

plane parallel flows... 0000000000

Transition to (spatio-temporal complexity and) turbulence in thermoconvection & aerodynamics

http://emmanuelplaut.perso.univ-lorraine.fr/t2t

Session	Date	Content
1 -	29/09	Thermoconvection: phenomena, equations, differentially heated cavity,
		cavity heated from below $= \mathbf{RB}$ cavity, linear stability analysis
2 -	06/10	RB Thermoconvection: linear stability analysis
3 -	13/10	RB Thermoconvection: (weakly) nonlinear phenomena
\rightarrow 4 -	20/10	Aerodynamics of OSF : linear stability analysis
5 -	27/10	Aerodynamics of \mathbf{OSF} : linear & weakly nonlinear stability analyses
6 -	10/11	Aerodynamics of OSF : nonlinear phenomena
	24/11	Examination

 $\mathbf{RB}^* = \mathsf{Rayleigh}\mathsf{-}\mathsf{B}\acute{e}\mathsf{nard}$ $\mathbf{OSF}^* = \mathsf{Open}$ Shear Flows

Today: session 4: transition in open shear flows:

- Introduction: OSF, instabilities of OSF, Rayleigh criterion
- $\bullet\,$ Numerical linear stability analysis of plane Poiseuille flow: towards TS waves

Mines Nancy 2022 Plaut - T2TS4 - 1/22

quite different from Rayleigh-Bénard thermoconvection systems

Open shear flows (OSF)

[Homsy et al.] v T = constant $v \neq 0$ complex T = constant

Navier-Stokes contains $(\mathbf{v} \cdot \nabla)\mathbf{v}$ Heat equation trivially fulfilled

OSF quite interesting but also quite challenging:

easier to understand $\mathbf{v} \cdot \nabla T$ than $(\mathbf{v} \cdot \nabla)\mathbf{v}$!

Mines Nancy 2022 Plaut - T2TS4 - 2/22

Open shear flows are often encountered in aerodynamics

Turbulent (?) flow around an obstacle, an airfoil, at an angle of attack $\alpha = 15^{\circ}$, observed with smoke in a wind tunnel at U. Stanford:

Homsy et al. 2019 Multimedia Fluid Mechanics Online. Cambridge University Press

Mines Nancy 2022 Plaut - T2TS4 - 3/22

 Plan
 Open shear flows...
 instabilities
 plane parallel flows...
 Linear stability of viscous plane Poiseuille flow

 0
 000
 00000000000
 00

Open shear flows are often encountered in aerodynamics

Laminar flow around an obstacle, an airfoil, also exists, and may be computed, for the external flow, with potential flow theory - complex analysis techniques:

Plaut 2018 Mécanique des fluides : des bases à la turbulence. Cours Mines Nancy 2A

Mines Nancy 2022 Plaut - T2TS4 - 4/22

 Plan
 Open shear flows...
 instabilities
 plane parallel flows...
 Linear stability of viscous plane Poiseuille flow

 0
 000
 00000000000
 00

Open shear flows are often encountered in aerodynamics

Laminar flow around an obstacle, an airfoil, also exists, and may be computed, for the external flow, with potential flow theory - complex analysis techniques:

Plaut 2018 Mécanique des fluides : des bases à la turbulence. Cours Mines Nancy 2A

When and how laminar open shear flows get unstable and go to turbulence ?

Mines Nancy 2022 Plaut - T2TS4 - 4/22