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Introduction

This is a preliminary version, under work, of the Lecture Notes of myself and Joachim Peinke,

for the new module Advanced Fluid Mechanics - Transition to Turbulence & Turbulence

- Applications to Transfers, Aerodynamics & Wind Energy at Mines Nancy, in the

Departement Energy: Production, Transformation, at the Master 2 Level.

This module is somehow a follow up of the modules Mécanique des fluides (Plaut 2014)

and Machines à fluides - Turbomachines (Jenny 2014) of the Master 1 Level. Indeed one can

find, in the chapter 3 (resp. 6) of Plaut (2014), an introduction to Instabilities (resp. Turbulent

flows); in the chapter 4 of Jenny (2014), an introduction to Wind Energy.

The aim of this document is to give a framework for the lectures, without details. The ex-

ercises will be most often solved during the lectures, and their solutions displayed in the ‘Video

presentations’ that will be posted on the dynamic web page of the module1

http://emmanuelplaut.perso.univ-lorraine.fr/afm .

Accordingly, some equations here have some blank spaces, e.g., eq. (1.18). The student should

write by himself the solutions here, after the lectures. A complete version of the document, without

blank spaces, will be published after the final test.

We thank P. Milan for allowing us to reproduce a part of his Thesis in section 3.3.

Oldenburg & Nancy, January 24, 2015.

Joachim Peinke & Emmanuel Plaut.

1Please check this page for new versions of this document, and for the planning of this module.

http://emmanuelplaut.perso.univ-lorraine.fr/afm


Chapter 1

Rayleigh-Bénard Thermoconvection

This chapter corresponds to the Sessions 1 and 2 of 2014-2015. Note also that most of the material

presented here is also presented with more details in Plaut (2008).

1.1 Generalities

Rayleigh-Bénard Thermoconvection (RBT; fig. 1.1) is a ‘simple’ closed fluid system, that

permits well-controlled experiments, and may display complex Heat Transfer properties. In this

system, contrarily to the case of a differentially heated cavity studied by Davis (1983), thermocon-

vection can only come in through an instability of the conduction state.

We assume the Boussinesq approximation, that states that the density ρ of the fluid depends

on its temperature T according to

ρ = ρ0 [1− α(T − T0)] (1.1)

with ρ0 the reference density, T0 the reference temperature, α the thermal expansion coefficient.

Consequently the Boussinesq equations for the velocity field v, the pressure field p and the tem-

perature field T read

divv = 0 , (1.2)

dv

dt
= − αT g − ∇p′ + ν∆v , (1.3)

dT

dt
= κ∆T . (1.4)

Here g is the acceleration due to gravity, ν the kinematic viscosity of the fluid, κ its heat diffusivity.

The pressure is a modified one, hence the notation p′.

These equations always admit a static solution that satisfies the isothermal boundary conditions:

v = 0 , T = T0 − δT
z

d
with δT = T2 − T1 .

This proves that convection can only set in through an instability of this static solution.

We introduce dimensionless equations with the thickness d as the unit of length, the heat diffusion

time

τtherm = d2/κ

as the unit of time,

V = d/τtherm = κ/d
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Fig. 1.1 : The Rayleigh-Bénard Thermoconvection system. A layer of fluid is sandwiched between

two horizontal, isothermal plates, with T2 > T1.

as the unit of velocity, δT as the unit of temperature. We also introduce a dimensionless pertur-

bation of temperature θ, such that the dimensionless temperature

T ′ = T ′0 − z′ + θ

Dropping the primes for the dimensionless quantities, we get the dimensionless Boussinesq

equations

divv = 0 , (1.5)

P−1
dv

dt
= Rθ ez − ∇p + ∆v , (1.6)

dθ

dt
= ∆θ + vz , (1.7)

with

the Rayleigh number R = αδTgd3/(κν) and the Prandtl number P = ν/κ . (1.8)

Because of the isotropy of the problem in the horizontal plane we may focus on 2D xz

solutions

v = vx(x,z,t) ex + vz(x,z,t) ez , θ = θ(x,z,t) . (1.9)

Thus the mass-conservation equation (1.5) can be solved conveniently by using a streamfunction

ψ such that

v = curl(ψ ey) = − (∂zψ) ex + (∂xψ) ez . (1.10)

Moreover, the pressure can be eliminated by solving, instead of the Navier-Stokes equation (1.6),

the vorticity equation, which reduces to its component in the y direction,

P−1∂t(−∆ψ) + P−1
[
∂z
(
v ·∇vx

)
− ∂x

(
v ·∇vz

)]
= −R∂xθ + ∆(−∆ψ) . (1.11)

To put the equations (1.11) and (1.7) under a ‘matrix form’, we introduce the local state vector

V = (ψ,θ) . (1.12)

It fulfills

D · ∂tV = LR · V + N2(V,V ) (1.13)

with [D · ∂tV ]1 = P−1(−∆∂tψ) , [LR · V ]1 = −R∂xθ + ∆(−∆ψ) , (1.14a)

[N2(V,V )]1 = P−1
[
∂z
(
v ·∇vx

)
− ∂x

(
v ·∇vz

)]
, (1.14b)

[D · ∂tV ]2 = ∂tθ , [LR · V ]2 = ∆θ + vz , [N2(V,V )]2 = − v ·∇θ . (1.14c)
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The boundary conditions on θ describe isothermal boundaries:

θ = 0 if z = ±1/2 . (1.15)

The boundary conditions on ψ describe slip boundaries without shear stress,

vz = 0 and ∂zvx = 0 ⇐⇒ ∂xψ = ∂2zψ = 0 if z = ±1/2 , (1.16)

or no-slip boundaries

vx = vz = 0 ⇐⇒ ∂xψ = ∂zψ = 0 if z = ±1/2 . (1.17)

1.2 Linear stability analysis of slip RBT

This analysis allows one to identify a critical Rayleigh number

Rc = 27π4/4 = 657.5 (1.18)

above which a first normal mode, solution of

σD · V1(q) = LR · V1(q) , (1.19)

with σ the temporal eigenvalue, becomes amplified. This critical mode has an x-wavenumber

which is the critical wavenumber

kc = π/
√

2 = 2.22 . (1.20)

Thus ‘roll patterns’, with periodic modulations of the average temperature, appear spontaneously

just above onset, with the critical wavelength

λc = 2π/kc = 2
√

2 = 2.83 . (1.21)

This corresponds to a patterning bifurcation. This is confirmed by experiments, such as the

ones of Hu et al. (1993), which display nice roll patterns.

Exercise 1.1 General linear stability analysis of slip RBT

To perform a general linear stability analysis of the problem (1.13) with the boundary conditions

(1.15) and (1.16), it is more convenient to use another frame Oxyz′ where the layer is located

between z′ = 0 (bottom plate) and z′ = 1 (top plate), i.e., to use z′ = z + 1/2. In this Exercise,

we note z instead of z′, i.e. z ∈ ]0,1[.

1 Calculate systematically all x-homogeneous normal modes, that do not depend on x, and have

been disregarded during the lecture. Show that they are indeed ‘irrelevant’.

Indications:

Observe that the heat and vorticity equations are decoupled.

First, solve the heat equation. Search solutions of the form θ = a+ erz + a− e
−rz. Establish a link

between r and the temporal eigenvalue σ. With the boundary conditions, obtain an homogeneous

system on (a+,a−). Explain why the determinant of this system must vanish. From this condition,

obtain the values of σ and finally the form of θ.

Second, observe that ψ′′ obeys an equation similar to the heat equation...
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2 Focus now on x-dependent solutions. During the lecture, we have calculated only one family of

Fourier normal modes,

V1(k,±) = (Ψ(k,±), Θ(k,±)) exp(ikx) sin(πz) , (1.22)

with k 6= 0 the x-wavenumber. Thus, the fact that an initial condition

V (t = 0) = (ψ(t = 0), θ(t = 0))

can be decomposed on the basis of all normal modes

V (t = 0) =
∑

q

A(q)V1(q)

is unclear, as is also the precise meaning of q, the labels that index all normal modes.

For the sake of simplicity, we consider periodic boundary conditions in the x direction, under

x 7→ x + L. Hence exponential Fourier series can be used to analyse the x dependence, i.e. q

contains generally the x-wavenumber k such that

V1(q) = V1(k,q
′) = V1(z; k,q

′) exp(ikx)

with k ∈ K, K = (2π/L)Z, q′ other labels that have to be identified.

Show that modes

V1(k,± ,n) = (Ψ(k,± ,n), Θ(k,± ,n)) exp(ikx) sin(nπz)

with n ∈ N∗ are also normal modes, and establish a characteristic equation for the temporal

eigenvalue σ. Check that for given k and n, there are indeed two modes + and − and two

eigenvalues σ(k,±,n). Check that with n = 1 you recover the modes (1.22) and their corresponding

eigenvalues. Check that the most relevant modes are indeed the modes with n = 1.

Comments:

From a mathematical point of view, the fact that any initial condition can be written as

V (t = 0) =
∑

k∈K

∑

s=±

∑

n∈N∗
A(k,s,n) V1(k,s,n)

results from a development in exponential Fourier series of x, trigonometric Fourier series of z, and

from the fact that, for given k and n, (Ψ(k,+ ,n), Θ(k,+ ,n)) and (Ψ(k,− ,n), Θ(k,− ,n)) form a

basis of C2.

Coming back to z ∈ ]−1/2,1/2[, the following symmetry property can be shown: all normal modes

are either even or odd under the midplane reflection symmetry z 7→ −z.

1.3 The linear modes basis - The adjoint problem - adjoint modes

Hereafter we work in a box with periodic boundary conditions under x 7→ x + λc. Consequently

the wavenumber k ∈ K with K = kcZ. Hence we can label the normal modes with

q = (k,s,n) ∈ K× {+,−} × N∗, and a general field can always be written as a superposition of

normal modes,

V =
∑

k∈K

∑

s=±

∑

n∈N∗
A(k,s,n) V1(k,s,n) =

∑

q

A(q) V1(q) . (1.23)
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It is important to be able to calculate systematically the ‘amplitudes’ A(q). For this purpose, we

introduce (generally, the technique is not only specific to RBT) the adjoint problem and adjoint

modes as follows.

• We first introduce the Hermitian inner product

〈V,U〉 =

∫ λc

x=0

∫ 1/2

z=−1/2
V (x,z) · U∗(x,z) dx

λc
dz . (1.24)

• We then define the adjoint operators D† and L† such that

∀V,U, 〈D · V,U〉 =
〈
V,D† · U

〉
and 〈L · V,U〉 =

〈
V,L† · U

〉
, (1.25)

V and U satisfying the boundary conditions of the problem.

• We assume1 that the adjoint eigenproblem

σ∗D† · U = L† · U (1.26)

has eigenvalues that are the complex conjugates of the ones of the direct eigenproblem.

• Therefore to each direct mode V1(q) of eigenvalue σ(q) there correspond adjoint modes

U1(q) of eigenvalue σ∗(q) with the same wavenumber k.

• If k in q 6= k′ in q′ then

〈
D · V1(q),U1(q

′)
〉

=
〈
L · V1(q),U1(q

′)
〉

= 0 . (1.27)

• For q with the same wavenumber k, one has usually non degenerate eigenvalues:

if k in q = k in q′ but q 6= q′ , σ = σ(q) 6= σ′ = σ(q′) . (1.28)

• Consequently one can show that

q 6= q′ =⇒
〈
D · V1(q),U1(q

′)
〉

=
〈
L · V1(q),U1(q

′)
〉

= 0 . (1.29)

• Normalizing the adjoint modes such that

∀q , 〈D · V1(q),U1(q)〉 = 1 , (1.30)

we find that the amplitudes in (1.23) are given by

A(q) = 〈D · V,U1(q)〉 . (1.31)

1This is very often the case, at least this works for RBT.
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Exercise 1.2 Adjoint problem in slip RBT

Denoting U = (ψa,θa), calculate analytically the adjoint problem of the RBT linearized prob-

lem, with slip boundaries. Focus on the case of Fourier modes in x, of x-wavenumber k = mkc

with m ∈ Z∗.

Indications:

Start with the calculation of D†. It will be useful to use recursive integrations by parts: if

u and v are functions of z of class Cn, one has
∫
uv(n) dz =

[
uv(n−1) − u′v(n−2) + u′′v(n−3) + ... + (−1)n−1u(n−1)v

]
+ (−1)n

∫
u(n)v dz

which can be explicited with the help of this table:

Column A Column B

Derivatives of u Derivatives of v

+ u v(n)

− u(1) v(n−1)

...
...

(−1)n u(n) v

and of this rule: pair the 1st entry of column A with the 2nd entry of column B, the 2nd entry

of column A with the 3rd entry of column B, etc... with alternating signs (beginning with the

positive sign)...

Solution:

D† = D , [L†R · U ]1 = −∆∆ψa − ikθa , [L†R · U ]2 = ∆θa + Rikψa . (1.32)

Exercise 1.3 Adjoint critical mode in RBT with slip boundaries

For k = kc = π/
√

2 , R = Rc = 27π4/4 , to the critical mode

V1c = (−3iπ/
√

2, 1) exp(ikcx) cos(πz) , (1.33)

check that there corresponds a neutral adjoint critical mode U1c, and calculate it with the normal-

ization condition (1.30).

Solution:

U1c =
2

1 + P−1
(−i2

√
2/(9π3), 1) exp(ikcx) cos(πz) . (1.34)

1.4 Weakly Nonlinear Analysis of slip RBT

We seek, for R close to Rc or

ε = R/Rc − 1 � 1 , (1.35)

which is denoted as the ‘bifurcation parameter’, an approximate solution of the nonlinear problem

(1.13) of the form (1.23),

V =
∑

q

A(q,t) V1(q) . (1.36)
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Following Haken (1983) ‘Long-living systems slave short-living systems’, we distinguish

• active modes q = qc = (kc,+ ,1) or q∗c = (−kc,+ ,1) which are long-living

σ(q,R) ∼ ε/τ0 (1.37)

with

τ0 = 2 (3π2)−1 (1 + P−1) (1.38)

the characteristic time of the instability,

• from the passive modes q 6= qc,q
∗
c which are short-living (rapidly damped)

σ(q,R) < σ1 < 0 . (1.39)

We assume that, possibly after a short transient, the active modes dictate the dynamics:

∀q ,
dA

dt
(q,t) = O(ε A(q,t)) , (1.40)

V = Va + V⊥ with Va = A1cV1c + c.c. the active modes, Va � 1 , (1.41)

V⊥ =
∑

q 6=qc,q
∗
c

A(q,t) V1(q) the passive modes, V⊥ � Va . (1.42)

In the amplitude equations for the passive modes,

dA

dt
(q,t) = σ(q,R)A(q,t) +

∑

q1

∑

q2

A(q1,t)A(q2,t) 〈N2(V1(q1),V1(q2)),U1(q)〉 , (1.43)

we may neglect dA/dt and consider that these modes are created by the active ones, through

nonlinear effects. The passive modes are therefore obtained by quasistatic elimination

0 = σ(q,R)A(q,t) +
∑

q1=qc,q
∗
c

∑

q2=qc,q
∗
c

A(q1,t)A(q2,t) 〈N2(V1(q1),V1(q2)),U1(q)〉 (1.44)

which amounts here, for ‘symmetry’ reasons2, to

0 = LR · V⊥ + N2(Va,Va) . (1.45)

Exercise 1.4 Quasistatic elimination of the passive modes in slip RBT

In slip RBT, denoting A = A1c the amplitude of the critical mode, show with Mathematica

that

[N2(Va,Va)]1 = 0 , [N2(Va,Va)]2 = B sin(2πz) (1.46)

with B a real number,

B = 3π3A2 . (1.47)

Next, solve (1.45), showing that

V⊥ = A2V20 with V20 = (0, Θ2) =
(

0,
3π

4
sin(2πz)

)
, (1.48)

and explain the physics behind.

2The nonlinear terms N2(Va,Va) create only passive modes, of x-wavenumber 0 or ±2kc which are quite different

from kc.
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Exercise 1.5 Passive modes in slip RBT first control the Nusselt number

Show that the passive mode that you have calculated controls the value of the Nusselt number

Nu =
Φheat with conduction & convection

Φheat with conduction only
(1.49)

with Φheat the average heat flux that goes from the hot bottom plate to the cold top plate.

Indication: you must prove that Nu− 1 ∝ A2.

Solution:

Nu− 1 =
3π2

2
A2 . (1.50)

To determine A, we obtain, by projection of (1.13) onto the adjoint critical mode U1c, the

amplitude equation
dA

dt
=

ε

τ0
A + 〈N2(V,V ),U1c〉 . (1.51)

The nonlinear terms in N2(V,V ) that have a nonzero projection on U1(qc) are ‘resonant’.

Exercise 1.6 Resonant terms in slip RBT at order A3

Compute with Mathematica the resonant terms in N2(V,V ), and explain their physics.

Solution:

[N2(V,V ) resonant]1 = 0 , [N2(V,V ) resonant]2 = −9π4

2
A3 cos(kcx) cos(πz) cos(2πz) . (1.52)

Exercise 1.7 Saturation in slip RBT

Show that 〈N2(V,V ),U1c〉 = −gA3 and compute the saturation coefficient

g = (9/8)π4/(1 + P−1) . (1.53)

Deduce from this and the knowledge of τ0 an analytical expression of the Nusselt number in weakly

nonlinear roll solutions,

Nu = 1 + 2ε . (1.54)

Comment : consequently Nu− 1 ∝ δT/(δT )c − 1, with (δT )c the critical value of the temperature

difference; this is confirmed by experiments, see e.g. the fig. 4 of Hu et al. (1993).
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Fig. 1.2 : Stationary solutions, or ‘fixed points’, of the amplitude equation (1.55). With the continuous

lines: stable solutions; with the dashed line: unstable solution. The arrows show vectors (0, dA/dt) when

A(t) evolves according to eq. (1.55), from an initial condition which is not a fixed point.

In conclusion, the amplitude equation (1.51) assumes the form

dA

dt
=

ε

τ0
A − gA3 with g ∈ R+∗ . (1.55)

This is the generic equation of a supercritical pitchfork bifurcation. It is easy to calculate the

stationary solutions, or ‘fixed points’, of eq. (1.55):

∀ε , A = 0 ,

∀ε > 0 , A = ±
√
ε/(τ0g) , (1.56)

and to construct a diagram in the plane (ε,A) (bifurcation parameter, amplitude) plotting these

solutions, that depend on ε, and arrows parallel to the A-axis indicating dA/dt. From the direction

of these arrows, the trajectories of the dynamical system (1.55), which are line segments, can be

immediately deduced. From this, the stability properties of the stationary solutions ensue... The

result is shown in fig. 1.2, which displays a ‘pitchfork’ ; moreover, the interesting non-vanishing

stationary solutions exist only for ε > 0 i.e. above (‘super’ in latin) onset; all this explain the name

of the bifurcation...

1.5 Numerical Linear Analysis of no-slip RBT

Exercise 1.8 Numerical linear stability analysis of no-slip RBT with a spectral method

To solve with Mathematica the linear RBT problem using no-slip boundary conditions, for

P = 1, use a spectral expansion of the eigenfunctions of the Fourier modes, in exp(ikx), as a

sum of simple polynomial functions that fulfill the boundary conditions:

Ψ(z) =

N∑

n=1

ΨnFn(z) with Fn(z) = (1/2− z)2 (z + 1/2)2 T2n−2(2z) , (1.57)

Θ(z) =

N∑

n=1

Θnfn(z) with fn(z) = (1/2− z) (z + 1/2) T2n−2(2z) , (1.58)

Tn the nth Chebyshev polynomial of the first kind, N the number of z-modes.
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1 Plot a few functions Fn and fn, and the Gauss-Lobatto collocation points

zm = cos[mπ/(2N + 1)]/2 for m ∈ {1,2, · · · ,N} , (1.59)

and comment.

2 By evaluating the vorticity and heat equation at the Gauss-Lobatto collocation points, construct

by blocks matrices that represent the operators D and LR applied to the vector of the expansion

coefficients Vnum = (Ψ1, · · · ,ΨN ,Θ1, · · · ,ΘN ). Note that n in equations (1.57) and (1.58) is a

‘column index’, m in equation (1.59) is a ‘line index’.

3 With the command Eigenvalues, find a numerical approximation of the temporal eigenvalues

σ(k,R) for k fixed. Check the physical relevance of this ‘spectrum’.

4 Sort these eigenvalues to find the most relevant one σ1(k,R).

5 Define the neutral Rayleigh number R0(k) by finding a root of σ1(k,R) = 0.

6 Finally, find the critical parameters by minimizing the neutral Rayleigh number.

Compare with the slip case and discuss the physics.

1.6 Very short review of no-slip RBT

The numerical method described in Exercise 1.8 can be extended to perform a weakly nonlinear

analysis of no-slip RBT. An highly nonlinear analysis can also be performed to compute roll

solutions far from onset, and the numerical results agree well with the experiments at large Prandtl

number of Stasiek (1997). However, especially at small Prandtl numbers, nonlinear rolls become

quickly unstable when the Rayleigh number increases, as shown for instance in Plapp (1997);

Bodenschatz et al. (2000). These secondary instabilities have been studied in great details by Busse

and coworkers (Busse 2003). After tertiary instabilities, etc... this leads at high Rayleigh numbers

to turbulent flows. These scenarios of a progressive transition to turbulence through a

cascade of instabilities can be coined as ‘globally supercritical’.



Chapter 2

Transition to Turbulence

in Open Shear Flows

This chapter (under work !) corresponds to the Sessions 6 and 7 of 2014-2015, but from a

pedagogical point of view it is presented here, before we dive into fully turbulent flows.

2.1 Generalities

Open Shear Flows are often encountered in Aerodynamics, think for instance to the Flow around

an Airfoil, and also in Hydrodynamics, think for instance to Pipe Flow or Channel Flow.

For the sake of simplicity, we focus here on 2D xz Flows, such as the Boundary Layer Flow

over a flat plate (fig. 2.1a) or Flows in channels (fig. 2.1b). It is assumed that in the y direction,

the boundaries of the system are far away and have a little influence. Not too close to the leading

edge, the Boundary Layer over a flat plate (fig. 2.1a) is quasi invariant under translations in the x

direction. To simplify, we will consider hereafter Parallel Open Shear Flows that are strictly

invariant under translations in the x direction. They are generally of the form

v = v0 = U(z) ex , p̂ = p+ ρgZ = p̂0 = −Gx , (2.1)

with Z the vertical coordinate, G the pressure gradient necessary to sustain the Flow if the fluid

is viscous. If the fluid is inviscid, G = 0.

We want to analyze the stability of such basic Flows.

For this purpose, we introduce perturbations of velocity and pressure, i.e., we write

v = v0 + u , p̂ = p̂0 + p′ . (2.2)

The Navier-Stokes or Euler equation then give

∂tu + U ′uzex + U∂xu + (u ·∇)u = − (1/ρ)∇p′ + ν∆u . (2.3)

Moreover, we assume that the fluid is incompressible,

divu = 0 . (2.4)

We introduce dimensionless equations using a length scale h which is the thickness of the mixing

layer, the half-width of the channel, ... For the velocity scale, we use

U0 = max
z
U(z) . (2.5)
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Fig. 2.1 : Examples of 2D Open Shear Flows. (a) A slightly non-parallel Flow. (b) Parallel Flows.

Finally the unit of time is the advection time, or inertial time, t0 = h/U0 .

The dimensionless form of the Navier-Stokes or Euler equation (2.3) is then

∂tu + U ′uzex + U∂xu + (u ·∇)u = −∇p′′ + R−1∆u , (2.6)

with1

the Reynolds number R = U0h/ν , R = ∞ in an inviscid fluid. (2.7)

Contrarily to the problem of the Rayleigh-Bénard Thermoconvection which has been studied

in the chapter 1, the basic flow creates an anisotropy in the xy plane. Despite this, we assume

that it is relevant to focus, firstly, on perturbations that are 2D xz. It is convenient then to use

a perturbation streamfunction ψ such that

u = curl(ψ ey) = − (∂zψ) ex + (∂xψ) ez . (2.8)

We also eliminate the pressure by solving, instead of (2.6), the vorticity equation, which reduces

to its component in the y direction,

∂t(−∆ψ) +
[
∂z
(
u ·∇ux

)
− ∂x

(
u ·∇uz

)]
= R−1∆(−∆ψ) + U∂x(∆ψ)− U ′′(∂xψ) . (2.9)

By introducing the local state vector

V = (ψ) , (2.10)

we obtain that it fulfills

D · ∂tV = LR · V + N2(V,V ) (2.11)

with [D · ∂tV ]1 = −∆∂tψ , [LR · V ]1 = R−1∆(−∆ψ) + U∂x(∆ψ)− U ′′(∂xψ), (2.12a)

[N2(V,V )]1 =
[
∂z
(
u ·∇ux

)
− ∂x

(
u ·∇uz

)]
. (2.12b)

The boundary conditions, at the ‘plates’ located at z = z±, are,

for a viscous fluid, no-slip, u = 0 ⇐⇒ ∂xψ = ∂zψ = 0 , (2.13)

for an inviscid fluid, slip, uz = 0 ⇐⇒ ∂xψ = 0 . (2.14)

1Do not mingle the main control parameter R of this chapter, the Reynolds number, with the main control

parameter R of chapter 1, the Rayleigh number.
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2.2 Linear stability analysis of Plane Parallel Flows

This linear analysis relies on the calculation of normal modes of the form

V = (Ψn(z)) exp(ikx+ σt) = (Ψn(z)) exp[ik(x− crt)] exp(kcit) (2.15)

with k 6= 0 the wavenumber2, n another label to mark normal modes, σ the temporal eigenvalue.

Most often the bulk velocity of the basic flow 〈U〉z > 0, hence we expect normal modes that are

waves traveling ‘to the right’ (in the x direction). For this reason we write

σ = − iω = − ikc (2.16)

with c the complex phase velocity, cr > 0 (most often) the real phase velocity, kci > 0 (resp.

< 0) the growth rate (resp. damping rate). By inserting the form (2.15) in (2.11) and linearizing,

we obtain

(U − c)∆ψ − U ′′ψ = (ikR)−1∆∆ψ (2.17)

which is the Orr - Sommerfeld equation in a viscous fluid, Rayleigh equation in an inviscid

fluid (R =∞).

The boundary conditions at z = z±, are,

for a viscous fluid , ψ = ∂zψ = 0 , (2.18)

for an inviscid fluid , ψ = 0 . (2.19)

2.2.1 Linear stability analysis of Inviscid Plane Parallel Flows

Exercise 2.1 Rayleigh’s inflection point criterion

Let us assume that an Inviscid Plane Parallel Flow is unstable. Therefore there exists at least

one amplified normal mode (2.15), more simply

V = (Ψ(z)) exp[ik(x− crt)] exp(kcit) , (2.20)

which corresponds to ci > 0.

1 Express Ψ′′(z) as a function of Ψ(z), U(z), U ′′(z), k and c.

2 By multiplication with a suitable function and integration over z ∈ [z−,z+], show that
∫ z+

z−

(
k2|Ψ(z)|2 + |Ψ′(z)|2

)
dz +

∫ z+

z−

U ′′(z) |Ψ(z)|2
U(z)− c dz = 0

and, then, ∫ z+

z−

U ′′(z) |Ψ(z)|2
|U(z)− c|2 dz = 0 . (2.21)

3 Conclude that, if U ′′ 6= 0 , U ′′ must change sign somewhere, i.e. there must exist an inflection

point in the U -profile.

A typical example of an ‘inflection-point instability’ is the Kelvin-Helmholtz instability of

the mixing layer, which has been already approached in Plaut (2014), see also the animations

on http://emmanuelplaut.perso.univ-lorraine.fr/mf/KH.htm.

2One can easily show that x-homogeneous modes are all damped.

http://emmanuelplaut.perso.univ-lorraine.fr/mf/KH.htm
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2.2.2 Linear stability analysis of Viscous Plane Poiseuille Flow

Exercise 2.2 Linear stability analysis of Plane Poiseuille Flow with a spectral method

We analyze the stability of Plane Poiseuille Flow (PPF), U(z) = 1−z2, of a Viscous Fluid. For

this purpose we solve the Orr - Sommerfeld equation (2.17), here rewritten with the temporal

eigenvalue σ,

σDΨ = − σ∆Ψ = LRΨ = −R−1∆∆Ψ + ik(U∆Ψ− U ′′Ψ) (2.22)

with

∆ = − k2 +
d2

dz2
(2.23)

and the boundary conditions (2.18),

Ψ = Ψ′ = 0 if z = ±1 . (2.24)

For this purpose, we use a spectral expansion of the eigenfunctions Ψ(z), as a sum of simple

polynomial functions that fulfill the boundary conditions:

Ψ(z) =
N∑

n=1

ΨnFn(z) with Fn(z) = (z−1)2 (z+1)2 T2n−2(z) = (z2−1)2 T2n−2(z) , (2.25)

Tn the nth Chebyshev polynomial of the first kind, N = Nz the number of z-modes. We retain only

the Chebyshev polynomials of even index because we know that the relevant modes correspond to

Ψ(z) even under z 7→ −z ; we could test a more general expansion...

1 Start a Mathematica code by defining the functions Fn (F[n,z] in your code) and the Gauss-

Lobatto collocation points

zm = cos[mπ/(2N + 1)] for m ∈ {1,2, · · · ,N} (2.26)

(z[m] in your code). Plot a few functions Fn and the collocation points for various values of N ,

and comment.

2 By inserting (2.25) in (2.22), we get

σ
∑

n

ΨnDFn(z) =
∑

n

ΨnLFn(z)

which we want to be fulfilled at the collocation points (2.26):

∀m , σ
∑

n

ΨnDFn(zm) =
∑

n

ΨnLFn(zm) . (2.27)

With the vector

V =




Ψ1

.

.

.

ΨN



, (2.28)

show that (2.27) can be written under a matrix form

σMD · V = ML · V (2.29)

with MDmn = DFn(zm) , MLmn = LFn(zm) . (2.30)

Note that n is a ‘column index’, m is a ‘line index’.
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3.a Define in your code the operators D and L acting on a general function Ψ or f ,

Dop[f_]:= ...

Lop[f_]:= ...

Create the matrices MD and ML with the good dimension :

MatD = MatL = IdentityMatrix[Nz]

then, with a double loop, code the rules (2.30):

Do[

Do[

MatD[[m,n]] = ... ;

MatL[[m,n]] = ...

,{m,1,Nz}]

,{n,1,Nz}]

Indication : for the derivatives with respect to z to be correctly computed, do not replace too

early z by zm; do this at the end using the ReplaceAll command.

3.b To show clearly the control parameters, define

MD[k_] = MatD; ML[k_,R_] = MatL;

4 Define the spectrum of the generalized eigenvalue problem (2.29) as

spectrum[k_,R_]:= Eigenvalues[{ML[k,R], MD[k]}]

and the eigenvalue of the most relevant mode as

sigma1[k_?NumericQ,R_?NumericQ]:= Last[Sort[spectrum[k,R]]]

The ?NumericQ will prevent Mathematica from trying to do formal computations on sigma1.

By setting k to a typical value, observe the evolution of the spectrum and of the most relevant

eigenvalue as a function of R.

Check that PPF is stable at small R but becomes unstable at large R.

5 Code with the FindRoot command the computation of the neutral Reynolds number R = R0(k)

where

Re[σ1(k,R)] = 0 ; (2.31)

use

R0[k_?NumericQ]:= ...

to prevent Mathematica from trying to compute formally R0(k).

Compute a list of values of R0(k) and plot the corresponding neutral curve. Comment.

6.a By minimizing R0(k) with respect to k, compute the critical parameters kc, Rc, ωc and cc

of the bifurcation of PPF to the so-called TS waves:

kc = 1.02 , Rc = 5772 , ωc = 0.269 , cc = 0.264 . (2.32)
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You will perform convergence tests by varying the number of modes Nz, for instance, saving

your results at given Nz :

Put[{Rc,kc,omc},"RckcomcNz"<>ToString[Nz]]

then comparing the results obtained with Nz − 1 vs Nz modes. For this purpose you will load the

previous file with the command

{Rcold,kcold,omcold} = Get["RckcomcNz"<>ToString[Nz-1]]

A reasonable convergence criterion is that kc, Rc and ωc do not change by more than 0.1% with

Nz − 1 vs Nz modes. Determine the minimum number of modes that satisfies this criterion,

Nz = 18 . (2.33)

6.b Explain the physical meaning of the values (2.32) found for kc and cc.

7.a With the Eigenvectors command, find the vector V (2.28) that represents the critical mode

eigenfunction Ψ(z). By coding the summation (2.25), compute this function Ψ(z).

7.b Compute a streamfunction that represents the PPF with a TS wave

v = v0 + u (2.34)

with u deriving from

ψ = A Ψ(y) exp(ikcx) + c.c. . (2.35)

Here A is a ‘small’ amplitude that one cannot compute with such a linear theory, and that you

will vary.

Use this to plot the streamlines of PPF with a more or less developped TS wave.

Comment these plots, in connection with this citation of Reynolds (1895):

‘when water is caused by pressure to flow through a uniform smooth pipe,

the motion of the water is direct, i.e., parallel to the sides of the pipe,

or sinuous, i.e., crossing and re-crossing the pipe,

according as R is below or above a certain value’.



Chapter 3

Turbulence modelling -

Applications to Wind Energy

This chapter corresponds to the Sessions 3, 4, 5 of 2014-2015.

3.1 Turbulence modelling

For the bibliography, especially concerning the ‘old’ papers, see Frisch (1995).

3.1.1 General definitions - Experimental results

A basic question is: how to characterize spatial complexity ?

This can be done by studying the velocity increments and their structure functions, as

defined below for a length scale r,

η ≤ r ≤ L ,

with η the Kolmogorov scale1, L the integral scale2. Hereafter u (resp. u) denotes one component

of (resp. the whole) velocity field. One uses a Reynolds decomposition

u = 〈u〉 + u′ (3.1)

with u′ the fluctuating velocity.

Definitions

Velocity increments:

ur(x) := u(x+ r)− u(x) . (3.2)

Structure functions:

Sn(r) := 〈(ur(x))n〉 = 〈(u(x+ r)− u(x))n〉 . (3.3)

Comments

In principle all can be expressed for vectors: u→ u, x→ x and r → r.

1Denoted `K in Plaut (2014).
2Denoted ` in Plaut (2014).
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Fig. 3.1 : Statistical analysis of Experimental data acquired with Hot Wire Anemometry on a Laboratory

Turbulent Flow, an air into air round free jet (Renner et al. 2001; these data are also available on the web

page of the module). (a) : PDF p(ur) of the velocity increments ur for different values of r; the values of ur
are normalized with the corresponding standard deviation σr of ur. (b) : Corresponding form parameters,

see eq. (3.25) below.

Some probability density functions (PDF) p(ur) of velocity increments ur for different

values of r are shown in fig. 3.1a. One observes a non-Gaussian character for small values of r,

with events corresponding to large increments that are rather ‘frequent’, at least, with respect to

what a Gaussian PDF would give. This is a signature of the intermittent character of small-scale

turbulent flows. Observe that, for larger values of r, the PDF become more and more Gaussian.

We will write a model for p(ur) in section 3.1.4, with the ‘multiplicative cascade approach’ by

Castaing. However, firstly, we present ‘older’ models that paved the way to arrive to this point of

view.

3.1.2 Kolmogorov & Obukov 1941

From the idea of a cascade Kolmogorov deduced that the structure function should be Sn(r) =

f(ε, r) with ε the energy (power density) transferred in the cascade. Using dimensional analysis,

one gets

Sn(r) = f(ε, r) = Cn ε
n/3 rn/3 (3.4)

with Cn a universal constant. For n = 2 we obtain S2(r) ∼ r2/3, and for n = 3, S3(r) ∼ r, as

tested experimentally in fig. 3.2. Note the dimension of the ”transferred energy” in the cascade

ε ≡ E/(t m) ≡ `2/t3.

Karmann, Howarth & Kolmogorov derived that form the Navier-Stokes equation and isotropy

the so-called −4
5-law

S3(r) = −4

5
εr + 6ν

dS2(r)

dr
. (3.5)

According to the eq. (3.4) 6ν dS
2(r)
dr ∝ r−1/3, thus for large scales (r → L) one has S3(L) ∝ −4

5εL.

From this L/η can be estimated. Using

ε ≈ S3

L
=

< (u(x+ L)− u(x))3 >

L
≈ < u′3 >

L
, (3.6)
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Fig. 3.2 : Experimental test of the law |S3| ∝ r, by Chabaud, B. & Chanal, O., CNRS Grenoble, France;

reprinted from Friedrich & Peinke (2009). (a) Absolute value of the third-order structure function plotted

with log-log scales. (b) and (c) absolute value of the compensated third-order structure function plotted

with (b) log-log scales (c) log-lin scales.

one obtains

L/η =
L

(
ν3

ε

)1/4 =
Lε1/4

ν3/4
≈ L<u

′3>
L

1/4

ν3/4
=

(
u′L

ν

)3/4

= Re3/4 . (3.7)

3.1.3 Kolmogorov & Obukov 1962

L.D. Landau pointed out that

‘It is not obvious why ε is not a fluctuating quantity’.

The idea of Kolmogorov 1941 can be taken as 〈εL〉 = 〈εr〉 = 〈εη〉 - i.e the mean transfered energy

in the cascade is conserved.
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After the comment of Landau, Kolmogorov claimed that it is reasonable for ε(r) to assume a

log-normal distribution

p(ε) =
1√

2πσ2
exp

(
−(lnx)2

2σ2

)
. (3.8)

Short argumentation for log-normal distribution

Some notations: The length scales of the turbulent cascade are denoted as rn < rn−1 < ...r0 = L,

and εri := εi the energy transferred at scale ri.

The idea of a cascade is that now the sequence of εr1 = εr2 = . . . = εL may become random by

multipliers such that

εi = ai εi−1 .

The energy conservation is given by the condition < ai > = 1. Thus one gets for the cascade:

εrn = an εrn−1 = an an−1εrn−2 = . . . = an an−1 . . . a1 εL . (3.9)

Taking the log of this equation:

ln
εrn
εL

=
n∑

i=1

ln ai . (3.10)

This is now taken as a sum over independent random numbers ln ai. The ”central limit theorem”

from Kolmogorov says that such a sum of independent random numbers converges towards a

Gaussian distribution, hence

p(εrn) = p

(
ln
εrn
εL

)
=

1√
2πΛ2

exp


−

(
ln εrn

εL

)2

2Λ2


 (3.11)

where the variance Λ2 can still be a function of rn.

Kolmogorov 1962 assumes that

Λ2(r) = Λ2
0 − µ ln

r

L
. (3.12)

Some argumentation for Kolmogorov 1962 hypothesis

As ln ai are assumed to be uncorrelated (〈(ln ai)(ln aj)〉 = 0),

Λ2(r) =

〈(
ln
εr
εL

)2
〉

=

〈(
n∑

i=1

ln ai

)2〉
= n

〈
(ln ai)

2
〉
∝ n . (3.13)

Thus Λ2(r) ∼ n with n the depth of the cascade. Furthermore it is assumed that rn+1 = k rn,

for example k = 1
2 → rn+1 = 1

2 rn. Thus

rn+1 = k rn ⇐⇒ rn = kn L

⇐⇒ kn =
rn
L

⇐⇒ n ln k = ln
rn
L

⇐⇒ n = ln
rn
L

1

ln k
.
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As k < 1, is follows that ln k < 0. Thus we can define µ := − 1
ln k and one obtains

n = − µ ln
r

L
. (3.14)

Thus the hypothesis follows

Λ2(r) = Λ2
0 − µ ln

r

L
(3.15)

with µ an intermittency coefficient.

Knowing p(ε) and Λ2(r) one can calculate

〈εn/3〉 ∼ r−µ
n(n−3)

18 .

This is the results of Obukov und Kolmogorov 1962.

One deduces from this that the structure functions

Sn(r) = Cn〈εn/3〉rn/3 ∼ Cεnr
n/3−µn(n−3)

18 (3.16)

This equation is known as the intermittency correction to Kolomogov 1941 (3.4). It is easy to see

that for n = 3 (3.16) the −4
5-law is fulfilled, and that

S2(r) = Cε2r
2/3+µ 1

9 , (3.17)

S3(r) = Cε3r , (3.18)

S6(r) = Cε6r
2−µ . (3.19)

S6 is good to estimate the intermittency correction µ.

The structure functions can also be seen as spatial 2-point-correlations,

Sn(r) = 〈(u(x+ r)− u(x))n〉 = 〈unr 〉 =

∞∫

−∞

unr p(ur)dur . (3.20)

Thus the structure functions Sn(r) are the general moments of p(ur).

If the increments ur are normalized by
√
< u2r > to ur =

√
< u2r > wr we obtain

Sn(r) =

∞∫

−∞

unr p(ur)dur = < u2r >
n/2

∫
wnr P (wr) dwr . (3.21)

If the integral over wr is independent of r , this is the case if P (wr) is the same for all r, then

Kolmogorv 1941 is obtained again. The other way round, from the intermittency correction,

expressed by µ must have the consequence that P (wr) is changing its from with r.

3.1.4 Multiplicative cascade after Castaing

We follow here Castaing et al. (1990). One studies the probability density function (PDF)

p(ur) of the velocity increments. One can write p(ur) as function of the conditioned probability

p(ur|εr), as

p(ur) =

+∞∫

0

p(u,εr,r) dεr =

+∞∫

0

p(ur|εr) p(εr,r) dεr . (3.22)
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Castaing assumed (all this is experimentally verified, see e.g. Naert et al. 1998) that p(ur|εr)
is Gaussian distributed:

p(ur|εr,r) =
1√

2π s(εr)
exp

(
− u2

2 s2(εr)

)
. (3.23)

Next the standard deviation s depends on εr as

s(εr) ∝ εαr . (3.24)

As ln(s) ∝ α ln(εr) also s must be log-normal distributed. Thus

p(ur) =
1

2πλ(r)

+∞∫

−∞

exp

(
− ln2 (s/s0(r))

2λ2(r)

)
exp

(
− u2

2s2

)
d ln s

s
. (3.25)

There are two parameters s0(r) and λ2(r). The first one s0(r) is the maximum of the distribution

of s and determines the variance of p(ur). The second one λ2(r) is the variance of the log-normal

distribution for s. It determines the form of p(ur) and is thus called the form parameter. In

the limit λ2(r) → 0 a Gaussian distribution is obtained. This is the case for r > L, as shows the

fig. 3.1a. On the contrary for small scales r the values λ2 increase thus a departure from Gauss is

seen. By fitting the p(ur), on can estimate the parameter λ2(r) (fig. 3.1b). Thus informations on

Λ(r) can be obtained, since, as shown in Castaing et al. (1990), Λ = 3λ.

3.2 Applications to Wind Energy - Lecture guide

3.2.1 Wind resources (Session 3 of 2014-2015)

One basic aspect of wind turbines is the knowledge of their energy resource, which is the wind.

As turbines are operating in windy places and close to the ground: they take the wind energy in

the so called ‘atmospheric boundary layer’ (ABL). In heights up to a few hundred of meters

the atmospheric boundary layer is highly turbulent. It is the structure of the ABL which delivers

the wind energy. The next important point will be to understand which conditions this energy

resource will deliver to an operating wind turbine. Looking at the response times of the energy

conversion process of a wind turbine, it becomes clear that turbulent wind fluctuation even

faster than one second play an important role. Some elements on the modelling of turbulence are

given in the previous section 3.1.

The common standard characterization of the wind resource are discussed in a short way in

the document ‘Characterization of wind turbulence by higher-order statistics’ included

hereafter page 27. More details are given in the Introduction of the PhD Thesis of P. Milan

(U. Oldenburg, 2014) included hereafter page 43. These documents make clear what is taken

into account and what is neglected by the standard characterization schemes of turbulent data.

The interested reader will further also read the article by Stresing & Peinke (2010), Towards

a stochastic multi-point description of turbulence, which is an open-access article. It shows

how for idealized laboratory turbulence a general statistical n-point description can be achieved,

which also makes clear that there is no simple universal turbulence.
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3.2.2 Wind energy basics (Session 4 of 2014-2015)

There we will discuss the basic concepts of wind energy and the working principles as well as

the design of a wind turbine. For this refer to the sections 1.3.1 and 1.3.2 of the Introduction

of the PhD Thesis of P. Milan (U. Oldenburg, 2014) included hereafter page 43.

3.2.3 Conversion dynamics - Power output up to stochastic processes (Session

5 of 2014-2015)

The conversion dynamics will be explained: the focus will shift to the dynamical aspects. Thus

the interaction between the turbulent resource and the turbines will be studied. For an advanced

understanding and characterization we need to get into the topic of stochastic processes.

A summary of the mathematics can be found in the Introduction of the PhD Thesis of P.

Milan (U. Oldenburg, 2014) included hereafter page 43.

Further applications are reported in the article by Wächter et al. (2012), The turbulent nature

of the atmospheric boundary layer and its impact on the wind energy conversion

process3. The article for further reading by Milan et al. (2013), Turbulent Character of Wind

Energy, discusses the turbulent nature of the wind power in the background of grid integration4.

3Accessible with the information system of University of Lorraine at www.tandfonline.com.bases-doc.univ-

lorraine.fr/doi/full/10.1080/14685248.2012.696118 .
4Accessible with the information system of University of Lorraine at http://dx.doi.org.bases-doc.univ-

lorraine.fr/10.1103/PhysRevLett.110.138701 .

http://www.tandfonline.com.bases-doc.univ-lorraine.fr/doi/full/10.1080/14685248.2012.696118
http://www.tandfonline.com.bases-doc.univ-lorraine.fr/doi/full/10.1080/14685248.2012.696118
http://dx.doi.org.bases-doc.univ-lorraine.fr/10.1103/PhysRevLett.110.138701
http://dx.doi.org.bases-doc.univ-lorraine.fr/10.1103/PhysRevLett.110.138701
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3.3 Applications to Wind Energy - Documents

We include

1. a note ‘Characterization of wind turbulence by higher-order statistics’;

2. hereafter page 43, the Introduction of the PhD Thesis of P. Milan (U. Oldenburg,

2014).



Characterization of wind turbulence
by higher-order statistics

Version of January 3, 2015, 10:39

Abstract
We propose a general hierarchical statistical framework for the characterization of wind

turbulence to the end that the proper meaning of different statistical approaches and of fur-
ther developments can be understood. Low order statistical descriptions are extended by
higher order statistics with respect to one and two-points. Finally, we give an outlook on
how to achieve a general n-point statistical description. In particular we show that proper
analysis leads to a super-statistics approach for the probability of velocity fluctuations. To
demonstrate the importance of our considerations, we present a synthetic time series using
a common software- package (TurbSim). On one side, we show how far this time series
is able to reproduce different statistical aspects, on the other side the necessarily of more
profound approaches is shown.

based on article: A. Morales, M. W/”achter and J. Peinke : Wind Energy 15, 391406
(2012)

1 Introduction
Atmospheric wind is not only the source of energy for Wind Energy Converters (WECs), but
also the source of mechanical loads which limit the life time of the machines and constrain
their operation. In particular wind turbulence leads to power fluctuations, fatigue and extreme
loads on WECs. Therefore a thorough description and characterization of wind turbulence is
crucial for a reliable design and efficient operation of WECs. On the other hand, due to the
presence of many phenomena at many different scales in the atmosphere, a comprehensive and
direct analytical description of turbulence remains a challenge.

A way to handle this complexity is to describe the phenomena in terms of statistical quan-
tities. However which statistical information is necessary and sufficient for a certain purpose
is not a trivial question. A useful characterization should enable comparison of wind situations
between different sites and allow for the adequate selection of a WEC class and layout. The
current IEC standard 61400-1:2005 [1] defines a procedure to achieve these requirements based
on 10 minute mean values of the wind speed and respective deviations from this mean. Defini-
tions are given for WEC classes, wind situations and probability estimations of certain extreme
events. While necessity and usefulness of standards are beyond doubt, in the recent years grow-
ing demand for a more comprehensive and more detailed characterization has become evident.
This is an active field of research, for example [2] worked on the extreme operative gust and
how to incorporate this in the generation of synthetic wind time series. Also recently in [3] cal-
ibrations of the extreme cases with return periods of 50 and 1 years in the standard IEC 61400
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were presented. Common to the cited works is the explicit role of the particular WEC under
consideration. In a more general approach, [4–6] have studied the probability density functions
of velocity differences over a range of scales.

This paper tries to review and clarify which kind and which amount of information is
grasped by different levels of statistical descriptions of wind turbulence. Our aim is not to
give a detailed review of every different statistical approach, but to provide a general and sys-
tematic framework which allows to classify and distinguish these approaches and their reach.
This is particular important for a systematic review of the statistical methods present in the
mentioned IEC norm, while recognizing the value and power of the methods therein but also
in the realization of their limitations and where they stand within a systematic and consistent
statistical description of wind turbulence.

The structure of the paper is such, that with every section more statistical information for
the description of the wind turbulence is taken into account, therefore enhancing the classifi-
cation of wind turbulence gradually from low order one-point statistics to nth-order two-point
statistics. Based on examples we show the suitability and completeness of every step of the sta-
tistical description. In section 2 we review the use of one-point statistics. In section 3 two-point
statistics of second and higher orders are introduced leading to the necessity of the character-
ization of intermittency. Finally section 4 adds a note on the generation of intermittency by
means of superposition of Gaussian probability density functions (PDFs).

For illustration purposes we use wind data of the research platform FINO I [7]. Trying to
avoid wake effects caused by the measurement tower we use data from the top anemometer
at 100 m height. The wind speed is recorded with a sampling rate of 1 Hz. For simplicity we
work just with the horizontal magnitude u(t) of the wind velocity vector. It is straight forward
to extend our scheme to different directional components of the wind vector, as well as to
spatial instead of temporal separations.

2 One-Point Statistics

2.1 One-Point Statistics up to Second Order
Given a wind time series, a common approach in the context of wind energy is to define turbu-
lent fluctuations u′(t) superimposed over a mean wind speed [8],

u(t) = 〈u〉T +u′(t)〈u〉T . (1)

Here 〈·〉 denotes time average and T the particular time span taken for calculating the average.
In general 〈xn〉 is the nth moment of x. These fluctuations around the mean value have them-
selves a mean value of zero, 〈u′(t)〈u〉T 〉= 0. Figure 1 (a) shows a typical wind time series and
its 10 minute mean values. Figure 1 (b) shows the corresponding fluctuations u′(t). Note that
in our notation the index in u′(t)〈u〉T makes explicit the fact that these fluctuations are always
defined through 〈u〉T . In our case we take a simple average over the time window T, filtering or
more elaborated detrending methods would change the actual value of u′ and there statistical
properties ??. Noteworthy is the difference between u′(t)〈u〉T and u′(t)〈u〉T | 〈u〉T = µ, the latter
includes only all those fluctuations that share the same mean value of the wind speed.

One issue with this definition is the need of an averaging period T over which to define
the mean wind speed used as reference for the fluctuations. Due to the strong non-stationarity
of the wind, this task is not trivial, but 10 minute spans are the usual practice This particular
time span is often motivated by the so-called ”spectral gap”, see [9] for a proper definition. It
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is assumed that there is a clear cut between mesoscale variations (large-scale meteorological
patterns) and high frequency fluctuations. However, the existence of this gap is arguable [10],
and it might not exist clearly for many sites. It could also be argued that WECs can follow
adiabatically changes in the wind acting in these or larger time scales. In this way one might
propose a WEC based time span T. For simplicity, from now on we will just write u′(t) for
u′(t)〈u〉T , and we will also adopt the usual T = 10min. Our following arguments could be
applied to any other characteristic or desired value of T .

(a)
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Figure 1: (a) Time series of the horizontal wind speed u(t) measured on the research platform
FINO I at 100m height, with 10-minute mean values and standard deviations. (b) Fluctuations
u′(t) defined over 10-minute mean values.

In this context, an estimation of turbulence strength in the wind during the time span T is
the turbulence intensity

I =

√
〈u′2〉T
〈u〉T

=
σT

〈u〉10min
. (2)

Here σT is the standard deviation of the fluctuations departing from the mean wind speed in
the considered period of time. The turbulence intensity is a crucial parameter by which, e.g.,
certification and site assessment procedures are defined, and it is indeed a design constraint [1].
Details on how this parameter changes with height, mean wind speed or surface roughness can
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be found for example in [1, 11] and for offshore data in [12]. As important as it is, the statistical
information in this parameter is restricted to the standard deviation or the second moment of
the fluctuations. Formally the statistics contained in the turbulence intensity are one-point
statistics of second order. As we will introduce in the next section, higher order moments of
the fluctuations, 〈u′n〉 with n> 2, are necessary for the description of extreme values of u′.

2.2 Higher Order One-Point Statistics
In the previous subsection we discussed first-order (〈u〉10min) and second-order (σT ) one point
statistics, which are summarized in the turbulence Intensity I. In General higher order moments
are also significant, and this information is contained in the form of the probability density func-
tion (PDF) of fluctuations. As 〈xn〉= R

xn p(x)dx, the complete set of moments is contained in
the knowledge of the PDF of a statistical quantity. The only case where the first two moments
will give a complete description of one-point statistics, is the case where the PDF of the fluctu-
ations follows a Gaussian distribution, since only this distribution is completely defined by its
first two moments.
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Figure 2: (a) p(u′(t)|σT ) for three arbitrary ten-minute intervals. From top to bottom the
values of the respective σT are 0.456, 0.452 and 0.616 m/s, the flatness 〈u′4〉/σ4

T are 2.82,
2.82, and 2.89±0.79. (b) PDF of u′(t) considering all the data set. The flatness is 6.30±0.11,
and 〈(lnσ′T − lnσ′T )

2〉 = 0.2037. (c) PDF of u′(t)/σT where σT is the standard deviation in
each interval of length T. Flatness is 2.98±0.01. Symbols represent wind data and solid lines
Gaussian distributions in all figures.

Thus the question whether wind fluctuations follow a Gaussian distribution or not becomes
relevant in order to understand how much a parameter like the turbulence intensity I charac-
terizes such fluctuations. To consider the Gaussianity of the fluctuations, figure 2 presents
the PDFs for different sets of u′(t). Figure 2 (a) shows the PDFs for some arbitrary single
10-minute intervals. Which can be understood as p(u′(t)|σi

T ), where σi
T denotes the standard

deviation of the ith 10-minute interval. Within such intervals fluctuations seem to follow the
Gaussian distribution, and the pdfs can be characterized by the corresponding σi

T . In contrast
to this in figure 2 (b) the complete set (20 days) of u′(t) is shown. We see that in this case
the probabilities of large values of fluctuations are clearly underestimated by a Gaussian dis-
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tribution. Note the logarithmic y-axis, for example a 10σ event would be underestimated by a
Gaussian distribution by a factor of 108.

Finally figure 2 (c) shows again the PDF of the total data set, but here in each ith ten minute
interval the fluctuations u′(t) were normalized by the corresponding σi

T standard deviation
of the respective ith 10-min interval. The resulting PDF p(u′(t)/σi

T ) is well described by a
Gaussian distribution within ±5σ. Small deviations may be seen for the largest values, but the
significance here is rather questionable. Nevertheless comparing figure 2 (b) and (c) we clearly
see that for p(u′(t)/σi

T ) a Gaussian distribution is a very good approximation.
These findings support the hypothesis that u′(t) is Gaussian distributed within ten minute

intervals, but with different standard deviations σT for each interval. It is known that the stan-
dard deviations σT of u′(t) for single ten-minute intervals are closely log-normal distributed
and the parameters of the log-normal distributions depend on the mean wind speed [11]. Thus
if fluctuations u′(t) are considered without normalization , the superposition of the different
Gaussians distributions with different σT leads to the intermittent distribution in figure 2 (b).

For a more quantitative evaluation of deviations from Gaussianity, it is common to calculate
the third and fourth moments of the fluctuations normalized by the standard deviation, which
are called skewness Skew and flatness F , respectively. For a general signal x(t) the definitions
are

Skew(x) =
〈(x− x̄)3〉

σ3
x

(3)

F(x) =
〈(x− x̄)4〉

σ4
x

. (4)

A Gaussian distribution has a skewness value of zero and a flatness of three. For all the
cases in figure 2, the values of the skewness do not differ significantly from zero, confirming
the symmetry of the distributions. The values of the flatness are 2.82, 2.82, and 2.89± 0.79
from top to bottom in figure 2 (a) and thus do not contradict the Gaussian distribution for
arbitrary single ten-minute intervals, while the large deviations from Gaussianity in figure 2 (b)
result in a flatness of 6.30± 0.11. For the PDF of all the normalized ten-minute intervals in
figure 2 (c) the flatness of 2.98±0.01 is again close to the Gaussian value.

From the discussion above it follows that an assumption of Gaussianity for u′(t) holds only
for single ten-minute intervals, and caution should be taken when estimating the probability of
extreme values of u′. And in general higher moments than 〈u′2〉, or related quantities like the
flatness (see eq. (4)), will be needed for a correct description of p(u′). This non-Gaussianity of
the extreme excursions from the mean wind speed has been already noted in, e.g., [13]. More
recently in [14] an asymptotic expression for describing the distribution of such extreme events
was presented.

Based on our above findings that p(u′(t)|σT ) is Gaussian we can apply a superposition
approach similar to [15] like,

p(u′) =
Z

p(u′|σ′T ) · p(σ′T )dσ′T . (5)

Here p(u′|σ′T ) represents a Gaussian distribution and p(σ′T ) a log-normal distribution. The
key parameter is 〈(lnσ′T − lnσ′T )

2〉 which gives directly a measurement of the intermittency of
p(u′) and is therefore actually related to the flatness of the distribution. Figure 2(b) shows that
our model based on equation 5 is able to describe the PDF p(u′) properly in all the range of
fluctuations. Further details on this approach can be found in [16], but we want to note that in
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principle additional dependencies of p(u′) on mean wind speed, height, and site can be easily
grasped by the respective value of 〈(lnσ′T − lnσ′T )

2〉.
Up to this point we have been discussing stepwise one-point statistics of first order 〈u〉,

of second order in σT , and of higher orders summarized in the PDF of u′. However even a
complete knowledge of p(u′), or respectively of all the moments 〈u′n〉, is not unique in the
sense that many different time series can share these statistics. To make this point more clear
we refer to figure 3, which shows three time series which have Gaussian distributions p(u′).
Those time series share the same one-point statistics, thus the same value of standard deviation
and will give the same value of turbulence intensity once added to the same mean wind speed.
And clearly the nature of these time series is different.

This is not surprising since the PDF of u′(t) gives no information regarding which path
the process follows in order to achieve the observed distribution. In order to distinguish more
features of the time series a proper correlation analysis is necessary. The next section will
therefore deal with the characterization of correlations by two-point statistics.

3 Two-point statistics

3.1 Two-point statistics up to second order
As seen in the previous section and in figure 3 it is in general neccesary to obtain knowledge on
the correlations between two points in the time series of wind fluctuations. The basic statistical
tool for this purpose is the autocorrelation function

Ru′u′(τ) =
1

σ2
u′

〈
u′(t + τ) u′(t)

〉
(6)

which quantifies the correlation of two data points separated by the time lag τ. The Wiener-
Khintchine theorem [17] relates it to the power spectral density S( f ) via a Fourier Transforma-
tion F , thus both functions contain the same information:

S( f ) F⇐⇒ Ru′u′(τ) with σ2
u′ =

Z
S( f )d f . (7)

These are second order two-point statistics and give information on the intensity or ampli-
tude with which different frequencies contribute to the fluctuations. This statistical tool already
enables us to distinguish between the signals shown in figure 3 despite that they share the same
one-point statistics. As we can see in figure 3 in the case of the random signal our descrip-
tion would be complete with the turbulence intensity because the PDFs of the fluctuations are
Gaussian and the fluctuations are completely uncorrelated, i.e.,

Ru′u′(τ) = δ(τ). (8)

However as we know this special case would be very difficult to find in the atmosphere where
many different interactions occur over many scales [9]. Instead as can be seen again in figure 3
the atmospheric turbulence exhibits a lot of structure regarding the power spectrum. In the
so-called inertial range usually a Kolmogorov similarity theory is adopted in order to explain
the spectrum over a range of frequencies (S( f ) ∝ f−5/3). In practice either the Kaimal or the
von Karman spectra are used not only for the description of atmospheric turbulence but also in
the generation of synthetic wind fields [18].
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Figure 3: Three different time series, their autocorrelation functions Ru′u′(τ) = 〈u′(t + τ)u′(t)〉,
and power spectral densities S( f ). From left to right, atmospheric fluctuations u′ (measured
at FINO I), a random Gaussian distributed time series, and an ordered time series constructed
from the random series. All three share the same standard deviation σT , and closely the same
p(u′) . In the top column the dashed lines correspond to one standard deviation. The straight
line shown with the FINO 1 power spectral density corresponds to S( f ) ∝ f−5/3. From the
figure it is clear how even a complete knowledge of one-point statistics is not sufficient in order
to characterize wind turbulence.
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Similar to the one-point statistics up to second-order summarized in the turbulence intensity
I, the autocorrelation function and the power spectral density are important and widely used
statistical quantities. Nevertheless, in the general case higher order two-point statistics are
indispensable. In principle we should ask ourselves for higher correlations of the form,

Ru′nu′m(τ) =
1

σn+m
u′

〈
u′(t + τ)n u′(t)m〉 . (9)

However, it is more general and even practical to work with the statistics of wind speed
differences. As we will see in the next subsection these are also two-point statistics and their
moments contain the arbitrary order two-point correlations defined in Eq. (9). These will be
discussed in the next subsection in terms of wind speed differences.
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Figure 4: PDFs of wind speed increments, δu(t,τ), displayed by symbols and shifted vertically.
Scales from bottom to top are τ = 2, 4, 10, and 60 s. Additionally, the PDFs are modeled by (a)
Gaussian distributions with identical standard deviations, and (b) Castaing’s formula (12) with
(13) and (14).

3.2 Higher-order two-point statistics
To investigate more generally two-point statistics and higher order correlations in wind turbu-
lence, let us now consider wind speed differences over a specific time lag τ,

δu(t,τ) = u(t + τ)−u(t) = u′(t + τ)−u′(t) , (10)

which we will refer to as wind speed increments in the following. Wind speed increments
statistics are clearly by definition two-point statistics, and the necessity of selecting a time span
for calculating the mean wind speed is avoided. Instead the increments are defined over a scale
τ, and the nature of wind speed variations can be studied against the evolution of this scale.
The increment’s second moment is directly connected to Ruu(τ) by the simple calculation

〈δu(t,τ)2〉= 2〈u(t)2〉−2〈u(t)u(t + τ)〉= 2〈u(t)2〉(1−Ruu(τ)) , (11)

assumed that the time series is long enough to ensure 〈u(t)2〉 = 〈u(t + τ)2〉 within the desired
precision. Note that these considerations apply for the wind speeds u(t) as well as for their
fluctuations u′(t), at least inside a ten minute interval, see Eq. (10). Thus, from the power
spectral density and autocorrelation function we obtain the variances or the second moment of
the wind speed increments as a function of τ. It is straight forward to see that higher moments of
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wind speed increments, 〈δu(t,τ)n〉 with n> 2, are related to higher order correlations, compare
with Eq. (9).

In figure 4 (a) we show PDFs of wind speed increments for different time scales τ, together
with Gaussian PDFs which share the same standard deviation. Typically PDFs of atmospheric
wind speed increments are non-Gaussian for a wide range of scales and have a special “heavy-
tailed” shape [4] (e.g., figure 4). As already noted in section 2, the Gaussian distribution is the
only one completely determined by the first two moments. Therefore it becomes clear that for
wind speed increments the knowledge of higher-order moments than the second is necessary for
a proper characterization of their PDFs. This is a well known and heavily discussed phenomena
for turbulence [19] and this is analogous to the case presented in subsection 2.2, where we
found that higher moments of one-point statistics 〈u′n〉 were needed in order to describe the
corresponding u′ PDFs. AgaThe observed tails in the PDFs imply an increased probability of
extreme events, as much as several orders of magnitudes, compared to a Gaussian distribution.
Therefore these tails have to be properly reflected in the statistical description.

To this end we follow [4] and parameterize the PDFs using Castaing’s model [15], which
with some minor modifications is also an explicit formula for Eq. (5)

p(δu(τ)) =
1

2πλ(τ)

Z ∞

0

dσ
σ2 exp

[
−δu(τ)2

2σ2

]
exp
[
− ln2(σ/σ0)

2λ2(τ)

]
. (12)

In this equation the PDF is considered as a continuous superposition of Gaussian distributions
with different standard deviations, which are weighted by a log-normal distribution function.
The shape of the resulting PDF is determined by the two parameters λ2(τ) and σ0. Here, σ0
fixes the median of the lognormal function, while λ2(τ) mainly dictates the shape of the distri-
bution and is accordingly called the shape parameter. λ2(τ) is zero for Gaussian distributions
and for positive values intermittent distributions are achieved. In general for an emprically
given PDF, both parameters can be estimated straightforwardly by an optimization procedure
based on equation (12). Beck [20] showed that for the case when log-normal superstatistics is
the right model, then λ2(τ) can be directly estimated from the flatness. Following such proce-
dure for Eq. (12) we obtain

λ2(τ) =
ln(Fδu(τ)/3)

4
(13)

where Fδu(τ) is the flatness of the increment PDF at a given scale τ, cf. equation (4). Con-
sidering the moments of Gaussian and log-normal distributions we obtain for σ0, also from
[20],

σ2
0 = 〈δu(τ)2〉exp

[
−2λ2(τ)

]
. (14)

In figure 4 (b) we model the PDFs by Castaing’s formula (12), using (13) and (14) for a
simplified estimation of λ2(τ) and σ0. It can be seen that the measured increment PDFs are
well reproduced for all scales τ.

Now, in figure 6 we show how the shape parameter behaves against the scale τ for our off-
shore data. It is important to note the difference between unconditioned and conditioned (by
a mean wind speed bin) values of atmospheric data. The behavior of the PDFs or respectively
of λ2(τ) against scale is similar, but the conditioned PDFs show a reduced overall intermit-
tency. The reduction of intermittency for conditioned data sets is due to the fact that part of
this intermittency stems from the non-stationarity of the wind. Indeed [5] has already noted
the importance of the non-stationarity of the mean wind speed in the increments’ PDFs and
developed an elaborated model. This model takes into account the variation of the 10 mins.
mean wind speeds by considering their Weibull distribution. Also in the cited work [5], a more
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comprehensive and elaborated analysis was already given for λ2(τ). Studies for different types
of terrain (and also laboratory data) were carried out, and in general for atmospheric data the
same strong and robust intermittency over a large range of scales was found.

Regardless of the absolute value of λ(τ) it is important to note that, for both the conditioned
and unconditioned sets, there is a clear range of scales τ where λ2(τ) ∼ lnτ. This logarith-
mic dependency has a deep meaning in turbulence and is directly related to the intermittency
correction of turbulence in the Kolmogorov 62 theory [19]. In particular with

λ2(τ)≈ λ2
0−µ · lnτ, (15)

and using Eq. (12) one gets

〈δu(τ)n〉 ∝ τ
n
3−µ n(n−3)

18 , (16)

which is the well known multifractal behaviour of turbulence [19].
In summary we have found that higher moments of the increments are neccessary for the

proper estimation of the wind speed increments δu(τ) PDFs, in particular for the correct es-
timation of extreme events. Fortunately in many cases with σδu(τ) and Fδu(τ), we achieve a
precise estimation of arbitrary-order two-point statistics of the wind speed. The according wind
speed increment PDFs can be modeled following equations (12) to (14).

4 Synthetic time series vs Atmospheric Turbulence
In the previous sections we have hierarchically presented a statistical description of atmospheric
turbulence. We have seen that in general atmospheric turbulence contains relevant information
in higher-order moments of both one- and two-point statistics. A nice way to summarize and
contrast this with what is usually standard and used in the wind energy industry, is by the use
of a standard software used for the synthetic generation of turbulent wind fields. In particular
we use the TurbSim [21] package. With this package it is possible to generate a synthetic time
series wich contains one-point statistics (at all orders) and two-point statistics up to second
order in a very similar way to the statistics of a conditioned FINO data set (we use 10-minute
time intervals which fullfill 〈u〉T = 10± 1m/s ). In particular we generate a synthetic wind
time series, in such a way that p(u′) reproduces the behavior of the conditioned FINO data
set. We achieve this by generating with TurbSim Gaussian 10-mins. intervals p(u′|σ′T ), with
the constraint that the different σ′T of each 10-mins. interval follows the distribution p(σ′T ) of
the conditioned FINO data set (compare with subsection 2.2). Note that the TurbSim method
allows to follow a Kaimal power spectral density, thus the spectrum of the synthetic time series
follows a law S( f ) ∝ f−5/3 for high frequencies by default. Thus the synthetic time series re-
produce p(u′) (complete one-point statistics) and S( f ) (two-point statistics up to second order)
of the atmospheric data set closely as seen in figure 5. On the other hand, when we analyse
higher-order two-point statistics, summarized in the behavior of λ2 against scale τ, we find that
the synthetic time series do not reproduce properly the wind PDFs (see figure 6). The synthetic
time series understimate consistently the probability of extreme events, and in contrast to the
atmospheric behavior there is no real evolution of λ2 against the time step τ.

As discussed in the previous section, the exact dependency of λ2 against τ, expressed in
Eq. (15), has an important physical meaning. The failure in reproducing such behaviour by the
synthetic time series can not be ignored and represents and important weakness of the models.
To summarize this example, we showed that the higher-order two-points statistical information,
which is characterized by λ2(τ), can not be obtained by means of even a complete knowledge
of one-point statistics and the spectral density.

10



(a) (b)

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

−6 −4 −2 0 2 4 6 81e
−

05
1e

−
04

1e
−

03
1e

−
02

1e
−

01

u'/σ

pd
f[a

.u
.]

● Wind
Gaussian
Synthetic

0.002 0.010 0.050 0.200 1.000

5e
−

05
2e

−
04

1e
−

03
5e

−
03

2e
−

02

f [Hz]

S
 [a

.u
.]

Synthetic
Fino 10 +− 1m/s
f^(−5/3)

Figure 5: Basic (a) PDF of u′(t). (b) Normalized FINO and Synthetic spectral densities. A
curve following S ∝ f−5/3 has been added for comparison.

●

●

●

●

●

●
●

●
●

●
●●

●●●●●●●
●

●●
●

●
●

● ● ● ● ● ● ● ●

●

1 2 5 10 20 50 100 200

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

τ[s]

λ2

● Fino all speeds
Fino 10+−1m/s
Synthetic

Figure 6: λ2(τ) against τ for all wind speeds of the data set (4), for wind speeds of (10±1)m/s
(•), and for a synthetic time series (∗, see text).

11



5 Outlook: n-point statistics
In the previous section we proposed a comprehensive characterization of increments PDFs by
the shape parameter λ(τ). These increment PDFs provide information on arbitrary-order two-
point correlations. However, to give one example gust clustering and its prediction can not be
achieved with the mentioned statistical information. The natural next step in our hierarchical
description would be the study of n-point statistics. The complete stochastic information is
contained in the general n-point joint PDF,

p(uτ1,uτ2, .....,uτn). (17)

Those PDFs quantify the probability that at the same time the wind speed differences
uτ1,uτ2 , .....,uτn are observed on the scales τ1, .....,τn. While the increment PDFs presented
in the previous section characterize arbitrary-order two-point correlations, these n-point joint
PDFs defined in eq. (17) would capture the arbitrary-order n-point correlations [22]. Specific
wind gust shapes should be, in principle, characterized by these type of statistics. Up to now,
the characteristic wind gust shapes mentioned in the IEC standard 61400-1:2005 [1] are treated
in a rather deterministic way. Capturing a more stochastic, realistic, n-point information would
imply a further step in our proposed characterization scheme. Up to our knowledge not many
works have been carried out in this direction and more work has to be carried out.

6 Conclusions
A statistical characterization of wind turbulence has been presented in a hierarchical and math-
ematical consistent way. In doing so, we have reviewed the well known one-point statistics up
to second order summarized in the so called turbulence intensity as well as the two-point statis-
tics up to second order reflected in the spectral density. We have shown that in general, in the
case of wind speed time series, higher order moments contain relevant statistical information
in both one and two-point statistics and can not be ignored. Therefore we propose to use the
probability density functions of wind speed fluctuations u′ and wind speed increments δu(t,τ)
in order to grasp the statistical information of higher-moments. In the case of the fluctuations u′

we have presented a superposition model which manages to describe the measured PDFs rather
well. A similar approach is used for the increments statistics, historically this approach has
been already applied in laboratory turbulence by [15] and for atmospheric turbulence by [5].
Here the method has been applied to wind speed fluctuations (u′) leading to a new superposi-
tion approach of p(u′). For the characterization of wind speed increments δu(t,τ) it is in many
cases possible to characterize these increment PDFs just by the second and fourth moment (this
has to be done in a careful way by checking the quality of this approach like in Fig. 4.). From
these the so-called shape parameter λ(τ) is crucial in the characterization. We would like to
note that the current practice in wind energy assessment and according regulations [23] do not
include the characterization of higher-order two point statistics. An easy improvement in the
assessment of turbulent conditions would be the systematic estimation of the shape parameter
as a function of τ. Of course a question of special practical importance is which scales τ are
relevant for WECs. It seems reasonable to expect that these critical scales will depend on every
type of machine. However, as shown here (even with a superposition approach for the fluctu-
ations u′) and in [24] common models and simulation packages for generating synthetic wind
fields do not reproduce these two-point statistics. As a consequence, quantitative evaluations of
possible effects on WECs due to the non-Gaussian behavior of wind speed increments have not
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been carried out until very recently [24]. Finally, future investigatons should focus on n-point
statistics for the characterization of, e.g., gust clustering and the identification of critical wind
gusts shapes. This will imply further investigations in our proposed characterization scheme.

Table 1 presents a summary of the observed statistical features of the wind, as well as the
statistical quantities to characterize them. Additionally columns for time series generated by
spectral models and a random time series (compare figure 3) are presented, showing how much
of the statistical information they contain.

Table 1: Turbulence Characterization Scheme

Type of
Statistics Order Feature R

an
do

m
D

at
a

Sp
ec

tr
al

M
od

el
s

W
in

d
Tu

rb
ul

en
ce

Characterization
1-point 1 Mean speed • • • ū = 〈u(t)〉T

2 Turbulence
Intensity

• • • I = σu′/ū

n Extreme
Fluctuations

- ∗a • p(u′)

2-point 2 Distribution of
σu over f

- • • S( f ) = F {Ruu(τ)}

n Intermittency
of p(δu(τ))

- - • λ(τ)

n-point n Arbitrary-order
n-point
correlations

- - • To be investigated

aAchievable via a superposition approach. See section 4
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[5] Böttcher F, Barth S, Peinke J: Small and large scale fluctuations in atmospheric wind
speeds. Stoch Environ Res Ris Assess 2007; 21: 299–308.

[6] Vindel J, Yague C, Redondo JM: Structure function analysis and intermittency in the
atmospheric boundary layer. Nonlinear Processes in Geophysics 2008; 15: 915–929.

[7] Research platform FINO I. URL http://www.fino-offshore.com/.

[8] Burton T, Sharpe D, Jenkinks N, Bossanyi E: Wind Energy Handbook. Wiley, 2001.

[9] Stull RB: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers,
1994.

[10] Lovejoy S, Schertzer D, Stanway JD: Direct evidence of multifractal atmospheric cas-
cades from planetary scales down to 1 km. Physical Review Letters 2001; 86: 5200–5203.

[11] Hansen KS, Larsen GC: Characterising turbulence intensity for fatigue load analysis of
wind turbines. Wind Engineering 2005; 29: 319–329.

[12] Türk M, Emeis S: The dependence of offshore turbulence intensity on wind speed. DEWI
Magazine 2007; 30: 10–13.

[13] Panofsky H, Dutton JA: Atmospheric Turbulence - Models and Methods for Engineering
Applications. Wiley, New York, 1984.

[14] Larsen G, Hansen K: The statistical distribution of turbulence driven velocity extremes
in the atmospheric boundary layer – Cartwright/Longuet-Higgins revised. In Peinke J,
Schaumann P, Barth S (editors), Wind Energy. Proceedings of the Euromech Colloquium
EUROMECH Colloquium 464b, Oldenburg (DE), 4–7 October 2005, Springer, Berlin,
111–114.

[15] Castaing B, Gagne Y, Hopfinger EJ: Velocity probability density functions of high
reynolds number turbulence. Physica D 1990; 46: 177–200, doi:http://dx.doi.org/10.
1016/0167-2789(90)90035-N.

[16] Morales A, Waechter M, Peinke J: Superstatistics of wind speed fluctuations. In Accepted
for Torque 2010, Heraklion, Greece.

[17] Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes in C The Art
of Scientific Computing. Cambridge University Press, second edition, 1996.

14



[18] Nielsen M, Larsen G, Mann J, Ott S, Hansen K, Pedersen B: Wind simulation for extreme
and fatigue loads. Technical Report Riso-R-1437(EN), Risø DTU, 2003.

[19] Frisch U: Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press, 2001.

[20] Beck C: Superstatistics in hydrodynamic turbulence. Physica D 2004; 193: 195–207.

[21] Kelley N, Jonkman B: Nwtc design codes. URL http://wind.nrel.gov/designcodes/
preprocessors/turbsim/.

[22] Nawroth AP, Peinke J: Multiscale reconstruction of time series. Phys. Lett. A 2006; 360:
234–237, doi:10.1016/j.physleta.2006.08.024.

[23] IEC: Wind Turbine Generator Systems, Part 12: Wind turbine power performance testing.
International Standard 61400-12, International Electrotechnical Commission, 1998.
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Chapter 1

Introduction

1.1 Why a stochastic description of wind energy systems?

1.1.1 Atmospheric turbulence in the context of wind energy
Wind turbines are designed to extract energy from winds [1]. Atmospheric wind could be
(arguably) seen as one of the most complex natural phenomena. This work does not attempt
to describe the wind, but rather how wind installations react to it. Yet a proper description of
any wind energy system implies having a basic understanding of its driving force. Atmospheric
wind (on planet Earth) is a product of the unevenly-distributed solar radiation, that mostly heats
regions close to the equator. Coupled with temperature gradients between altitudes (the air
is warmer close to the ground during day), large-scale convection cells that circulate the air
through latitudes appear. Pressure gradients emerge that create a net force between air masses.
These dynamics are coupled with the Coriolis effect as a result of the Earth’s surface being
a non-inertial, rotating frame of reference. This simplified approach describes the prevailing
wind patterns around the globe, that are called geostrophic winds. Additionally, local effects
involving e.g. land masses and water masses have a strong impact on local wind situations.
Wind conditions are historically measured and documented in a wind atlas that records the
statistics of wind speed and direction in a region. This information is essential in order to select
the best locations of future wind installations.

Wind turbines reach a typical height of 100� 200m. At such low altitudesa, they operate
in the turbulent boundary layer of the atmosphere [2]. The friction of the air on the Earth’s
surface generates a vertical shear, and the air velocity is zero at the ground and non-zero above.
Additional forcing is also induced by local variations of temperature, humidity, orography, etc.
This results in a largely turbulent flow close to the ground [3]. The physics of these outdoor
effects combine to the staggeringly difficult physics of turbulence [4]. A simplification is used
historically, based on observations of Van der Hoven in 1957 [5]b. He introduced the concept
of a spectral gap as a range of spectral frequencies where wind dynamics would appear to
have less energy. This gap would separate the geostrophic dynamics (that occur at scales of
hours and longer) from turbulence (for scales of minutes and less). Under this hypothesis, the

aAn upper boundary for the atmosphere is commonly defined as the Kármán line at 100km, above which the
air becomes too thin to support aeronautic flights.

bIt is interesting to note that this apparently essential concept was not overly debated [6].



6 1. Introduction

two regimes would be clearly separated and could be described separatelyc. The validity of this
approach remains an open physical question. More recently, some multifractal approaches were
developed to extend existing models of homogeneous isotropic turbulence to its atmospheric
counterpart, as e.g. proposed by Refs. [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Nevertheless,
fast wind fluctuations (of minutes and less) are the product of 3D turbulence. This justifies a
description of wind turbulence, and its impact on wind energy systems.

1.1.2 The complex nature of fluid motion
A fluid flow is a physical system composed of many moving molecules that interact with each
other to some degree. The velocity u(x, t) at position x and time t of a fluid continuum is
described by Navier-Stokes equation, which is a special case of Newton’s law of motion for
fluids [7]

∂tui +u j∂ jui = � 1
r

∂i p+n∂ j jui +Fi

∂tr = �∂ j(ru j) (1.1)

with ui(x, t) the component of u along the spatial axis xi. p(x, t) is the pressure of the fluid,
r(x, t) its density, n its kinematic viscosity, and F(x, t) is the sum of all external forces acting
on the system. One should note that ∂t = ∂

∂ t , ∂ j = ∂
∂x j

and ∂i j = ∂ 2

∂xi∂x j
. This partial differ-

ential equation has not been solved algebraically yet, owing to its very complex mathematical
naturede. A well-known property of such dynamical system is chaos, where the system is so
sensitive to initial conditions that a prediction of its future evolution is very limitedf. Compu-
tational Fluid Dynamics (CFD) methods are commonly used to solve Navier-Stokes equation
numerically. In most human-sized applications, and especially when the fluid is air, chaotic
turbulent dynamics are present. Because of the strong non-linearity of turbulent regimes, one
cannot use a superposition principle easilyg. For a turbulent flow, dynamics are observed on

cIt should be noted that geostrophic wind is typically considered as a two-dimensional flow. On the contrary,
microscale turbulence is three-dimensional [7]. 2D and 3D turbulence are fundamentally different. In order to
understand this, one should note that energy dissipation mostly occurs at microscales due to viscous friction. In
3D flows, energy is transported from large to small scales until it is dissipated at some small, viscous scale. On the
contrary, for 2D flows the energy is transported towards large coherent structures that are dissipated very slowly,
see e.g. [8] for a statistical description. This has the consequence that 3D flows fluctuate much more than 2D
flows, that could be seen as quasi-stationary.

dRef. [18] describes the three N’s properties of Navier-Stokes equation that render the problem of turbulence
as ”impossibly difficult”. First, the nonlinear property resulting from the nonlinear term u j∂ jui can give raise to
chaotic behavior. Second, this equation is nonintegrable. Third, the pressure term is nonlocal, that is, it depends in
each spatial point on the velocity in the entire domain.

eAs of today, few non-linear systems have known algebraic solutions. Numerical solvers have been developed
in the past decades to make use of the increasing computing power available, but remain limited for many real-
life applications. Besides trying to solve nonlinear equations numerically [19], theoretical considerations for the
existence, stability or bifurcation of potential solutions are of interest to classify nonlinear dynamical systems [20].

fIt should be noted that a chaotic system can be deterministic. In this case, the future state of the system is
fully determined by its present state. However, a tiny variation in the present state can lead to a large deviation of
the future states. This is the case of e.g. weather models, that must be regularly readjusted to the actual weather
conditions in order to properly predict the weather in the near future.

gA Reynolds decomposition can be done to split the wind speed ui(r, t) into its mean, time-averaged part ūi(r)
plus some fluctuations ui

0(r, t). A Reynolds-averaged Navier-Stokes (RANS) equation then arises for the mean



1.1 Why a stochastic description of wind energy systems? 7

a large range of spatio-temporal scales. For a proper description, even of the macroscopic be-
havior, the system must be described at all smaller scales (ideally until Taylor microscale l ,
where viscous forces dampen the fluctuations). This makes the problem extremely demanding
numerically, because of the large separation between the large size of the macroscopic domain
and the microscales that should be resolved. This is particularly true for large 3D domains,
as the spatial size of the model box must be limited to maintain reasonable calculation times.
Defined as the ratio of inertial to viscous forces, the Reynolds number Re is a good measure
of the computational cost. At low Reynolds numbers, viscous forces dominate at all scales and
fluctuations are rapidly damped, giving a smooth, laminar flow that can be modeled easily. At
high Reynolds numbers, inertial forces dominate the flow that can develop to become turbulent.

An alternative approach consists in doing a statistical description of the system, rather than
trying to solve all its degrees of freedom. In such methods, the microscopic information is
described through statistical estimates, and the focus lies on the macroscopic properties of the
system as a whole. One can define a velocity increment u(x + r, t)� u(x, t) as the velocity
difference over a spatial scale (i.e. distance) r = ||r|| [7]. The work of Kolmogorov in 1941
[21, 22, 23] encouraged a statistical description of such velocity incrementsh. The approach
builds upon the work of Richardson in 1922 [24], who introduced the concept of cascade. In
this paradigm, energy (typically motion) contained at some scale r cascades down ad infinitum
towards smaller scales. This justifies a study of the properties of turbulent flows at various scales
r, giving raise to a new school of turbulence. Kolmogorov brought refinements in 1962 [25] that
included the effect of viscosity at small molecular scalesi. This summarizes the concept of a tur-
bulent cascade (for a 3D flow), where the kinetic energy present in some large spatial structure
distributes itself within smaller and smaller structures (vortices), until it reaches a small viscous
scale where molecular friction converts it into heat. These scale dynamics motivated the creation
of mathematical concepts such as scale invariant, fractal, or multiplicative processes, whose sta-
tistical properties are studied in scales (rather than in time or space) [26, 27, 28, 29, 30]. The
scaling properties of turbulence remain actively studied [31, 32, 33, 34, 35, 36, 37, 38], and
constitute one of the many active fields of turbulence research.

1.1.3 Stochastic approach to complexity: a historical example

Brownian motion is a famous historical case that exemplifies the stochastic description of a
complex dynamical system. It was observed in 1827 by the botanist Robert Brown as the motion
of a macroscopic particle immersed in (or suspended on) a viscous fluid, that is composed of
many microscopic elements. A complete description of the problem would imply to describe
the motion of each microscopic element in the fluid, and their interaction with the macroscopic
particle. Besides being practically inaccessible, the very many microscopic information of the
system is usually not needed. This information would depend strongly on the initial conditions,
and would not be a reproducible experiment.

flow ūi(r), but in this case an additional Reynolds stress tensor appears. The task of properly describing this stress
is an active research topic, for which turbulence models are specifically developed.

hIt should be noted that Kolmogorov’s work in 1941 addresses flows in the limit of very large Reynolds num-
bers, where viscous effects are inexistent.

iOne should note that the development of this theory was brought about by the contributions of many scientists,
and not only by Kolmogorov.
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Instead, a probabilistic description was introduced in respectively 1905 and 1906 by Einstein
[39] and Schmoluchowski for the motion of the macroscopic particle of mass m. In 1906,
Langevin proposed a simple approach to describe its motion [40]. Given that the particle moves
with a velocity v, one can introduce a deterministic drag force Fd = �kv that accounts for the
viscosity of the fluid. Additionally, if the mass m is small enough, the particle will be partly
driven by the thermal fluctuations within the fluid. At this point, a fluctuating, stochastic force
Fs(t) is introduced to describe statistically all the random collisions of the particle with the
microscopic elementsj. The particle motion can be modeled following

mv̇ = Fd(t)+Fs(t) = �kv+Fs(t) . (1.2)

Rewriting the stochastic force Fs(t) = m ·G(t), one can define the so-called Langevin force G(t).
Equation 1.2 becomes

v̇ = �av+G(t) (1.3)

with a = k/m a relaxation coefficient. Some information on G is necessary at this point.
hG(t)i = 0 because the average behavior of the particle is described as hv̇i = h�avi [41]. An-
other way to address this is to say that collisions coming from one side are equally probable
as those coming from the other side, giving for the probability density f (G) the symmetry
f (G) = f (�G), confirming hG(t)i = 0. Additionally, collisions are considered as independent
events, that occur during a very short time. This collision time is much shorter than the typi-
cal reaction time 1/a of the mass m, so that collisions at an instant are independent of those
at an instant later, as proposed by Einstein in [39]. This implies that the stochastic force is
uncorrelated, i.e., hG(t)G(t 0)i = qd (t � t 0), where q is a measure of thermal diffusivity k. To
summarize, (⌦

G(t)
↵

= 0⌦
G(t)G(t 0)

↵
= qd (t � t 0) .

(1.4)

Brownian motion serves as a historical introduction to the more general class of Langevin pro-
cesses, which are presented in greater detail in section 1.2.4. Similar approaches were devel-
oped to adapt the flexible structure of stochastic processes to real-life applications, such as e.g.
homogeneous isotropic turbulence [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54], atmospheric
wind [55, 56, 57, 58], the description of rough surfaces [59, 60, 61, 62, 63], cardiology [64],
geoscience [65], electrical systems [66], cosmic background radiation [67] or complex networks
[68]. The example of turbulent aerodynamics is introduced in section 1.1.4.

1.1.4 Stochastic approach to complexity: the example of turbulent aero-
dynamics

The aerodynamic force acting on a wind turbine airfoil represents a good example of an object
reacting to a turbulent forcing. This problem can be addressed experimentally by performing

jWhile the collisions of fluid elements with the particle are fully deterministic in a mechanical sense, they
appear as random when studying only the macroscopic properties of the system. This simplification of the many
degrees of freedom into few macroscopic variables is the essence of stochastic theory. It describes the overwhelm-
ingly numerous interactions through a probabilistic description of the macroscopic variables of the system.

kRef. [41] shows that q = 2aKBT/m for a fluid at temperature T . KB is Boltzmann constant, see Ref. [42] for
an introduction to thermodynamics.
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a wind tunnel measurement, see e.g. Ref. [69]. Also, CFD methods are commonly used in
this case, see e.g. Ref. [70], but they are very demanding for several reasons. The flow is
air, and has typically a low viscosity n ' 1.5 ·10�5m2/s. A complete model of a flow around a
commercial wind turbine implies to model a large box of typically L⇠ 100m. The wind velocity
is in the order u ⇠ 10m/s, yielding a Reynolds numbers Re = uL/n ⇠ 108.l Such large Reynolds
numbers correspond to largely turbulent flows [7]. The numerical effort to solve Navier-Stokes
equation numerically is proportional to Re3 for a three-dimensional flow.

Yet in many applications, it is unnecessary to have detailed information about the flow
structure. Sometimes a statistical description of the motion of an object within that flow is
of interest. In such a case, one could address the problem following Langevin’s approach to
Brownian motion. Instead of trying to resolve the many microscopic degrees of freedom of the
flow (⇠ Re3), one can describe the aerodynamic forces acting on the object. We consider here
the example of an airfoil placed within a turbulent airflow in a wind tunnel at Re = 7 · 105, as
documented in Ref. [69]. A statistical description of the airfoil lift and drag forces is of interest
to describe the behavior of the airfoil, see equation (1.62) in section 1.C. The lift coefficient
CL(t) and its histogram are presented in figure 1.1. Similarly to equation (1.3) for Brownian
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Figure 1.1: (a) Excerpt of lift coefficient CL(t) measured in wind tunnel for an angle of
attack a = 8o. The signal was dowmsampled to 20Hz to filter the fastest dynamics; (b)
histogram of CL. The average value C̄L (red line) and standard deviation sCL (red dashed
lines) are represented.

motion, one can propose a simple stochastic model for CL(t) following

ĊL(t) = �a
�
CL(t)�C̄L

�
+G(t) (1.5)

with a ' �14.65/s (can be estimated using equation (1.19)). G is close to the theoretical case
in equation (1.4) with q ' 0.02/s. While this stochastic model does not reproduce all statistical
features observed on measured data, one-point statistics (and to some extent some two-point
statistics) match that of the measurement. This illustrates how a simple stochastic approach
can be used to model the macroscopic behavior of an a priori complex aerodynamic system

lSimilar Reynolds values are observed when modeling the flow around a rotor blade section, as L ⇠ 10m and
u ⇠ 10�100m/s for the effective wind velocity relative to the rotor blades, see equation (1.63).
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without going into the details of the many microscopic interactions. More refined stochastic
models of aerodynamic forces are presented in e.g. [71, 72]. The central focus of this work is
the description of some complex, wind-driven systems in terms of simple stochastic models.

1.2 Introduction to stochastic theory

Section 1.1 introduced the notion of a complex system, where many microscopic interactions
contribute to some random-like dynamics of macroscopic estimates. Let us consider a one-
dimensionala dynamical system described by the variable x(t). The process x(t) is defined as
stochastic because its time evolution is described in a probabilistic senseb. Although the sample
path x(t) can be continuous (and should be for a purely Markov process [40]), practical applica-
tions mostly involve discrete signals. From the continuous process x(t), only N samples x1, x2,
..., xN are known at discrete times t1 < t2 < ... < tN . x(ti) = xi and x(ti+1) = xi+1 are known, yet
x(t) for ti < t < ti+1 is unknown. The dynamical system is then described by the discrete samples
xi, so that a complete (statistical) description is given through the joint probability distribution

f (xN , tN ;xN�1, tN�1; ...;x1, t1) , (1.6)

where f (A;B;C) is the probability of A and B and C happening. The value of sample xi at time
ti is stochastic, but its probability to have a given value is fixed. Similarly, one can define the
conditional probability p following

f (xN , tN ;xN�1, tN�1; ...;x1, t1)
= p(xN , tN |xN�1, tN�1; ...;x1, t1) · f (xN�1, tN�1; ...;x1, t1) , (1.7)

where p(A|B;C) is the probability of A happening conditioned on (given) B and C happen.
The simplest stochastic process that can be thought of is a purely random process with in-

dependent samples xi [41]. Independence implies that p(xi, ti|Y ) = f (xi, ti) for any arbitrary
condition Y , that is, no matter what the condition Y is, xi will not depend on it. As a conse-
quence, the joint probability of an independent process is

f (xN , tN ;xN�1, tN�1; ...;x1, t1) =
N

’
i=1

f (xi, ti) . (1.8)

1.2.1 Markov property

Besides the trivial case of an independent process, the next simplest process is a Markov process
[41]. For a Markov process, only information about the present state is necessary to describe

aOnly an account of one-dimensional stochastic systems is given here, as it suffices for the problem at hand.
However, a multi-dimensional description of stochastic systems is possible, as presented in Ref. [41].

bUnder some weak conditions (that are not presented here for the sake of brevity), if one would let several
realizations xa(t), xb(t), ..., xz(t) of that process x evolve in time, one would see that at a given future time t 0, the
exact values of the process have a random character, i.e. , xa(t 0) 6= xb(t 0) 6= ... 6= xz(t 0). Yet the probability to obtain
a given value remain fixed, giving for the probability distribution f (xa, t 0) = f (xb, t 0) = ... = f (xz, t 0).
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the next future state, regardless of the past state. This means that the state of system xi at time
ti depends on xi�1 at time ti�1, and the conditional probability can be simplified following

p(xi, ti|xi�1, ti�1; ...;x1, t1) = p(xi, ti|xi�1, ti�1) . (1.9)

Equation (1.7) can be rewritten for a Markov process as

f (xN , tN ;xN�1, tN�1; ...;x1, t1) = f (x1, t1)
N

’
i=2

p(xi, ti|xi�1, ti�1) . (1.10)

The Markov property is often described as memoryless. One should note that a (one-
dimensional) Markov process x(t) cannot describe n-order differential systems with n > 1c.
In some cases, the Markov property can emerge by introducing new variables (which remain to
be found) to a non-Markov dynamical system, i.e., by making it higher-dimensional.

The total probability theorem gives [73]

f (xi, ti) =
Z

dxi�1 f (xi, ti;xi�1, ti�1) . (1.11)

Similarly for the conditional probability

p(xi, ti|xi�2, ti�2) =
Z

dxi�1 p(xi, ti;xi�1, ti�1|xi�2, ti�2)

=
Z

dxi�1 p(xi, ti|xi�1, ti�1;xi�2, ti�2)p(xi�1, ti�1|xi�2, ti�2) . (1.12)

Using the Markov assumption in equation (1.9), equation (1.12) becomes the Chapman-
Kolmogorov equation

p(xi, ti|xi�2, ti�2) =
Z

dxi�1 p(xi, ti|xi�1, ti�1)p(xi�1, ti�1|xi�2, ti�2) . (1.13)

For non-Markov processes, the future state does not depend only on the present state, but
also on a number of past states, see also [41, 74, 75]. One can define the Einstein-Markov
length tmar (further referred to as Markov length) as the length of the memory kernel, that is the
number of past states that influence the present state. Einstein presents this coarse-graining as
a necessary time interval such that the stochastic forces become independent events [39]. This
implies the relation

p(xi, ti|xi�1, ti�1; ...;x1, t1) = p(xi, ti|xi�1, ti�1; ...;x j, t j) (1.14)

with t j = ti � tmar. Experimental signals usually exhibit a non-vanishing, yet finite Markov
length, see e.g. [76, 77] for turbulence. Various Markov tests exist to search for a Markov
length in data sets. Some tests are presented and applied in section 5.1 for various wind energy
signals.

cLet us consider the example of a deterministic (a special case of stochastic) process x(t) governed by an
arbitrary second-order differential equation ẍ = F(x, ẋ). x(t) is not a Markov process because the future state
x(t + dt) does not depend only on the present state x(t), but also on ẋ(t). Knowing x(t) does not suffice to know
x(t + dt). However, the two-dimensional process {x(t), ẋ(t)} is a (two-dimensional) Markov process, so that
knowing {x(t), ẋ(t)} suffices to know {x(t +dt), ẋ(t +dt)}.
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1.2.2 Kramers-Moyal expansion
The stochastic process x(t) evolves probabilistically in time. Because of its partly random
nature, it is inappropriate to describe its exact time evolution, which is not reproducible. Instead,
a description of the probability f (x, t) to find a value x at time t is relevant. For a Markov
process, f (x, t) follows a master equation

∂ f (x, t)
∂ t

=
Z

dx0
h
w(x0 ! x) f (x0, t)�w(x ! x0) f (x, t)

i
, (1.15)

where w(a ! b) is the transition rate from state a to state b. More concretely, the law of total
probability implies

f (x, t + t) =
Z

dx0 f (x, t + t;x0, t)

=
Z

dx0 p(x, t + t|x0, t) f (x0, t) (1.16)

with t � 0.
Conditional moments are defined following [41]

M(n)(x0, t,t) =
Z

dx (x� x0)n p(x, t + t|x0, t)

=

⌧⇥
x(t + t)� x(t)

⇤n
����x(t) = x0

�
(1.17)

where hA|Bi is defined as the mean value of A given that condition B is fulfilled. One can derive
the Kramers-Moyal expansion (see complete derivation following Ref. [41] in appendix 1.A)

∂ f (x, t)
∂ t

=
•

Â
n=1

 
� ∂

∂x

!n

D(n)(x, t) f (x, t) (1.18)

with the Kramers-Moyal coefficients defined as

D(n)(x, t) =
1
n!

lim
t!0

1
t

M(n)(x, t,t)

=
1
n!

lim
t!0

1
t

⌧⇥
x(t + t)� x(t)

⇤n
����x(t) = x

�

=
1
n!

∂M(n)(x, t,t)

∂t

�����
t=0

, (1.19)

where the third relation owes to M(n)(x, t,t = 0) = 0.
The Kramers-Moyal expansion can be formally written

∂ f (x, t)
∂ t

= LKM(x, t) f (x, t) (1.20)

with the Kramers-Moyal operator defined as

LKM(x, t) =
•

Â
n=1

 
� ∂

∂x

!n

D(n)(x, t) . (1.21)
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Ref. [41] assumesd that the Kramers-Moyal expansion describes a Markov process, as the
evolution ∂ f (x, t)/∂ t of the process at time t depends only on its present state f (x, t), and not
on some past states f (x, t 0) for t 0 < t.

One should note that some difficulties arise when estimating these coefficients from experi-
mental data. Some optimized algorithms were proposed in Refs. [78, 79, 80, 81, 82, 83] to refine
the estimation of Kramers-Moyal coefficients from experimental data. Refs. [84, 85, 86, 87, 88]
address the finite-time effects that appear as one cannot reach the limit t ! 0 with experimental
data, that has a finite sampling rate. Refs. [89, 90, 91, 92, 93, 84, 94, 95, 96] improve the es-
timation in the presence of measurement noise within experimental data. For processes with a
finite Markov length tmar (either intrinsic or artificially added through experimental limitation),
the Kramers-Moyal expansion can be generalized following

∂ f (x, t)
∂ t

=

tZ

t�tmar

dt 0 LKM(x, t 0) f (x, t 0) . (1.22)

1.2.3 Fokker-Planck equation
The Fokker-Planck equation is a special case of the Kramers-Moyal expansion for which
D(n)(x) = 0 for n � 3. This relates to the Pawula theorem, which statese that the Kramers-
Moyal expansion (1.18) either stops after n = 1, after n = 2, or require an infinity of terms,
see [41]. This theorem shows from the generalized Schwartz inequality that [M(2n+m)]2 
M(2n) · M(2n+2m) for any set of integers (n,m � 0). This implies that D(n>2) = 0 if there ex-
ists one integer r > 0 such that D(2r) = 0.

If a Markov process x(t) satisfies the Pawula theorem, the Kramers-Moyal expansion stops
after the second term and the probability distribution f (x, t) is described by the Fokker-Planck
equation

∂ f (x, t)
∂ t

=

"
� ∂

∂x
D(1)(x, t)+

∂ 2

∂x2 D(2)(x, t)

#
f (x, t)

= LFP(x, t) f (x, t) . (1.23)

The Fokker-Planck operator reads

LFP(x, t) = � ∂
∂x

D(1)(x, t)+
∂ 2

∂x2 D(2)(x, t). (1.24)

The stationary solution fst(x) of the Fokker-Planck equation (for time-independent coeffi-
cients D(1,2)(x)) can be derived from

∂ fst(x)
∂ t

=

"
� ∂

∂x
D(1)(x)+

∂ 2

∂x2 D(2)(x)

#
fst(x) = 0 (1.25)

dSome criticism of the Kramers-Moyal expansion is formulated in Ref. [40], where it is argued that the
Kramers-Moyal expansion cannot describe the evolution of some Markov jump processes, but only approximate
it.

eThe Pawula theorem only applies if the conditional probability p(x, t + t|x0, t) is a non-negative function.
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that is solved by

fst(x) =
N

D(2)(x)
exp

 xZ D(1)(x0)
D(2)(x0)

dx0
!

(1.26)

with N a normalization constant such that
•R

�•
fst(x)dx = 1.

Similarly, the Fokker-Planck equation exists for a conditional probability p(x, t|x0, t 0) (that
is the distribution f (x, t) for the initial condition f (x, t 0) = d (x� x0)) and gives

∂
∂ t

p(x, t|x0, t 0) = LFP(x, t) p(x, t|x0, t 0) , (1.27)

which has a unique initial condition p(x, t|x0, t) = d (x� x0).
If the process is stationary in timef, LFP(x, t) = LFP(x) and D(n)(x, t) = D(n)(x), so equation

(1.27) has a formal solution

p(x, t + t|x0, t) = et LFP(x)d (x� x0) (1.28)

owing to the initial condition p(x, t|x0, t) = d (x� x0).
It is shown in Ref. [41] that equation (1.28) holds for a time-dependent LFP(x, t) if the time

increment t is sufficiently small so that D(n) can be seen as unchanged coefficients. Based on
the definition of the delta function d (x� x0) (see equation (1.50) in appendix 1.A), equation
(1.28) gives the short-time propagator of the Fokker-Planck equation for small t (see derivation
in equation (1.56) in appendix 1.A)

p(x, t + t|x0, t) =
1p

4ptD(2)(x0, t)
exp

 
� [x� x0 � tD(1)(x0, t)]2

4tD(2)(x0, t)

!
. (1.29)

The Fokker-Planck equation is a linear partial differential equation that can be solved nu-
merically. Besides the direct method that consists in numerically approximating the differential
operators, one can use a path integral method [41]. Similarly to what is done in quantum me-
chanics to solve the Schrödinger equation, this method is easy to implement. Given an initial
condition f (x, t0), equation (1.16) gives f (x, t0 + t) using p

�
x, t0 + t

��x, t0
�
. This can be iter-

ated n�times to calculate f (x, tn) from f (x, tn�1) for time tn = t0 + nt . One can formulate this
following

f (x, tn) =
Z

dxn�1

Z
dxn�2...

Z
dx0

p
�
x, tn
��xn�1, tn�1

�
p
�
xn�1, tn�1

��xn�2, tn�2
�
...p
�
x1, t1

��x0, t0
�

f (x0, t0) . (1.30)

For a small enough time increment t , the conditional probability is given by equation (1.29). A
similar approach can be used for p(x, t0 + nt|x0, t0) using the Chapman-Kolmogorov equation
(1.13) and the initial condition p(x, t0|x0, t0) = d (x� x0).

fThe process x(t) is defined here as (time-) stationary if f (xN , tN ; ...;x1, t1) = f (xN , tN + t; ...;x1, t1 + t) for an
arbitrary time shift t .
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1.2.4 Langevin equation

Based on the historical example of Brownian motion, a Langevin equation for a Langevin pro-
cess x(t) reads

dx
dt

= D(1)(x, t)+

q
D(2)(x, t) ·G(t) . (1.31)

The Kramers-Moyal coefficients are the coefficients defined in equation (1.19) (see derivation
in appendix 1.B).

The time evolution of a sample path x(t) is described by so-called drift coefficient D(1)(x, t)
and diffusion coefficient D(2)(x, t). In parallel, the probability f (x, t) is described by the Fokker-
Planck equation (1.23). For a given set of drift and diffusion coefficients, the Fokker-Planck
equation gives a unique solution f (x, t). On the contrary, the Langevin equation can generate
different sample paths xi(t) that have different values (due to the randomness of the Langevin
noise Gi(t)). Yet the probability that xi(t j) = X is the unique solution of the Fokker-Planck
equation f (X , t j).

The Langevin equation can be discretized following

x(t +dt) = x(t)+

t+dtZ

t

dx
dt

(t 0)dt 0

= x(t)+

t+dtZ

t

D(1)(x, t 0)dt 0 +
t+dtZ

t

q
D(2)(x, t 0)G(t 0)dt 0 . (1.32)

The integration of G(t) is not defined mathematically, yet a physical interpretation of the
stochastic integral is needed. The definition of stochastic integration in the sense of Itô givesg

t+dtZ

t

g(x, t 0)G(t 0)dt 0 = g(x, t)
t+dtZ

t

G(t 0)dt 0 . (1.33)

For dt ⌧ 1, D(n) can be taken as unchanged coefficients and equation (1.32) becomes

x(t +dt) = x(t)+D(1)(x, t)dt +

q
D(2)(x, t)

t+dtZ

t

G(t 0)dt 0 . (1.34)

The Langevin noise G(t) fluctuates much faster than the stochastic process x(t) and has a cor-
relation length much shorter than dt (its theoretical correlation length is zero). The Langevin

gAnother common approach to carry out a stochastic integral is the Stratanovich definition that reads
t+dtR

t
g(x, t 0)G(t 0)dt 0 = g

⇣
x(t+dt)�x(t)

2 , t +dt/2
⌘ t+dtR

t
G(t 0)dt 0. The Stratanovich approach is more intuitive because it

considers the value of the function g at the middle point of the integration range. Only the Itô interpretation is used
here, as it is easier to implement numerically. Also, the definition of the Kramers-Moyal coefficients is different in
the Stratanovich interpretation. Both interpretations are equivalent, as they yield identical probability distributions
[97]. Ref. [98] summarizes various interpretations of the Langevin equation in the presence of non-constant D(2).
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noise is related to a Wiener process W (t) in that Ẇ = G(t), bringing the Stieltjes integral

t+dtZ

t

G(t 0)dt 0 =
t+dtZ

t

dW (t 0) =
p

dt ·h(t) (1.35)

with h(t) a set of independent, Gaussian-distributed samples following hh(t)i = 0 and
hh(t)2i = 2. The discrete form of the Langevin equation for a small time increment dt be-
comes

x(t +dt) = x(t)+D(1)(x, t)dt +

q
D(2)(x, t)dt ·h(t) . (1.36)

A sample path x(t0 +n.dt) can be generated by iterating n�times the integration from an initial
condition x(t0).

1.3 Introduction to wind energy systemsh

1.3.1 Physical limitations to the extraction of wind power
The concept of power performance is introduced here for wind turbines. While only horizontal-
axis three-bladed electrical wind turbines are considered here, most findings apply to other wind
energy designs. In this section, a simplified understanding of fluid mechanics is applied to wind
turbines. The complexity of turbulence is first set aside, so as to understand the fundamental
behavior of a wind turbine in a uniform flow at steady-state. The impact of a realistic turbulent
flow on a wind turbine is studied in later sections.

As a wind turbine converts the power from the wind Pwind into available electrical power
denoted with P, one can assume the following relation

P(u) = cP(u) ·Pwind(u) , (1.37)

where u is the wind speed through the wind turbine and cP(u) the so-called power coefficient
which represents the efficiency of the machine. As the input Pwind(u) cannot be controlled,
improving power performance means increasing the power coefficient cP(u). The power con-
tained in a laminar incompressible flow of mass m = rV = rAx and density r moving along
the x�axis with constant (upstream) speed u through a vertical plane of area A is

Pwind(u) =
d
dt

Ekin =
d
dt

✓
1
2

mu2
◆

=
1
2

rAu3 . (1.38)

Let us consider a mass of air moving towards a wind turbine, which can be represented by an
actuator disca of radius R. When crossing the wind turbine, the wind is affected as parts of its

hThis section is a summary of a book chapter that has been accepted, and is being published as PATRICK
MILAN, MATTHIAS WÄCHTER and JOACHIM PEINKE: Wind Turbine Power Performance and Application to
Monitoring, in Handbook of Wind Power Systems (HWPS): Optimization, Modeling, Simulation and Economic
Aspects, editors S. Rebennack, P. M. Pardalos, V. Pappu, M. V. Pereira and N. A. Illiadis, publisher Springer, 2013.

aAn actuator disc is an infinitely thin disc through which the air can flow without resistance, as proposed by
Froude and Rankine’s momentum theory.
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energy is extracted. Introducing the downstream wind velocity udown, this extraction of kinetic
energy results in a drop in the wind speed from upstream to downstream, i.e., udown < u.

The wind power cannot be totally converted into mechanical power because the wind tur-
bine continuously takes energy out of the wind flow, which reduces its velocity. However, the
flow needs to escape the wind turbine downstream with a speed udown > 0. If all the power
content of the wind would be extracted, the wind speed downstream would then become zero.
As a consequence, the air would accumulate downstream and block newer air from flowing
through the wind turbine through increasing pressure gradients, so that no more power could be
extracted. This means that the wind flow must keep some energy to escape, which naturally sets
a limit for the efficiency of any wind power system, and cP(u) < 1. An optimal ratio of wind
speeds µ = udown/u can be found that allows for the highest energy extraction. Conservation of
mass implies that the theoretical power coefficient is [1]

cP(µ) =
1
2
(1+ µ �µ2 �µ3) (1.39)

that has a maximum for µmax = 1/3, corresponding to a performance cP(µmax) = 16/27 ⇡
0.593. This limit is called the Betz limit, as it was found by Albert Betz in 1927 [99]. In other
words, a wind turbine can extract at most a ratio 16/27 of the power contained in the wind. This
can be obtained when the wind speed downstream is one-third of the wind speed upstream, and
two-thirds at the plane of the rotor. Betz’ momentum theory only considers the mechanical
transfer of energy from the wind to the rotor blades. The next step of the conversion from
mechanical to electrical energy is not taken into account, as well as all energy losses. The more
complex design of wind turbines causes lower values of cP, typically cP < 0.5. Also, criticism
of Betz theory is given in [100, 101], leading to a less well defined upper limit of cP. Additional
considerations, e.g. the finite number of blades and losses due to the drag and stall effects on
the blades are discussed in [1, 102].

A widely used representation of power performance is given by the relation of cP to the
tip speed ratio l = wR

u , where w is the rotational frequency of the rotor. l is the ratio of the
rotational speed at the tip of the blades to the upstream wind speed u. The dimensionless cP(l )
curve is introduced in figure 1.2 when considering three major sources of power loss:

• Following Newton’s third law, the rotational motion of the rotor transfers angular mo-
mentum to the air flow downstream. This so-called bouncing loss is more important for
slow rotating wind turbines (l small) following equation (1.66) in appendix 1.C. For a
small rotational velocity wr, a larger rotational force Fr is required to obtain the same
power, that transfers more angular momentum.

• Another important source of energy loss is the quality of the airfoil profile, whose imper-
fections increase the drag force. Profile losses mainly affect fast rotating machines, such
that the lift-to-drag ratio CL/CD must be optimized for fast rotating turbines, see equa-
tion (1.69) in appendix 1.C. Furthermore the losses increase with the radius, such that the
manufacturing quality of the blade tips is of primary importance for power performance.

• A good quality of the blade tips means especially that they should be as narrow as possi-
ble because this corresponds to an ideal airfoil with length infinity (length/depth ! •).
With real blades there is always a flow around the end of the blade (forming an eddy



18 1. Introduction

that is advected by the flow) from the high pressure area to the low pressure area. This
partly levels the pressure difference and consequently reduces the lift force. Tip losses
are reduced by fast rotation or an increased number of blades.
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Figure 1.2: Typical cP(l ) curve (black dotted line). Betz limit (red line), the bouncing,
profile and tip losses are illustrated. These results were obtained with a lift to drag ratio
CL/CD = 60 and z = 3 blades. Maximum performance cP ' 0.475 is obtained at l ' 7,
as typically used for three-bladed, power-generating wind turbines.

1.3.2 Basic wind turbine operation

Modern designs typically involve a regulation of the power output through changes both in the
rotational frequency of the generator and in the pitch angle of each bladeb. In order to reach
optimal performance, the rotational frequency of the generator wg must be physically linked to
the wind speed u. Additionally, the pitch angle b of the blades can be controlled to radically
change the aerodynamic forces acting on the blades, see figure 1.7. The power production
can be reduced by active pitch-to-feather (reduce angle of attack) of pitch-to-stallc strategies.
Additional considerations such as mechanical loads or power stability are partly taken into
account as well, see Ref. [102].

Modern variable-speed pitch-controlled wind turbines have four distinct modes of operation
that are adapted to the wind speed:

• for u  ucut�in,d the power contained in the wind is not sufficient to maintain the wind
turbine into motion, and no power is produced;

bOther wind turbine designs involve fixed rotational frequency (called fixed-speed wind turbines) or fixed pitch
angle (called fixed-pitch wind turbines). A more detailed description of control strategies is given in Ref. [102].

cStall effects are obtained when the angle of attack of an airfoil exceeds a critical value, resulting in a sudden
reduction in the lift force generated. A detailed study on airfoil lift effects can be found in [71].

ducut�in represents the minimum wind speed such that the wind turbine can extract power, typically in the order
of 3�4m/s.
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• in partial load ucut�in  u  ur,e the wind turbine works at its maximum power perfor-
mance, i.e. cP is maximized. This is achieved in most of this wind speed range by
increasing the rotational frequency w as u increases so that the angle of attack a stays
constant (see figure 1.7);

• in full load ur  u  ucut�out , f the wind turbine power output is limited to the rated power
Pr. In this mode of operation, the pitch angle b is adjusted in real-time to maintain P⇡ Pr;

• for u > ucut�out the pitch angle b is maximized to the feathered position so as to eliminate
the lift forces on the blades. A braking device can be used in addition to block the rotation
for safety reasons. As a consequence, the power production is stopped.

Along with the cP(l ) curve, a standard representation of a wind turbine power performance
is given by a so-called power curve. The power curve gives the relation between the simulta-
neous wind speed u and electrical power output P (or mechanical in case of wind mills). An
illustration of the theoretical curves cP(u) and P(u) is given in Fig. 1.3 for the ideal case where
no power losses are considered.

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u [m/s]

P(
u)

 / 
P r

5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

u [m/s]

c P
(u

)

Figure 1.3: (upper) theoretical power curve P(u). The rated power Pr is indicated (dashed
line); (lower) theoretical power coefficient cP(u) for a variable-speed, variable-pitch wind
turbine with ucut�in = 4m/s, ur = 13m/s and ucut�out = 25m/s. Betz limit is indicated
(dashed line).

ethe rated wind speed ur represents the minimal wind speed at which the wind turbine extracts the rated,
maximum allowed power Pr, typically in the order of 11�14m/s.

fucut�out represents the maximum wind speed at which the wind turbine can safely extract power, typically in
the order of 25�35m/s.
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Such theoretical strategy is only valid in the unrealistic case of a laminar inflow. Due to
its size, in the order of 100m, a commercial wind turbine operates within flows at a Reynolds
number in the order of Re ⇠ 108. Such high Reynolds-number flows are largely turbulent for
relevant spatio-temporal scales. Also, the proximity of the rotor to the ground (the boundary
layer of atmospheric flows) induces boundary-layer turbulence. Atmospheric wind measure-
ments have turbulence intensitiesg of up to 30%, that correspond to strongly fluctuating inflows.
Also, homogeneity is not validh as spatial fluctuations are observed. Additionally, wind tur-
bines render the turbulent inflow more complex, especially in the wake, see [103]. All these
effects add up to a highly complex system, whose overall description is typically simplified to
a statistical problem. The impact of turbulence on power performance is a widely studied topic
in wind energy, see e.g. [104, 105, 106, 107, 108].

1.3.3 IEC power curve standard

The standard procedure to determine the power performance for wind turbines was defined by
the International Electrotechnical Commission in 2005 in the norm IEC 61400-12-1 [109]. In a
recent revision, norm IEC 61400-12-2 [110] includes nacelle anemometry as a valid wind mea-
surement method for power curve estimation. The IEC procedure provides a unique methodol-
ogy to ensure accuracy, consistency and reproducibility in the measurement and in the analysis
of power performance. It consists first: of the minimum requirements for a power performance
test and second: of a procedure to process the measured data without extensive knowledge.
Only a brief overview is presented here.

First, measurements of wind speed u and power output P must be collected at a sampling
frequency of 1Hz on a wind turbine operating under normal conditions. P is the net electrical
power output fed to the grid, after all possible losses. u is measured at a fixed locationi at hub
height (on a met mast following Ref. [109] or on the turbine nacelle following Ref. [110]).
Additionally, air temperature and pressure must be collected so as to estimate the air density.
This allows to normalize either the wind speed or the power output (for resp. pitch-regulated
or stall-regulated wind turbines) to a standard value of air density in order to obtain uniform
results. Additionally the wind direction must be measured so as to reject directions where
obstacles alter the wind inflow, including neighboring wind turbines.

Second, the measured data is processed. The data processing is mainly performed in two
steps. After adequate normalization of the data, the first step consists in averaging the measured
data over time intervals of 10 minutes. The IEC power curve is derived in a second step from
the ten-minute averages using the so-called method of bins, i.e. the data is separated into wind
speed intervals of width 0.5 m/s. In each interval i, bin averages of wind speed ui and power

gThe turbulence intensity I = su/hui is defined as the ratio of standard deviation su to mean value hui for the
wind speed u for each ten-minute interval. It is a simple measure of the level of turbulence with respect to the
mean flow.

hIn the case of atmospheric flows close to the ground, homogeneity and isotropy are not even valid in a statistical
sense, due to e.g. boundary layer effects.

iA measurement of wind speed at one point does not allow to estimate the spatial fluctuations acting on the
rotor. Some research projects have used more advanced wind measurements of 1D profiles or 2D planes in front
of wind turbines using e.g. LIDAR devices, see Ref. [111].
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output Pi are calculated according to

ui =
1
Ni

Ni

Â
j=1

ui, j , Pi =
1
Ni

Ni

Â
j=1

Pi, j (1.40)

where ui, j and Pi, j are the normalized 10-minute average values of wind speed and power, and
Ni is the number of 10-minute data sets in the ith bin. For the power curve to be complete and
reliable, each wind speed bin must include at least 30 minutes of sampled data. Furthermore,
the total measurement time must cover at least a period of 180 hours. The range of wind speeds
must range from 1 m/s below cut-in wind speed to 1.5 times the wind speed at 85% of the rated
power of the wind turbine. The IEC power curve can be defined as

PIEC(ui) = Pi . (1.41)

A typical IEC power curve is presented in Fig. 1.4.
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Figure 1.4: IEC power curve PIEC(u) (black line) enclosed in error estimate (enclosing
red lines) obtained according to the IEC norm. The 10-minute averages are shown in the
background (blue dots).

1.3.4 Estimation of Annual Energy Production
The IEC norm [109] also defines the AEP (Annual Energy Production) and a method of estima-
tion. The AEP is a central feature for economical considerations, as it gives a first estimate of
the long-time energy production of a wind turbine (see Ref. [112] for a detailed survey on wind
energy economics). The estimation of the AEP extrapolates the power production of a wind
turbine characterized by its power curve in a given location.

Any location scheduled to host a wind turbine can be categorized in advance by a char-
acterization of its wind resource. A local measurement of wind speed u from a met mast at
hub heightj of the hypothetical wind turbine must be performed, typically over one yeark. The

jIf a measurement at hub height z ⇠ 100m is unavailable due to technical difficulties, a vertical extrapolation
can be performed from measurements at lower heights.

kA measurement of wind speed over one year covers the various wind situations resulting from various seasonal
behaviors.
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probability density function f (u) of the ten-minute average values of u is established. For long
enough measurements, f (u) is known to approach a Weibull distribution [24]

fW (u;k,c) =
k
c

⇣u
c

⌘k�1
e(�u/c)k

, (1.42)

where k and c are called respectively the shape and scale factorsl, see Ref. [1] for some exam-
ples.

While f (u) ' fW (u;k,c) characterizes a given location, a wind turbine is (approximately)
characterized by its IEC power curve, that serves as an average transfer function from wind
speed u to power output P. An estimation of the average power output hPi can be obtained
following

hPi =
Z •

0
fW (u)⇥PIEC(u)du . (1.43)

An estimation of the energy production over a period T is hPi⇥T . Over one year, T = 8760h
and AEP = hPi⇥8760h where hPi and AEP are given resp. in W and Wh.

The AEP can predict how much energy a wind turbine will generate on a given site be-
fore installing it. This allows for an optimal choice of design for the optimal location. This
result however remains a rough estimation, as it neglects e.g. wake losses generated by other
surrounding wind turbines.

1.3.5 Langevin power curve

From a simple mechanical perspective, a wind turbine could be seen as a black box that con-
tinually adapts its power output to the ever-changing, turbulent wind speed. One can intuitively
postulate that fast wind fluctuations are filtered out by the turbine due to its inertia (that is re-
lated to the rotor size and to the control strategy). However, slower changes in wind speed
should bring changes in power output. Ref. [113] proposes to describe such dynamics as a
relaxation process towards a stationary power curve. Ref. [114] supports this description, and
illustrates that the conversion process drifts towards a dynamically attractive power curve that
will be named the Langevin power curvem PL(u). As the wind speed changes from u1 to a
new value u2 6= u1, the power production adapts by drifting slowlyn from PL(u1) towards a new
power value PL(u2). The relaxation process is illustrated in figure 1.5.

The Langevin power curve is defined as the attractive fixed points of the drift coefficient
[114]. It is the deterministic attractor of the stochastic system. For a one-dimensional dynam-
ical system, the drift coefficient is defined as the first Kramers-Moyal coefficient, see equation
(1.19). An extension to a two-dimensional system is straightforward, see [41]. Considering the

lThe IEC norm [109] refers to the Rayleigh distribution, which is a special case of the Weibull distribution for
k = 2.

mIn former publications on the topic, the Langevin power curve was called dynamical power curve or Markovian
power curve. It is nonetheless the same approach.

nThe drift is considered to be slow because it is seen in real data that the wind speed is the fast-changing
variable and the power output is the slower variable. In the case u1 ! u2, wind turbines seldom reach the power
value PL(u2). Instead, a new wind speed value u3 6= u2 arises before PL(u2) is reached. The wind turbine continually
tries to adapt P(t) to a fast, ever-changing wind speed u(t).
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wind speed u

po
we

r o
ut

pu
t P

PL(u)

u1 u2

P L
(u

1)
P L

(u
2)

D(1)(u2,P)
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Figure 1.5: Conceptual illustration of the relaxation process for P(t). When the wind
speed changes from u1 to u2, the power output is slowly driven by the drift field D(1)(u2,P)
(red arrows) from the old stable value PL(u1) to a new stable value PL(u2) (blue trajec-
tory). The Langevin power curve PL(u) represents the stable, attractive fixed points of the
system.

dynamics of the turbine in the two-dimensional state space {u;P}, one can define for each local
state (ui,Pj) the drift coefficient D(1)

u in the u�direction following

D(1)
u (ui,Pj) = lim

t!0

1
t

D
u(t + t)�u(t)

���u(t) = ui,P(t) = Pj

E
, (1.44)

as well as the drift coefficient D(1)
P in the P�direction following

D(1)
P (ui,Pj) = lim

t!0

1
t

D
P(t + t)�P(t)

���u(t) = ui,P(t) = Pj

E
. (1.45)

Considering that the wind speed drives the power output, and not the opposite, the dynamics
in the u�direction are not a relevant measure of the wind turbine dynamics. The wind speed
dynamics u̇ are influenced by many external effects which are not in the scope of this work.
Instead, the conversion process u ! P is of interest here, and only the reaction of power output
to changing wind speed is investigated. This is why in this work, D(1)

u is not used and only
D(1) ⌘ D(1)

P is considered. That is, only the projection in the P�direction is investigated. A
representation of a typical drift coefficient can be found in figure 1.6.

The stable, attractive fixed points of D(1)(ui,Pj) define the Langevin power curve PL(ui)
following

D(1)
�
ui,PL(ui)

�
= 0

∂D(1)(ui,Pj)

∂P

�����
Pj=PL(ui)

< 0 . (1.46)

In order to calculate the Langevin power curve, the first step defined in the IEC norm (see
section 1.3.3) concerning data measurement and normalization also applies. It should be noted
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Figure 1.6: Drift function D(1)(u,P) estimated for a multi-MW wind turbine in operation.
Each arrow represents the local value of D(1)(u,P) in magnitude (length of the arrow)
and direction (pointing up for positive values). The stable fixed points are given by the
black dots. The IEC power curve is shown for reference (full line). The rated power Pr is
indicated (dashed line).

that for this approach, measuring the wind speed u(t) and power output P(t) at a sampling
frequency of at least 1Hz is essential in order to capture the fast conversion dynamics. A com-
parison of IEC and Langevin power curves is presented in figure 1.6. An estimation of the
uncertainty for PL(u) is proposed in Ref. [115].

One could speak of a state-based averaging in the {u,P} space, in contrast to the temporal
averaging performed in the IEC norm. The dynamics of the power signal can be directly related
to the local sign and value of D(1). A positive drift indicates that the power tends to increase
(blue arrows pointing up in figure 1.6), in regions where the wind turbine does not produce
enough power for the given wind speed. On the contrary, a negative drift corresponds to a
decreasing power (red arrows pointing down), in regions where the wind turbine produces too
much power for the given wind speed. At the intersection are the stable fixed points where
the power dynamics are in a stable configuration (the average time derivative is zero). The
Langevin approach can reveal complex dynamics, including e.g. multiple stable states, see
also [114, 116]. Such multi-stable dynamics are typically observed in the regions of transition,
around cut-in or rated wind speeds, see figure 1.3. The various control strategies are clearly
separated thanks to the two-dimensional, state-based averaging procedureo.

1.A Appendix 1: Derivation of the Kramers-Moyal expan-
sion

The Kramers-Moyal expansion presented in section 1.2.2 is derived in this appendix. The
demonstration presented in this appendix 1.A is done in greater detail in Ref. [41].

oThe IEC approach averages all the power values for each wind speed bin, such that multi-stable dynamics are
filtered out.
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The characteristic function C is defined as the Fourier transform of the probability following

C(k) =
Z •

�•
eikx f (x)dx . (1.47)

A characteristic function can be defined similarly for a conditional probability following

C(k,x0, t,t) =
Z •

�•
dx eik(x�x0)p(x, t + t|x0, t)

=
Z •

�•
dx

•

Â
n=0

[ik(x� x0)]n

n!
p(x, t + t|x0, t)

=
•

Â
n=0

(ik)n

n!

Z •

�•
dx (x� x0)n p(x, t + t|x0, t)

=
•

Â
n=0

(ik)n

n!
M(n)(x0, t,t)

= 1+
•

Â
n=1

(ik)n

n!
M(n)(x0, t,t) . (1.48)

The conditional moments M(n) are defined in equation (1.17). Also, M(0)(x0, t,t) = 1 is used.
The opposite relation gives the conditional probability as the inverse Fourier transform of

the characteristic function

p(x, t + t|x0, t) =
1

2p

Z •

�•
dk e�ik(x�x0)C(k,x0, t,t)

=
1

2p

Z •

�•
dk e�ik(x�x0)

"
1+

•

Â
n=1

(ik)n

n!
M(n)(x0, t,t)

#
(1.49)

using equation (1.48). Using the property of the delta function

d (x� x0) =
1

2p

Z •

�•
dk e�ik(x�x0) (1.50)

and differentiating it n-times (with n � 0) gives
 
� ∂

∂x

!n

d (x� x0) =
1

2p

Z •

�•
dk (ik)ne�ik(x�x0) . (1.51)

One can reformulate equation (1.49) using equations (1.50,1.51) and

p(x, t + t|x0, t) =
1

2p

Z •

�•
dk e�ik(x�x0)

+
•

Â
n=1

1
n!

1
2p

Z •

�•
dk (ik)ne�ik(x�x0)M(n)(x0, t,t)

= d (x� x0)+
•

Â
n=1

1
n!

 
� ∂

∂x

!n

M(n)(x0, t,t)d (x� x0)

=

"
1+

•

Â
n=1

1
n!

 
� ∂

∂x

!n

M(n)(x0, t,t)

#
d (x� x0) . (1.52)



26 1. Introduction

Inserting equation (1.52) into equation (1.16) gives

f (x, t + t) =
Z

dx0
"

1+
•

Â
n=1

1
n!

 
� ∂

∂x

!n

M(n)(x0, t,t)

#
d (x� x0) f (x0, t)

=

"
1+

•

Â
n=1

1
n!

 
� ∂

∂x

!n

M(n)(x, t,t)

#
f (x, t) . (1.53)

One can derive the Kramers-Moyal expansion

∂ f (x, t)
∂ t

= lim
t!0

f (x, t + t)� f (x, t)
t

= lim
t!0

1
t

•

Â
n=1

1
n!

 
� ∂

∂x
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M(n)(x, t,t) f (x, t)

=
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� ∂

∂x

!n
1
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1
t

M(n)(x, t,t) f (x, t)

=
•

Â
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� ∂

∂x

!n

D(n)(x, t) f (x, t) (1.54)

with the Kramers-Moyal coefficients defined as

D(n)(x, t) =
1
n!

lim
t!0

1
t

M(n)(x, t,t)

=
1
n!

lim
t!0

1
t

D⇥
x(t + t)� x(t)

⇤n���x(t) = x
E

. (1.55)

It should be noted that in the special case of the Fokker-Planck equation (D(n) = 0 for n > 2),
the short-time propagator p(x, t + t|x0, t) can be simplified. Based on the definition of d (x� x0)
in equation (1.50), equation (1.28) becomes for small time increments t

p(x, t + t|x0, t) = et LFP(x,t)d (x� x0)

= exp

"
� t

∂
∂x

D(1)(x0, t)+ t
∂ 2

∂x2 D(2)(x0, t)

#
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2p

Z •

�•
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"
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∂
∂x
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∂ 2

∂x2

#
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=
1

2p

Z •

�•
dk exp

h
� tD(1)(x0, t)ik� tD(2)(x0, t)k2 + ik(x� x0)

i

=
1p

4ptD(2)(x0, t)
exp

 
� [x� x0 � tD(1)(x0, t)]2

4tD(2)(x0, t)

!
(1.56)

using the identity
R •
�• e�ax2+bxdx =

q
p
a eb2/4a for a > 0.
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1.B Appendix 2: Connection of the Langevin equation with
the Fokker-Planck equation

The Langevin equation is introduced in equation (1.31) with the Kramers-Moyal coefficients
previously defined in equation (1.19). This connects the Fokker-Planck and Langevin equations,
that describe the same stochastic properties. Yet this connection is not obvious, and it is the
purpose of this appendix to demonstrate it.

Based on the structure of the stochastic equation (1.3) introduced by Langevin, the general
form of the Langevin equation for a one-dimensional Langevin process x(t) is

dx
dt

= h(x, t)+g(x, t) ·G(t) . (1.57)

The Langevin noise (also called Langevin force) G(t) is a Gaussian distributed, uncorrelated
(white) noise that follows hG(t)i = 0 and hG(t)G(t 0)i = 2d (t � t 0).

From the identity
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one can derive
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considering
t+tR
t

h(x, t 0)dt 0 = h(x, t)t for the vanishing time duration t . Similarly, g was taken out

of the integral following Itô definition of stochastic integrals, see equation (1.33). The identity
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hG(t 0)|x(t) = x0i = 0 follows the definition of G. Also,
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Injecting equations (1.59,1.60) into the generalized Langevin equation (1.57) yields the com-
mon form

dx
dt

= D(1)(x, t)+

q
D(2)(x, t) ·G(t) . (1.61)

1.C Appendix 3: Aerodynamics of rotor bladesa

The essential (mechanical) element of a wind turbine is the rotor, that transforms the power of
the wind into a rotational or mechanical power. The ideal requirements are:

• the rotation should be steady and smooth;

• dynamical loads should be minimal;

• the regulation should be done without sudden jumps.
aThis section is a summary of a book chapter that has been accepted, and is being published as PATRICK

MILAN, MATTHIAS WÄCHTER and JOACHIM PEINKE: Wind Turbine Power Performance and Application to
Monitoring, in Handbook of Wind Power Systems (HWPS): Optimization, Modeling, Simulation and Economic
Aspects, editors S. Rebennack, P. M. Pardalos, V. Pappu, M. V. Pereira and N. A. Illiadis, publisher Springer, 2013.
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The number of blades, their profile and design should guarantee these features. Modern wind
turbines rotate due to the lift forces FL acting on the airfoils. For an airfoil the effective area can
be expressed in terms of the depth t and the wingspan b (similar to the rotor radius R), such that

FD = CD(a)
1
2

rc2(t ·b)

FL = CL(a)
1
2

rc2(t ·b) , (1.62)

where a is the angle of attack, as displayed in figure 1.7. The lift-to-drag ratio FL/FD relates to
the quality of the airfoil, which should be maximized.

In figure 1.7, the velocity vector c gives the wind velocity in the frame of reference of the
airfoil. The wind velocity at the rotor is 2

3u in the frame of the ground, where u is the wind
velocity upstream, see section 1.3.1. Additionally, the rotational motion must be considered for
the motion of the wind with respect to the blades. The velocity of the rotational motion at a
radial position r is v = wr, such that

c2(r) = (2u/3)2 +(wr)2 (1.63)

gives the effective velocity c of the air in the reference frame of the blade, see figure 1.7.
Blade element momentum theory is commonly used to estimate the total force acting on the

rotor by summing up the local force on each infinitesimal blade element of size dr. The total
force is divided into its rotational component Fr and its axial component Fa. Considering an in-
finitesimal cut dr at radial position r in the polar plane of the rotor, the infinitesimal components
are
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r
2
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h
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The angle g = p
2 �a �b (see figure 1.7) reads
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Only the rotational component Fr is of use to rotate the rotora. The infinitesimal power
associated to the rotational force acting on z rotor blades is

dP = z ·dFr ·wr

= z · r
2

c2 · t ·w · r dr
h
CLcos(g)�CDsin(g)

i
. (1.66)

The goal is to construct the blades in such a way that they extract the optimal power following
Betz limit out of the wind. It should be noted that in this idealized case, the drag force must be

aThe force Fa in the axial direction does not contribute to the power production but to the thrust acting on the
turbine structure. Fa should be minimized to reduce mechanical fatigue.
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Figure 1.7: Cut through an airfoil rotating around the wind turbine axis. The rotational
velocity wr (gray) is perpendicular to the axial velocity 2u/3 (gray). The angle of attack
a is the angle between the air velocity c (green) and airfoil chord (dashed line). The
pitch angle b denotes the angle between the chord and the plane of rotation. The lift and
drag forces FL and FD are displayed (red), giving the total force F (purple), as well as the
rotational and thrust projections Fr and Fa (blue).

zero, which can be practically approached if CD ⌧CL. Each infinitesimal radial annulus of size
2prdr should extract a fraction 16/27 of the wind power

dPideal =
16
27

· r
2

·u3 · (2prdr)

= z
r
2

c2 · t ·w · r dr ·CLcos(g) (1.67)

based on equation (1.66). In order to approach such ideal case, the blade depth t(r) must follow

t(r) =
16p

9
· R2

zCLl 2 · w
c
⇡ 16p

9
R2

zCLrl 2 , (1.68)

where the approximation holds for high rotational speed w � u/r, and c ⇡ wr. This approxi-
mation is valid away from the blade root and for fast-rotating turbines. This has an important
consequence on the design of rotor blades. The depth decreases when increasing either the
number of blades, the lift coefficient, the radius or the tip speed ratio. This explains why fast
rotating wind turbines tend to have only two or three narrow blades to optimize power extrac-
tion, while old western-mill machines have many, rather broad blades (in order to maximize
mechanical torque).
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If drag losses are included, an efficiency factor hdrag can be introduced as the ratio of real
to ideal power

hdrag =
dP

dPideal
=

CLcos(g)�CDsin(g)

CLcos(g)

= 1� CD

CL
tan(g)

= 1� CD

CL

3
2R

l r (1.69)

following equation (1.65). This justifies the large profile losses for large tip speed ratios in
figure 1.2.
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3.4 Exercise

Exercise 3.1 Study of a time series of a Turbulent Flow

In this Exercise, you will analyze with Mathematica a time series of a Turbulent Flow, an air

into air round free jet. The corresponding Experiment, which uses Hot Wire Anemometry, has

been described in Renner et al. (2001).

The time series is available on the web page of the module, under the link

http://emmanuelplaut.perso.univ-lorraine.fr/afm/Jet.dat .

The file Jet.dat contains velocity measurements u(t) in m/s with a sampling frequency of 8 kHz,

i.e., t = tn = nT with n ∈ {1, · · · ,Nd} and T = 1/(8 kHz).

1 Import the file Jet.dat, compute the number Nd of data points, and plot the whole time series.

Indication: the command Flatten will help to get a list of numbers, not a list of lists.

2 Prepare two lists where you take either the first 5000 or the last 5000 data points. Plot the time

series of the first 5000 and the last 5000 data points. Compare and comment.

3 Determine the mean velocity 〈u(t)〉t for the first 5000 and for the last 5000 data points. Compare

and comment.

4.a Construct a list with the histogram of the data u(t), normalized as a Probability Density

Function, and plot it. Comment.

Indications:

Your code should have the following structure, to produce a list with u at the first place and

p(u) at the second place:

h= HistogramList[..., Automatic, "PDF"]

hup= {};

Do[AppendTo[hup,{(h[[1,n+1]]+h[[1,n]])/2,h[[2,n]]}], {n,Length[h[[2]]]}]

ListPlot[hup, ...]

4.b Plot the PDF of u but in linear - log scales. Comment on the character, Gaussian or non

Gaussian, of u(t).

5.a Construct a list with the velocity increments

uτ (tn) = u(tn + τ)− u(tn) ,

for τ = 10T , i.e.

uτ (tn) = u(tn+10)− u(tn) .

Plot this time series, that we denote hereafter u10(t).

5.b Plot the time series of the first 5000 data points u10(t). Compare with the plots of question

2 and comment.

5.c Do what you did for u in questions 4 but for u10: construct a list with the histogram of the

data u10(t), normalized as a Probability Density Function, and plot it; comment; plot this PDF of

u10 but in linear - log scales; comment on the character, Gaussian or non Gaussian, of u10(t).

http://emmanuelplaut.perso.univ-lorraine.fr/afm/Jet.dat
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