a strong influence because at one ax-
ial boundary the second source chamber, not used in the
experiment, is floating. This hypothesis is confirmed by
some experiments where the tube potential has been mod-
ulated, which have shown a corresponding modulation of
the floating potential inside the plasma, at r = 7 cm, with
the same frequency. Denoting with Up the value of this
potential, one can assume that an increase of the tube po-
tential Ut results in an increase of Up. Moreover, a study of
the sheath where the plasma potential varies rapidly, close
to the tube, based on the model of [25], can be performed.
This model can be used in the case where the magnetic
field lines are not exactly parallel to the wall and here a
very small angle has been assumed, which is often in agree-
ment with real experiments. The model gives a thickness

http://www.epj.org


Page 8 of 8 Eur. Phys. J. D (2013) 67: 7

of the Debye sheath of the order of 3 mm in the Mirabelle
device. The length of this Debye sheath does not depend
of Ut and can be neglected when compared to the radius
of the device (11.5 cm): this confirms that it is reasonable
to consider that the plasma potential is always flat except
in a thin layer close to the tube. This also explains why
we did not include the E × B drift in the model.

Second, as the difference Ug−Up > 0 becomes smaller,
the electrons encounter an electric field that increases their
parallel speed. It appears therefore that increasing the po-
tential of the tube increases the electron drift velocity.

The model has been solved numerically with a new
spectral method. This spectral method is accurate and
suitable for numerical investigation of drift waves in cylin-
drical geometry. An interesting question will be to address
the transition between drift waves and ion temperature
gradient instabilities using this spectral method, for a ki-
netic model that will allow one to take into account ion
temperature gradient instability. This transition will be
the object of a forthcoming paper and will complete a
previous work performed with a local model [26].

The setup of the spectral method has been performed during
the M1 project of A. Gaire and Q. Morel at École des Mines
de Nancy, Department Energy: Production, Transformation.

References

1. W. Horton, Rev. Mod. Phys. 71, 735 (1999)
2. X. Garbet, Plasma Phys. Control. Fusion 43, A251 (2001)
3. H.W. Hendel, T.K. Chu, P.A. Politzer, Phys. Fluids 11,

2426 (1968)
4. T.C. Simonen, T.K. Chu, H.W. Hendel, Phys. Rev. Lett.

23, 568 (1969)
5. T. Pierre, G. Leclert, F. Braun, Rev. Sci. Instrum. 58, 6

(1987)

6. E. Gravier, X. Caron, G. Bonhomme, T. Pierre, J.L.
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